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Preface

A science calls for a unifying idea capable of yielding a powerful synthesis. In particular, ocean
engineering science calls for unification of

1. the deterministic and the stochastic approach to wave theory;
2. the approach of field measurements, and the approach of experiments in wave tanks.

This unification is obtained through quasi-determinism (QD) theory and small-scale field
experiments (SSFEs).

With the QD theory, a deterministic wave mechanics is born by the theory of probability. The
SSFEs are experiments performed, like in a big wave tank, in sea areas or lakes where wind
seas have some small size.

An ocean engineering science may be founded on QD theory and SSFEs. This is an important
novelty, because in all the books I have consulted the deterministic approach and the stochastic
approach to wave theory are conceptually separated; and, similarly, there are two distinct
experimental activities: field measurements and wave tank experiments.

In 15 papers published inOceanEngineering, J.Waterway, Port, Coastal, andOceanEngineering,
J. Fluid Mechanics, Probabilistic Engineering Mechanics, and J. Offshore Mechanics and Artic
Engineering, and in a previous book published by Elsevier (2000), I presented the QD theory
and many results of SSFEs. However, I did not point out openly that an ocean engineering
science may be founded on these two pillars. Here, I intend to do this; and for this aim I shall
present the QD theory in a simpler form, and devote a larger room to calculation of wave loads.

This book covers a wide area of potential interest: civil engineering, naval architecture, and
mechanical engineering (because of the large room reserved to the problem of wave energy
conversion). The area of greatest potential interest is civil engineering, and more specifically:
ocean engineering, offshore engineering, port engineering, and coastal engineering. The
book has been conceived to be read by students, researchers, and engineers.

The software illustrated in this book and given in the companion website is original and has
only the didactic scope to make the new concepts clearer.

Wave Mechanics and Wave Loads on Marine Structures is a prerequisite to books like
Handbook of Offshore Engineering by Chakrabarti (Elsevier, 2005), roughly, as a book on
solid mechanics is a prerequisite to books on steel design or concrete design.

Paolo Boccotti

Reggio Calabria, Italy

March 2014
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Symbols

(Some symbols used in only one section are not included in the list.)

a Wave amplitude
a Triangle (ETS) height
A Absorption coefficient
ax, ay, az Particle acceleration
b Width
b Threshold or given value of the surface elevation
b Threshold or given value of a wave crest height
b Triangle (ETS) base
c Wave propagation speed
C Height of a wave crest
C Energy-flux/energy factor
Cd Diffraction coefficient
Cr Refraction coefficient
Cs Shoaling coefficient
Cdg Drag coefficient
Cin Inertia coefficient
cG Group velocity
cR Propagation speed of the reflected wave energy
d Water depth
D Diameter
D Directional distribution
D Persistence above a fixed threshold
E Mean wave energy per unit surface
E Dimensionless frequency spectrum
E Frequency spectrum (omnidirectional spectrum)
EP Electrical power
f Frequency
f General function
F General function
F Function in the diffraction theory
fx, fy, fz Force per unit length
Fx, Fy, Fz Force, or force per unit length
F R Phase-speed reduction factor
g Acceleration due to gravity
G Function in the diffraction theory
h Threshold or given value of the significant wave height
h Energy per unit weight at various locations of a converter
H Wave height
Hs Significant wave height
Hs0 Significant wave height on deep water

xix



k Wave number
k Exponent in the gas law
K Constant
K Head loss factor
K0, K00 Parameters regression base height of ETS
K1, K2 Parameters distribution wave heights in a sea state
K0 Parameter relationship between Tp and Hs for wind seas
KE KeleuganeCarpenter number
K(n) Normalizing factor directional distribution
L Lifetime of a structure
L Wavelength
L0 Wavelength on deep water
Lp Wavelength relevant to wave period Tp
Lp0 Wavelength, on deep water, relevant to wave period Tp
mj jth spectral moment (with angular frequencies)
m0 Variance of the surface elevation of a sea state
M Determinant of a covariance matrix
M Moment of a force
Ma Air mass
Mij i,j cofactor of a covariance matrix
np Width parameter of the directional distribution at the peak frequency
p Pressure
p Probability density function
P Probability of exceedance
P Probability
pa Absolute pressure air
Q Flow rate per unit length
r Polar coordinate
R Radius
R Return period
R Resonance coefficient
s Local propagation axis
S Directional spectrum
t Time
to Special time instant
T Wave period
T Time lag
T* Lag of the absolute minimum of the autocovariance
Tp Peak period
Th Period of a very large wave
Tm Mean wave period
u Dummy variable
u Current velocity
u Wind speed at an elevation of 10 m above the mean sea surface
u Velocity in the vertical duct of a U-OWC

xx Symbols



u Parameter of the Weibull 2-parameter distribution
vx, vy, vz Particle velocity
w Dummy variable
w Dimensionless frequency (¼u/up)
w Parameter of the Weibull 2-parameter distribution
x Dummy variable
x Horizontal coordinate axis
xo Fixed value of x
X Space lag
y Horizontal coordinate axis
yo Fixed value of y
Y Space lag
Y Fetch
z Vertical coordinate axis with origin at the still water level
a Angle between x-axis and direction of wave advance
a Quotient between wave height and RMS surface elevation of a sea state
A Energy scale parameter JONSWAP spectrum (a in the original paper)
b Dimensionless wave height with a universal distribution
b Polar coordinate
b Ratio between the wave height at a U-OWC and the wave height at a vertical

breakwater
g Specific weight of water
Dp Wave pressure
Du Angular frequency resolution
ε Phase angle
z Vertical coordinate axis with origin at the seabed
h Surface elevation (assumed to have a zero mean)
q Angle between the y-axis and the direction of wave advance
qd Angle of the dominant direction
l Sea bottom slope
n Chinematic viscosity
x Dummy variable whose domain is (0,1)
x Ratio between crest height and wave height
x Height of the air pocket of a U-OWC
r Water density
s RMS surface elevation of a sea state
s Time lag between crest and trough
s Ratio between a time lag T and peak period Tp
s Time lag covariance pressure-discharge in a converter
f Velocity potential
F Cross-covariance of surface elevation and velocity potential
F Mean energy flux per unit length
c Ratio between cR and cG
c1 Shape parameter JONSWAP spectrum (g in the original paper)

Symbols xxi



c2 Shape parameter JONSWAP spectrum (s in the original paper)
j Autocovariance function
j* Narrow bandedness parameter (¼ absolute value of the ratio between the

minimum and the maximum of the autocovariance function)
J Cross-covariance of surface elevation
bJ Cross-correlation of surface elevation
u Angular frequency
up Dominant angular frequency of the spectrum

Mathematical Symbols
hf ðtÞi Time average of function f(t)
f(t) Time derivative of function f(t)

Symbols Used in All the FORTRAN Programs
PG ¼ p

DPG ¼ 2p

xxii Symbols



Abbreviations and Acronyms

CV Control volume
DSSP Design sea state pattern
DWR Duration of a wave record
ETS Equivalent triangular storm
GA Gauge array
GM Goda’s model
LHS Left-hand side
MWL Mean water level
NDBC National Data Buoy Center of NOAA
NOAA National Oceanic and Atmospheric Administration, USA
NOEL Natural Ocean Engineering Laboratory, Italy
OWC Oscillating water column
pdf Probability density function
POT Peaks over threshold
QD Quasi-determinism
RHS Right-hand side
RMS Root mean square
RPP Random point process
SSFE Small-scale field experiment
U-OWC U-shaped OWC
VHM Virtual-height model
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1.1 THE SYSTEM OF EQUATIONS
In an irrotational two-dimensional flow (y,z), a velocity potential exists
such that

vy ¼ vf

vy
(1.1)

vz ¼ vf

vz
(1.2)

where vy, vz are the y, z components of the particle velocity.

The Euler equation gives the particle acceleration

ay ¼ vvy
vt

þ vy
vvy
vy

þ vz
vvy
vz

(1.3)
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az ¼ vvz
vt

þ vy
vvz
vy

þ vz
vvz
vz

(1.4)

The Bernoulli equation states that

pþ rgzþ r
vf

vt
þ 1
2
r

"�
vf

vy

�2

þ
�
vf

vz

�2
#

¼ f ðtÞ (1.5)

where p is the pressure and f(t) is an arbitrary function of time. The general
equations of a wave motion are

ghþ
�
vf

vt

�
z¼h

þ 1
2

"�
vf

vy

�2

þ
�
vf

vz

�2
#
z¼h

¼ 1
r
f ðtÞ (1.6)

�
vf

vz

�
z¼h

¼
�
vf

vy

�
z¼h

vh

vy
þ vh

vt
(1.7)

v2f

vy2
þ v2f

vz2
¼ 0 (1.8)

�
vf

vz

�
z¼�d

¼ 0 (1.9)

The first one exploits the Bernoulli equation to say that the pressure at the
elevation z¼ h(y,t) is zero. The second one says that h(y,t) is the elevation
of the free surface. The third one is the continuity equation. The fourth one
is the boundary condition at the bottom depth. The second equation is
proven as follows. The LHS of the following equation represents the dif-
ference between the water mass entering the control volume (CV) of
Fig. 1.1 and the water mass exiting from the CV in a small time interval
dt, and the RHS represents the variation of the water mass in the small
interval dt in the CV:

�r

Zh

�d

v2f

vy2
dydzdt � r

�
vf

vy

�
z¼h

�
vh

vy

�
dydt ¼ r

vh

vt
dtdy (1.10)

Using the continuity Eqn (1.8) and the boundary condition Eqn (1.9),
we get

Zh

�d

v2f

vy2
dz ¼ �

�
vf

vz

�
z¼h

(1.11)

which, together with Eqn (1.10), yields Eqn (1.7).
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1.2 INTRODUCTION TO WAVE MECHANICS
A vertical plate swinging periodically at one end of a channel generates
waves on the free surface. If we take a photo of the water surface, we get
a picture of the surface elevation h as a function of abscissa y along the prop-
agation axis (the channel’s axis). Function h(y) at a fixed instant represents
the waves on the space domain (see Fig. 1.2(a)). If we record the surface
elevation at a fixed point as a function of time t, we get the waves on the
time domain (see Fig. 1.2(b)).

From Fig. 1.2(a) and (b) of the waves on the space domain and on the time
domain, we get the definitions of the basic parameters: wave heightH, which

n FIGURE 1.2 (a) Waves on the space domain. (b) Waves on the time domain.

n FIGURE 1.1 The small volume used for obtaining Eqn (1.7).
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is the vertical distance between the highest and the lowest surface elevation
in a wave; wavelength L, which is the interval between one zero up-crossing
and the next of the wave on the space domain; and wave period T, which is
the interval between one zero up-crossing and the next one of the wave
on the time domain. Besides these three parameters, it is convenient to define
the wave steepness, which is the ratio H/L, and moreover

1. the wave amplitude

ahH=2 (1.12)

2. the angular frequency

uh 2p=T (1.13)

3. the wave number

kh 2p=L (1.14)

The scheme of Fig. 1.3 should be useful to understand the wave motion.
Each point in the figure moves along a circular orbit, with constant speed.
The time taken to cover the orbit (circumference) is T, and the figure
shows two instant pictures taken at a time interval of T/4 from each other.
The line connecting the points represents a wave. We see the wave
advance of L/4 in a time interval of T/4, and this means that the phase
speed of the wave is

c ¼ L=T (1.15)

The speed v of each point is generally different from c; indeed,

v ¼ 2pR=T (1.16)

n FIGURE 1.3 Each point covers a circular orbit of radius R in a time T; the line connecting
the points is a wave whose propagation speed is L/T.
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1.3 STOKES’ THEORY TO THE FIRST ORDER
Let us fix period and swinging amplitude, and let us set the wavemaker in
motion. Waves with a height H1 will form.

Let us stop the wavemaker, and let us set the engine in a different manner:
the same period, a smaller swinging amplitude. Then let us start again.
Waves with a height H2 smaller than H1 will form. The wave period will
be the same as before. Indeed, the wave period proves to be the same as
the period of the wavemaker.

Let us repeat the process many timesdeach time with the same period T
and with wave heights smaller and smaller. Doing so, in the first wave gen-
erations, which are the ones with the greater heights, we shall note asymme-
try between the wave crest and trough: the crest will be steeper than the
trough. Then, we shall find that a gradual lowering of the wave height, under
the same period, leads to waves with a smaller asymmetry; the wave
approaches a sinusoidal wave with a wavelength that depends on d and T.

Summarizing:

as H/0 ðd and T fixedÞ : hðy; tÞ ¼ H

2
cos

�
2p
L
y� 2p

T
t

�
(1.17)

where, for the moment, wavelength L is unknown. Function (1.17) repre-
sents a periodic wave of length L on the space domain and it represents a
periodic wave of period T on the time domain. The negative sign in the
cosine implies that the wave travels along the y-axis (with a positive sign
the wave would travel in the opposite direction).

Generating waves with smaller and smaller heights (and a fixed period), we
shall also note that the velocity components, at any fixed depth, will tend to
fluctuate in spaceetime like h(y,t): vy in phase with h and vzwith some phase
angle. Moreover, the particle velocity will prove to be proportional to the
wave height.

From these observations on particle velocity, we can draw the following
identikit of the velocity potential:

as H/0 ðd and T fixedÞ : fðy; z; tÞ ¼Hf1ðz; d; T ; LÞ

� cos

�
2p
L
y� 2p

T
t þ ε

�
þ f2ðtÞ

(1.18)

where f1(z; d, T, L) denotes a function of z, wherein parameters d, T, and L
may generally be present. For the moment, functions f1 and f2 and phase
angle ε are unknown.
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The Eqns (1.17) and (1.18) show that both h and f are infinitesimal of order
H. In particular, the fact that h is infinitesimal enables us to rewrite
Eqns (1.6) and (1.7) in the form

ghþ
�
vf

vt

�
z¼0

þ
�
v2f

vzvt

�
z¼0

hþ 1
2

"�
vf

vy

�2

þ
�
vf

vz

�2
#
z¼0

þ 1
2

(
v

vz

"�
vf

vy

�2

þ
�
vf

vz

�2
#)

z¼0

h ¼ 1
r
f ðtÞ

(1.19)

�
vf

vz

�
z¼0

þ
�
v2f

vz2

�
z¼0

h ¼
��

vf

vy

�
z¼0

þ
�
v2f

vzvy

�
z¼0

h

�
vh

vy
þ vh

vt
(1.20)

where the value of a function at z¼ h has been expressed as: (value of the
function at z¼ 0)þ (value of the derivative with respect to z, at z¼ 0)� h.
Neglecting the terms of orders smaller than or equal to H2, Eqns (1.19) and
(1.20) may be reduced to�

vf

vt

�
z¼0

¼ �ghþ 1
r
f ðtÞ (1.21)

�
vf

vz

�
z¼0

¼ vh

vt
(1.22)

There is only one form of f (y, z, t)dEqn (1.18)dthat satisfies Eqns (1.8),
(1.9) and (1.21). This is

fðy; z; tÞ ¼ g
H

2
u�1 cosh ½kðd þ zÞ�

cosh ðkdÞ sin ðky� utÞ þ 1
r

Z t

0

f ðt0Þdt0 (1.23)

There remains Eqn (1.22) to be satisfied, and this implies the existence of the
following relationship among wavelength, water depth, and wave period:

L ¼ gT2

2p
tanh

�
2pd
L

�
(1.24)

This is the dispersion relationship. For calculating L by means of this rela-
tionship, it is convenient to define the sequence

Li ¼ L0 tanh

�
2pd
Li�1

�
(1.25)

with

L0 h
gT2

2p
(1.26)
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The sequence converges, and it can be easily verified that

Li < L if i is an odd number (1.27)

Li > L if i is an even number (1.28)

Hence, L is the limit of the sequence.

Since f(t) is an arbitrary function of time, the velocity potential Eqn (1.23)
is indeterminate. However, the functions that are of interest, that is to say
v(y, z, t) and p(y, z, t), prove to be independent of f(t), and thus they are
definite. In particular, the components of vector v proceed through Eqns
(1.1) and (1.2) and prove to be

vyðy; z; tÞ ¼ g
H

2
u�1k

cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðky� utÞ (1.29)

vzðy; z; tÞ ¼ g
H

2
u�1k

sinh ½kðd þ zÞ�
cosh ðkdÞ sin ðky� utÞ (1.30)

As to the pressure, it is obtained by means of the Bernoulli Eqn (1.5). The
result is

pðy; z; tÞ ¼ �rgzþ rg
H

2
cosh ½kðd þ zÞ�

cosh ðkdÞ cos ðky� utÞ (1.31)

(where the terms of order smaller than or equal to H2 have been
neglected).

1.4 STOKES’ THEORY TO THE SECOND ORDER
Surface elevation and velocity potential can be expressed in the form

hhh0 þ h00 þ o
�
H2

�
; fhf0 þ f00 þ o

�
H2

�
(1.32)

where h0 and f0 are the terms of order H, the formulas of which are, respec-
tively, Eqns (1.17) and (1.23), h00 and f00 are the terms of order H2 that we
shall obtain in what follows, and o(H2) is for terms of order smaller than H2,
that is, terms of order H3, H4, and so on.

From definition Eqn (1.32), we have�
vf

vt

�
z¼h

¼
�
vf0

vt

�
z¼0

þ
�
vf00

vt

�
z¼0

þ
�
v2f0

vzvt

�
z¼0

h0 þ o
�
H2

�
(1.33)
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This is the form exact to the order H2 of one term of the system of
Eqns (1.6)e(1.9). Similarly, we can also write the form exact to the order
H2 of the other terms of the aforesaid system of equations. The result is

gh0 þ gh00 þ
�
vf0

vt

�
z¼0

þ
�
vf00

vt

�
z¼0

þ
�
v2f0

vzvt

�
z¼0

h0

þ 1
2

�
vf0

vy

�2

z¼0

þ 1
2

�
vf0

vz

�2

z¼0

¼ 1
r
f ðtÞ (1.34)

�
vf0

vz

�
z¼0

þ
�
vf00

vz

�
z¼0

þ
�
v2f0

vz2

�
z¼0

h0 [

�
vf0

vy

�
z¼0

vh0

vy
þ vh0

vt
þ vh00

vt

(1.35)

v2f0

vy2
þ v2f00

vy2
þ v2f0

vz2
þ v2f00

vz2
¼ 0 (1.36)

�
vf0

vz

�
z¼�d

þ
�
vf00

vz

�
z¼�d

¼ 0 (1.37)

where the framed terms form the linear equations that are satisfied if h0 and
f0 are given by Eqns (1.17) and (1.23). Therefore, the framed terms can be
canceled.

In order to solve the system Eqns (1.34)e(1.37) of the two unknown functions
h00 and f00, we may differentiate with respect to time all the terms of Eqn
(1.34), multiply by g all the terms of Eqn (1.35), and finally add Eqn (1.35)
to Eqn (1.34); in doing so we eliminate h00; that is, we obtain an equation
with only the unknown function f00, and the known functions h0 and f0.
Then, substituting h0 and f0 by their expressions Eqns (1.17) and (1.23), we get�

v2f00

vt2

�
z¼0

þ g

�
vf00

vz

�
z¼0

¼ 3
8
H2u3

�
1� 1

tanh2 ðkdÞ
�
sin ½2ðky� utÞ� (1.38)

Therefore, function f00 must satisfy this equation proceeding from
Eqns (1.34) and (1.35), as well as the Eqns (1.36) and (1.37). The solution
is a function of the kind

f00ðy; z; tÞ ¼ A cosh ½2kðd þ zÞ�sin ½2ðky� utÞ� þ Bt þ Cy (1.39)

where A, B, and C are unknown constants. Substituting this expression of f00

in Eqn (1.38), we get

A ¼ 3
32

H2u
1

sinh4 ðkdÞ (1.40)
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At this stage, having obtained the expression of f00 (apart from constants
B and C), we can obtain the expression of h00 by means of Eqn (1.34).
The result is

h00ðy; tÞ ¼ H2

16
u2

g

�
� 1

sinh2 ðkdÞ þ F1ðkdÞcos ½2ðky� utÞ�
	
� B

g
(1.41)

where

F1ðkdÞh 3� 1

tanh2 ðkdÞ þ 3
cosh ð2kdÞ
sinh4 ðkdÞ (1.42)

Constant B can then be obtained given that the mean surface elevation is
zero, so that the water mass in the tank is the same under the wave motion
and when it is calm.

The conclusion is

h00ðy; tÞ ¼ H2

16
u2

g
F1ðkdÞcos ½2ðky� utÞ� (1.43)

f00ðy; z; tÞ ¼ 3
32

H2u
1

sinh4 ðkdÞ cosh ½2kðd þ zÞ�sin ½2ðky� utÞ�

� H2

16
u2 1

sinh2 ðkdÞ t þ Cy (1.44)

where constant C is obtained from the condition that the average flow in the
waveflume is zero.

F1(kd) (function (1.42)) is positive all over its domain, and, as a conse-
quence, the sum of h00 and h0 leads to a wave profile like that of Fig. 1.4:
the crest sharpens and the trough flattens. Thus, the nonlinear theory

n FIGURE 1.4 The second-order term h00 makes the wave crest steeper and flattens the
wave trough.
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succeeds in predicting the characteristic asymmetry between crest and
trough (see Section 1.3).

The second-order term of the fluctuating pressure head is

Dp00

g
¼ �1

g

vf00

vt
� 1
2g

"�
vf0

vy

�2

þ
�
vf0

vz

�2
#

(1.45)

Here, note that the kinetic term (that is, the second addendum on the RHS
of this equation) is always negative. Hence, because of the kinetic term,
the fluctuating pressure head at some depth (especially on deep water)
may have an asymmetry trough/crest opposite to that of the surface
waves.

1.5 WAVEeCURRENT INTERACTION
Let us consider a periodic wave traveling on a current of speed u, in the
limit H/ 0 for fixed d, T, and u. Let us assume the current velocity to be
parallel to the wave propagation. The current direction can be the same or
opposite to the direction of wave advance; that is, u may be positive or
negative.

The surface elevation will have the same form Eqn (1.17) valid in absence
of current, except for a different relation between wave number and water
depth and wave period; that is,

hðy; tÞ ¼ H

2
cos ðkcy� utÞ (1.46)

where kc is the wave number generally different from k, which must be deter-
mined. This new wave number will depend not only on d and T, but also on
u. As to the velocity potential, it will be the sum of two terms: one of the
uniform current and one like Eqn (1.23) (the velocity potential of a wave
without current). Accordingly, we write

fðy; z; tÞ ¼ uyþ A
cosh ½kcðd þ zÞ�

cosh ðkcdÞ sin ðkcy� utÞ þ FðtÞ (1.47)

where A is a dimensional constant and F(t) a function of time, both of which
need to be determined. Without the current (u¼ 0), A is equal to g H

2u
�1.

Naturally, with the current, A will depend on u.

Let us seek kc, A, and F(t) such that h and f satisfy the differential
Eqns (1.6)e(1.9) of general validity. As to Eqns (1.8) and (1.9), it is easy
to verify that they are satisfied whatever the kc, A, and F(t). Let us now
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pass to Eqns (1.6) and (1.7). This time vf/vy is the sum of a finite term u and
of a term of order H due to the wave. Therefore, the terms

�
vf

vy

�2

z¼h

and

�
vf

vy

�
z¼h

vh

vy

respectively, of Eqn (1.6) and of Eqn (1.7), are no longer negligible to
Stokes’ first order, and these equations yield

g
H

2
cos ðkcy� utÞ � Au cos ðkcy� utÞ þ _FðtÞ þ 1

2
u2

þ uAkc cos ðkcy� utÞ ¼ 1
r
f ðtÞ

(1.48)

Akc tanh ðkcdÞsin ðkcy� utÞ ¼ �u
H

2
kcsin ðkcy� utÞ þ H

2
u sin ðkcy� utÞ

(1.49)

where _FðtÞ denotes the derivative of F(t). Equation (1.48) is satisfied if and
only if

A ¼ g
H

2
ðu� ukcÞ�1 (1.50)

FðtÞ ¼ �1
2
u2t þ 1

r

Z t

0

f ðt0Þdt0 (1.51)

and therefore,

fðy; z; tÞ ¼ uyþ g
H

2
ðu� ukcÞ�1 cosh ½kcðd þ zÞ�

cosh ðkcdÞ sin ðkcy� utÞ

� 1
2
u2t þ 1

r

Z t

0

f ðt0Þdt0
(1.52)

Finally, Eqn (1.49) is satisfied if and only if

kc tanh ðkcdÞ ¼ ðu� ukcÞ2
g

(1.53)

From Eqn (1.52) of the velocity potential, and Eqns (1.3) and (1.4) relating
particle acceleration to particle velocity, it follows that

ayðy; z; tÞ ¼ g
H

2
kc
cosh ðkczÞ
cosh ðkcdÞ sin ðkcy� utÞ þ oðHÞ (1.54)

azðy; z; tÞ ¼ �g
H

2
kc

sinh ðkczÞ
cosh ðkcdÞ cos ðkcy� utÞ þ oðHÞ (1.55)
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1.6 PRELIMINARY REMARKS ON THREE-
DIMENSIONAL WAVES

The surface elevation of a wave whose propagation direction makes an
arbitrary angle q with y-axis is given by

hðx; y; tÞ ¼ H

2
cos ðkx sin qþ ky cos q� utÞ (1.56)

To prove this, let us imagine a point moving with a uniform speed L/T along
a straight line making an angle q with the y-axis. If the point starts from
x¼ 0, y¼ 0 at time t¼ 0, its position is given by

xP ¼ L

T
tsin q; yP ¼ L

T
t cos q (1.57)

so that the surface elevation at this point proves to be

hðxP; yP; tÞ ¼ H

2
cos

�
2p
T

tsin2 qþ 2p
T

t cos2 q� 2p
T

t

�
¼ H

2
(1.58)

and hence, it keeps constant in time, which confirms that the trajectory
and speed of the wave is coincident with the trajectory and speed of
the point.

The velocity potential attacked to surface elevation Eqn (1.56) is

fðx; y; z; tÞ ¼ g
H

2
u�1 cosh ½kðd þ zÞ�

cosh ðkdÞ sin ðkx sin qþ ky cos q� utÞ (1.59)

Here, we can readily verify that the two functions (1.56) and (1.59)
satisfy Eqns (1.21) and (1.22), provided that f(t)¼ 0 in Eqn (1.21), as
well as the boundary condition at the bottom; see Eqn (1.9). Note: These
equations, having been obtained for the two-dimensional flow y-z, retain
their validity even for the three-dimensional flow x-y-z. As to f(t)¼ 0,
we have already seen that v and p do not change whatever the f(t), and
therefore it is justified and advisable to put directly f(t)¼ 0 in Eqn (1.21).

Of the whole system of linear flow equations, that is, the system consisting
of Eqns (1.8) and (1.9) and Eqns (1.21) and (1.22), the only equation that
needs to be adjusted from the two-dimensional to the three-dimensional
flow is Eqn (1.8). For the three-dimensional flow, it becomes

v2f

vx2
þ v2f

vy2
þ v2f

vz2
¼ 0 (1.60)

which is satisfied by function (1.59).
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1.7 WAVE REFLECTION
1.7.1 General Solution for h and f

Let us consider the flow field if a wave train attacks a long vertical break-
water. Let us assume that the breakwater is along line y¼ 0, and the
direction of the incident waves makes an angle q with the y-axis
(see Fig. 1.5).

On the ground of some intuitive considerations, we could at once say that
specular reflection will occur and that the height and period of the reflected
waves will be equal to the height and period of the incident waves; but we
believe it to be useful to prove such intuitive knowledge. Therefore, we as-
sume that the direction of the reflected waves makes an unknown angle ~q

with the y-axis, and in addition, we allow the possibility that the reflected
waves may have a height H

w
and a period ~T different from height H and

period T of the incident waves.

The h and ɸ of the incident waves are given by Eqns (1.56) and (1.59), and
the h and ɸ of the reflected waves are given by the same equations with
~H, ~u, ~k, and ~q in place of H, u, k, and q:

reflected waves

8>>><
>>>:

h
�
x; y; t

� ¼
~H

2
cos



~kx sin ~qþ ~ky cos ~q� ~ut þ ε

�
ð1:61Þ

f
�
x; y; z; t

� ¼ g
~H

2
~u�1 cosh

�
~k
�
d þ z

�
cosh

�
~kd

�
� sin



~kx sin ~qþ ~ky cos ~q� ~ut þ ε

�
ð1:62Þ

We cannot exclude some phase angle between the reflected and the incident
waves, and this is why in the expressions of the reflected waves we have put
a phase angle ε that must be determined.

n FIGURE 1.5 Reflection: reference scheme.
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The flow field before the wall is given by the sum of the incident waves
(Eqns (1.56) and (1.59) of h and ɸ) and of the reflected waves (Eqns
(1.61) and (1.62)):

hðx; y; tÞ ¼ H

2
cos ðkx sin qþ ky cos q� utÞ

þ
~H

2
cos

�
~kx sin ~qþ ~ky cos ~q� ~ut þ ε

� (1.63)

fðx; y; z; tÞ ¼ g
H

2
u�1 cosh ½kðd þ zÞ�

cosh ðkdÞ sin ðkx sin qþ ky cos q� utÞ

þ g
~H

2
~u�1 cosh

�
~kðd þ zÞ

cosh
�
~kd

� sin
�
~kx sin ~qþ ~ky cos ~q� ~ut þ ε

�
(1.64)

The boundary condition is �
vf

vy

�
y¼0

¼ 0 (1.65)

that is,

Hu�1k cos q
cosh ½kðd þ zÞ�

cosh ðkdÞ cosðkx sin q� utÞ

¼ �~H~u�1 ~kcos ~q
cosh P~kðd þ zÞR

cosh
�
~kd

� cos
�
~kx sin ~q� ~ut þ ε

� (1.66)

and it is satisfied whichever the x, z, and t, if and only if

~u ¼ u0~k ¼ k; ~H ¼ H; ~q ¼ p� q; ε ¼ n2p with n ¼ 0; 1; 2..

(1.67)

Because of the equalities in Eqn (1.67), the two functions (1.63 and 1.64)
can be rewritten in the form

hðx; y; tÞ ¼ H cos ðkx sin q� utÞcos ðky cos qÞ (1.68)

fðx; y; z; tÞ ¼ gHu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ sin ðkx sin q� utÞcos ðky cos qÞ (1.69)

1.7.2 The Orthogonal Attack
In the basic case of q¼ 0, in which the wave attacks the breakwater orthog-
onally, the flow becomes two-dimensional y-z and the formulas of h and ɸ
reduce themselves to

hðy; tÞ ¼ H cos ðutÞcos ðkyÞ (1.70)
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fðy; z; tÞ ¼ �gHu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ sin ðutÞcos ðkyÞ (1.71)

and hence the velocity components are

vyðy; z; tÞ ¼ gHu�1k
cosh ½kðd þ zÞ�

cosh ðkdÞ sin ðutÞsin ðkyÞ (1.72)

vzðy; z; tÞ ¼ �gHu�1k
sinh ½kðd þ zÞ�
cosh ðkdÞ sin ðutÞcos ðkyÞ (1.73)

Three instant pictures of this basic case are given in Fig. 1.6.

At time t¼ 0, both vy and vz are zero everywhere, given that both vy and vz
are proportional to sin(ut). At that time (t¼ 0), the surface elevation gets to

n FIGURE 1.6 Three snapshots of the wave field before a vertical breakwater.
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its maximum (positive or negative) at each location. In particular, at the wall,
the surface elevation at t¼ 0 is equal to the crest-to-trough height of the inci-
dent wave.

At time t¼ T/4, the surface elevation is zero everywhere, given that h is pro-
portional to cos(ut). The horizontal velocity has its negative maximum at
y¼�L/4, and it has its positive maximum at y ¼ �3

4 L. The vertical veloc-
ity has its negative maximum at the wall (y¼ 0) and at y¼�L, and it has its
positive maximum at y¼�L/2.

At time t¼ T/2, the surface elevation is opposite with respect to the surface
elevation at t¼ 0. Thus, a consistent picture emerges, where:

1. at time t¼ 0, the water surface is higher than the MWL in sections ①
and ④, and is lower than the mean water level (MWL) in sections ②
and ③ (Fig. 1.6);

2. vice-versa, at time t¼ T/2 the water surface is lower than the MWL
in sections ① and ④, and is higher than the MWL in sections ②
and ③;

3. consistently, at the intermediate time instant t¼ T/4, the water flows
from sections ① and ④ toward sections ② and ③.

There are some points (nodes) where the surface elevation is always zero, and
where the horizontal velocity attains its absolute maximum. These points are
at 14,

3
4,

5
4,. wavelengths from the wall. Then there are the antinodes, at 0, 12, 1,

3
2,. wavelengths from the wall, where the wave height (on the time domain)
and the vertical velocity attain their absolute maximum.

The wave height in the time domain at the antinodes is 2H, which is twice
the wave height that would be there without the wall. The velocity maxima
are also twice the maxima in the absence of the wall.

1.7.3 The Pressure Distribution on the Breakwater
Whichever the angle q of the waves, the maximum pressure at any fixed
section of the breakwater, according to Stokes’ first order, is given by

pðzÞ ¼ �rgzþ rgH
cosh ½kðd þ zÞ�

cosh ðkdÞ (1.74)

which proceeds from Eqn (1.69) of ɸ, and can be rewritten in the equivalent
form (apart from a term of order H2):

pðzÞ

8><
>:

¼ �rgzþ rgH
cosh ½kðd þ zÞ�

cosh ðkdÞ if z � 0 ð1:75Þ

¼ rgðH � zÞ if 0 � z � H ð1:76Þ
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The wave pressure, that is, the difference between the actual pressure and
the static pressure, is shown in Fig. 1.7.

For the formal step from Eqns (1.74)e(1.76), note that

H
cosh ½kðd þ zÞ�

cosh ðkdÞ ¼ H þ oðHÞ if 0 < z < H (1.77)

1.8 WAVE DIFFRACTION
1.8.1 Interaction with a Semi-infinite Breakwater
Let us consider a vertical breakwater along the line y¼ 0, with the origin at
x¼ 0 and negligible thickness. The flow field that would be there without the
breakwater is the one given by formulas (1.56) and (1.59) of h and ɸ.

From the solution of Penney and Price (1952), the surface elevation and the
velocity potential to Stokes’ first order, in polar coordinates, are given by

hðr; b; tÞ ¼ H

2
½Fðr; b;u; qÞcos ðutÞ þ Gðr; b;u; qÞsin ðutÞ� (1.78)

n FIGURE 1.7 The pressure exerted on a vertical breakwater by a wave crest.
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fðr; b; z; tÞ ¼ g
H

2
u�1 cosh ½kðd þ zÞ�

cosh ðkdÞ ½Gðr; b;u; qÞcos ðutÞ

� Fðr; b;u; qÞsin ðutÞ� (1.79)

where

Fðr; b;u; qÞhAðu1Þcos q1 þ Aðu2Þcos q2 � Bðu1Þsin q1 � Bðu2Þsin q2 (1.80)

Gðr; b;u; qÞhAðu1Þsin q1 þ Aðu2Þsin q2 þ Bðu1Þcos q1 þ Bðu2Þcos q2 (1.81)

AðuÞh 1
2
½1þ SFRðuÞ þ CFRðuÞ�; BðuÞh 1

2
½SFRðuÞ � CFRðuÞ� (1.82)

SFRðuÞh
Zu

0

sin

p
2
x2
�
dx; CFRðuÞh

Zu

0

cos

p
2
x2
�
dx (1.83)

u1 h 2
ffiffiffiffiffiffiffiffiffiffi
kr=p

p
sin

�
1
2



bþ q� p

2

��
; u2 h �2

ffiffiffiffiffiffiffiffiffiffi
kr=p

p
sin

�
1
2



b� qþ p

2

��
(1.84)

q1 h kr sin ðbþ qÞ; q2 h �kr sin ðb� qÞ (1.85)

cf. Fig. 1.8 for the symbols.

Let us arbitrarilyfix a point r, b and let us write F andG in place of F(r, b,u, q)
and G(r, b; u, q). The surface elevation on the time domain, at the
fixed point, has its maxima and minima at times tm such that

utm ¼ arctan

�
G

F

�
(1.86)

n FIGURE 1.8 Reference scheme for the interaction between waves and a semi-infinite
breakwater.
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Equation (1.86) admits two solutions:

sin ðutm1Þ ¼ Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p ; cos ðutm1Þ ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p (1.87)

and

sin ðutm2Þ ¼ �sin ðutm1Þ; cos ðutm2Þ ¼ �cos ðutm1Þ (1.88)

which, once substituted in Eqn (1.78), give

hðtm1Þ ¼ H

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p
; hðtm2Þ ¼ �H

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p
(1.89)

Therefore, tm1 is the time instant of the crest and tm2 is the time instant of the
trough at the fixed point. Clearly, instants tm1 and tm2 generally change from
one point to another since they depend on functions F andG. The wavefronts
(see Fig. 1.9) are the lines connecting points with the same value of tm1
(or tm2).

1.8.2 The Diffraction Coefficient
From Eqn (1.89), it follows that the wave height (that is, the height of the
wave on the time domain) is

Hðr; bÞ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p
(1.90)

As a consequence, the diffraction coefficient, which is defined as the quo-
tient between the wave height at a given point and the height of the incident
waves, is given by

Cdðr; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p
(1.91)

n FIGURE 1.9 Wavefronts behind a semi-infinite breakwater.

1.8 Wave Diffraction 19



The Cd for two different angles of the wave direction are given in
Fig. 1.10(a) and (b). Of course, the diffraction coefficient at the sheltered
side of the breakwater gets smaller and smaller with the distance from the
tip of the breakwater. At the wave-beaten side of the breakwater (b¼ 2p),
Cd takes on a maximum somewhat greater than 2.0, close to the tip of the
breakwater (Fig. 1.10(c)).

n FIGURE 1.10 Diffraction coefficient. (a) Behind the breakwater (orthogonal wave attack), (b) behind the breakwater (inclined attack), and (c) along the
wave-beaten wall (orthogonal attack).
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1.9 ENERGY FLUX AND WAVE ENERGY
Let us consider a y-z flow, with y being the wave direction. The mean energy
flux per unit length is given by

F ¼
* Zh

�d

�
pþ rgzþ 1

2
r


v2y þ v2z

��
vydz

+
(1.92)

where the angle brackets denote an average with respect to time t. With
Eqn (1.31) of p and Eqn (1.29) of vy, and neglecting the terms of an order
smaller than H2, we get

F ¼
* Z0

�d

rg
H

2
cosh ½kðd þ zÞ�

cosh ðkdÞ cos ðky� utÞ

� g
H

2
u�1k

cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðky� utÞdz

+ (1.93)

On inverting the order average with respect to t-integral with respect to z, we
arrive at

F ¼ rg2
H2

8
u�1k

Z0

�d

cosh2 ½kðd þ zÞ�
cosh2 ðkdÞ dz (1.94)

Since

k
Z0

�d

cosh2½kðd þ zÞ�dz ¼ 1
4
½sinhð2kdÞ þ 2kd� (1.95)

Equation (1.94) becomes

F ¼ rg2
H2

8
u�1 1

4
½sinh ð2kdÞ þ 2kd�

cosh2 ðkdÞ (1.96)

Finally, multiplying and dividing the RHS by sinh(kd), it follows that

F ¼ rg
H2

8
c

2

�
1þ 2kd

sinh ð2kdÞ
�

(1.97)

where use has been made of the equation of the phase speed

c ¼ L

T
¼ gT

2p
tanh ðkdÞ (1.98)
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Let us pass to the equation of the mean wave energy per unit surface. This is

E ¼
*Zh

0

rgz

+
þ
* Zh

�d

1
2
r


v2y þ v2z

�
dz

+
(1.99)

where, neglecting the termsof order smaller thanH2, and performing a few steps
like those we have done for obtaining the compact form of V, we arrive at

E ¼ 1
8
rgH2 (1.100)

1.10 THE GROUP VELOCITY
Let us assume that the wavemaker of a waveflume is switched. Initially, we
would see some waves close to the wavemaker with the rest of the wave-
flume still being calm. Then, we would see the wave zone widen gradually.
We have

1. average energy entering the CV of Fig. 1.11(a) in the unit time¼Vb,
2. average increment of the wave energy in the CV in the unit

time¼E bcG,

n FIGURE 1.11 (a) Plan view of a waveflume and control volume for the deduction of Eqn (1.102)
of cG. (b) Three pictures taken a wave period from each other, while the wave motion advances on an
initially still basin (the waves are sketched as vertical segments).
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where cG is the propagation speed of the wave motion on the waveflume.
Hence,

Fb ¼ E bcG (1.101)

and, with Eqns (1.97) and (1.100) of V and E :

cG ¼ c

2

�
1þ 2kd

sinh ð2kdÞ
�

(1.102)

Here, it can be readily verified that cG is generally smaller than c, and on
deep water, cG is half the c. Let us see the reason for this.

Figure 1.11(b) shows three instant pictures of the waveflume taken an inter-
val T from each other. The waves are sketched as vertical segments; the
height of the segment is equal to the wave height and the interval between
two consecutive segments is equal to the wavelength. Each single wave ad-
vances a wavelength L in a wave period T, so that its propagation speed
(phase speed) is L/T. It is not so for the wave group that advances by a wave-
length in two wave periods, so that its propagation speed is c/2. The propa-
gation speed of the group is smaller than the propagation speed of each
single wave, simply because each single wave goes to die at the group
head. In particular, in the first picture, wave A is going to die; then in the
third picture, two periods later, wave B is going to die; then it will be the
turn of C, D, and so on. (Of course, the envelope front in Fig. 1.11(b) has
been somewhat simplified.)

1.11 CONCLUSION
The basic concepts of this chapter are founded on the work of Airy (1845)
and Stokes (1847).
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2.1 REFRACTION WITH STRAIGHT CONTOUR LINES
With reference to Fig. 2.1, s is the local direction of wave advance at a point
P on water depth, d, and a is the angle between the wave direction and
x-axis. We assume that the seabed is gently sloped so that in a neighborhood
of point P, the horizontal particle velocity is

vsðs; z; tÞ ¼ g
H

2
u�1k

cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðks� utÞ (2.1)

n FIGURE 2.1 Reference scheme: waves approaching a coast.
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The x,y component of the radiation stress tensor, that is, the x-component of
the mean flux of linear momentum, per unit length, through a y-orthogonal
plane is

Ryx ¼
* Zh

�d

rv2s sin a cos a dz

+
(2.2)

Here we may proceed like we have done for F in Section 1.9. That is, we
neglect the terms of order smaller than H2, which enables us to pass

from
Zh

�d

to
Z0

�d

then we invert the order average with respect to time tdintegral with
respect to z, and we can arrive at

Rxy ¼ Ryx ¼ 1
16

rg H2

�
1þ 2kd

sinh ð2kdÞ
�
sin a cos a (2.3)

Let us consider the control volume (CV) of Fig. 2.2 before a coast. Because
of the x-parallel contour lines, the mean characteristics of the wave motion
do not change with x and change only with y. Therefore, the energy equation
and the x-component of the linear momentum equation when applied to the
CV of Fig. 2.2 give

Fðy2Þsin a2 ¼ Fðy1Þsin a1 (2.4)

Ryxðy2Þ ¼ Ryxðy1Þ (2.5)

If y1 is on deep water and y2 is on water depth, d, these two equations yield

H2 tanh ðkdÞ
�
1þ 2kd

sinh ð2kdÞ
�
sin a ¼ H2

0 sin a0 (2.6)

n FIGURE 2.2 The control volume extending from water depth d1 to water depth d2, with
straight contour lines.
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H2

�
1þ 2kd

sinh ð2kdÞ
�
sina cos a ¼ H2

0sin a0 cos a0 (2.7)

where use has been made of Eqn (1.97) of F and Eqn (2.3) of Ryx.

From (Eqns (2.6) and (2.7)) we obtain

cos a ¼ cos a0 tanh ðkdÞ ¼ cos a0c=c0 (2.8)

which enables us to obtain angle a on water depth, d, once angle a0 on deep
water is known.

Referring to the basic case in which the wave travels landward, angles a0
and a range between 0 and p, and thus

sin a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a0

p
(2.9)

sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2 ðkdÞcos2 a0

q
(2.10)

At this stage, with cos a and sin a being known, we can operate on either
(Eqn (2.6)) or (Eqn (2.7)) to obtain also H. The result is

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ð2kdÞ

tanh ðkdÞ½sinh ð2kdÞ þ 2kd�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a0

1� tanh2 ðkdÞcos2 a0

4

s
(2.11)

This equation enables us to get wave height H on water depth d, once height
H0 and angle a0 on deep water are known. The ratio H/H0 for a0¼ 90� is the
shoaling coefficient (Cs).

Figure 2.3 shows the ratio H/H0 as a function of d/L0 for some given value of
a0. (Note Eqn (2.11) gives H/H0 as a function of kd, whereas Fig. 2.3 shows
H/H0 as a function of d/L0. This is possible because kd is a function of d/L0.
Indeed from (Eqn (1.24)), it follows that

d

L0
¼ d

L
tanh

�
2p

d

L

�
(2.12)

which implies that a unique value of kd¼ 2pd/L exists for any given value
of d/L0.) As d/L0 approaches zero, H/H0 tends to infinity. Of course, this
growth of wave height is interrupted by wave breaking.

2.2 REFRACTION WITH ARBITRARY CONTOUR LINES
2.2.1 Wave Orthogonals
In the previous section, we solved the problem of the control volume
extending from deep to shallow water for the basic case of straight contour
lines. Here, we deal with the same problem for the case of arbitrary contour
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lines. To this end, it is convenient to preliminarily solve the refraction
problem.

Let us fix a point P in the horizontal plane, and let us define the natural co-
ordinates: s with the local wave direction and q orthogonal to s. The inclina-
tion of a small stretch dq of wave front varies in a small time interval dt of

da ¼
cdt �

�
cþ vc

vq dq
�
dt

dq
¼ � vc

vq
dt (2.13)

where a and c denote, respectively, the angle of the wave front and the prop-
agation speed at point P (see Fig. 2.4). Since

ds ¼ cdt (2.14)

(Eqn (2.13)) may by rewritten as

da
ds

¼ � 1
c

vc

vq
(2.15)

Here, it is convenient to express vc=vq in terms of the derivatives vc=vx and
vc=vy (x and y being as usual the fixed axes). Since

vc

vq
dq ¼ vc

vx
ð�dqsin aÞ þ vc

vy
dq cos a (2.16)

it follows that

da
ds

¼ 1
c

�
vc

vx
sin a� vc

vy
cos a

�
(2.17)

n FIGURE 2.3 Variation of the wave height with the water depth for given wave direction
on deep water. (Obtained by means of Eqn (2.11).)
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Applying the chain rule, Eqn (2.17) may be rewritten in the form

da
ds

¼ 1
c

�
dc
dd

vd

vx
sin a� dc

dd
vd

vy
cos a

�
(2.18)

Hence, obtaining the formula of dc/dd from (Eqn (1.24)) of L, we arrive at

da
ds

¼ 2k
sinh ð2kdÞ þ 2kd

�
vd

vx
sin a� vd

vy
cos a

�
(2.19)

This form of da/ds is convenient for obtaining a wave orthogonal; that is, a
curve whose tangent vector gives the local wave direction. Given angle a0
and a point x0,y0 of the orthogonal on deep water, this orthogonal is calcu-
lated with finite increments Ds through

aðsþ DsÞ ¼ aðsÞ þ da
ds

Ds (2.20)

xðsþ DsÞ ¼ xðsÞ þ cos a Ds� 1
2
sin a

da
ds

Ds2 (2.21)

yðsþ DsÞ ¼ yðsÞ þ sin a Dsþ 1
2
cos a

da
ds

Ds2 (2.22)

Of course, the wave orthogonal depends on the wave period. As an
example, Fig. 2.5 shows some wave orthogonals before a promontory, for
two distinct values of angle a0, and the same wave period.

2.2.2 Effects on the Wave Height
Let us consider a CV whose horizontal section is bounded by two adjacent
wave orthogonals (2 and 3 in Fig. 2.6) and two short stretches of wave front

n FIGURE 2.4 Refraction: the short stretch dq of wave front, covering the distance ds,
rotates through da.

2.2 Refraction with Arbitrary Contour Lines 29



(0 and 1 in Fig. 2.6). There is no energy flux through the two orthogonals.
Hence, the mean energy flux through the stretch of wave front 0 on deep
water must equal the mean energy flux through the stretch of wave front 1
on given water depth d. With Eqn (1.97) of the mean energy flux per unit
length, we obtain

1
8
rgH2

0c0
1
2
b0 ¼ 1

8
rgH2c

1
2

�
1þ 2kd

sinh ð2kdÞ
�
b1 (2.23)

which is reduced to

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ð2kdÞ

tanh ðkdÞ½sinh ð2kdÞ þ 2kd�

s ffiffiffiffiffi
b0
b1

r
(2.24)

n FIGURE 2.5 Two sets of wave orthogonals ((a) and (b)) for two distinct wave directions on deep water, and the same wave period (T¼ 10 s).
(Obtained by means of Eqns (2.19)e(2.22).)
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where d, H, and k are water depth, wave height, and wave number at section
①, and H0 is the wave height at section⓪ on deep water. Clearly, this result
requires b1 to be small enough and for the wave height to be nearly constant
on the stretch of wave front.

2.3 WAVEeCURRENT INTERACTION IN SOME
STRAITS

2.3.1 Current Only
Let us consider a marine strait. To fix our ideas, we may think of the Straits
of Messina. Along the longitudinal axis, the water depth reduces to a min-
imum. In particular, in the Straits of Messina, the water depth is at a min-
imum (nearly 100 m) somewhat northerly of Messina. Often, some currents
take place where the strait has its lowest depth. These currents in the Straits
of Messina are due to the flow from the Ionian Sea to the Tyrrhenian Sea and
vice versa.

Let us think of a strait as a straight channel of constant width, with a min-
imum water depth at y¼ 0 and with water depth tending to infinity as
y/�N. As in the problem of shoaling-refraction, let us assume the bottom
slope to approach zero.

Let us analyze first the case of a current without waves, with a discharge
Q per unit length. Referring to Fig. 2.7, we call

S the difference between the still water level and the actual
water level;

d the depth of the still water;
~dh d � S the water depth; and

u ¼ Q=~d the velocity of the current.

n FIGURE 2.6 A control volume from deep to shallow water bounded by two wave
orthogonals and two short stretches of wave front.
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Under ideal flow assumptions, the Bernoulli equation implies

S ¼ u2

2g
(2.25)

As a consequence, u, d, and Q are related to each other by

u ¼ Q

d � u2=2g
(2.26)

which may be rewritten in the form

ud

Q
¼ 1þ

�
Q

Q�

�2�ud
Q

�3

(2.27)

with

Q� h
ffiffiffiffiffiffiffiffi
2gd

p
d (2.28)

Equality (Eqn (2.27)) admits two positive solutions for ud/Q, provided that

jQjhQmax ¼ 2

3
ffiffiffi
3

p Q� (2.29)

The lowest of these two solutions is the right one. The second solution
yields d� S/ 0 as Q approaches zero, and hence must be discarded.

2.3.2 Current D Waves: The Wavelength
If we multiply by d both sides of (Eqn (1.53)) and use definition (Eqn (1.26))
of L0, we may rewrite (Eqn (1.53)) in the form

d

Lc
tanh

�
2p

d

Lc

�
¼ a

�
d

Lc
� b

�2

(2.30)

n FIGURE 2.7 Reference scheme for a steady current on a channel of varying depth.
The bottom slope is assumed to approach zero.
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where Lc denotes wavelength on current:

Lc h 2p=kc (2.31)

and where

ah
1

d=L0

�
u

c0

�2

(2.32)

bh
d

L0

	�
u

c0

�
(2.33)

with c0h L0/T and us 0.

The d/Lc satisfying (Eqn (1.47)) is equal to the positive value of x (provided
that it exists) such that function

f1ðxÞh x tanh ð2pxÞ (2.34)

is equal to function

f2ðxÞh aðx� bÞ2 (2.35)

Therefore, in order to get the wavelength Lc on the current, we must seek the
d/Lc such that

f1

�
d

Lc

�
¼ f2

�
d

Lc

�
(2.36)

The two functions f1(x) and f2(x) are represented in Fig. 2.8 for d/L0¼ 0.2
and a few values of u/c0.

Generally, there are two values of d/Lc that satisfy Eqn (2.36). However, the
solution must be the smallest one of these two, if we admit that d/Lc is a
continuous function of u/c0 for given d/L0. For any given d/L0, a negative
value (u/c0)crit exists for which there is a unique d/Lc satisfying (Eqn
(2.36)).

For negative (u/c0), whose absolute value is greater than


ðu=c0Þcrit

, there

does not exist any d/Lc that satisfies (Eqn (2.36)) (Fig. 2.8(d)). In this
case, the wave cannot travel against the stream.

2.3.3 Current D Waves: The Wave Height
A detailed derivation of the solution for the variation of the wave height
along the strait is given by (Boccotti, 2000, Section 2.10). Here, we see
how to apply this solution.

The input data are H0, T, and Q. The target is the wave height H on a given
water depth d (d being the depth of the still water level). Let us fix a sequence
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of growing depths di (i¼ 1,., N) with d1¼ d. For each depth di, we do the
following:

Step (1) to find the smallest positive solution for the equation

x ¼ 1þ
�
Q

Qi

�2

x3 with Qi ¼
ffiffiffiffiffiffiffiffiffi
2gdi

p
di (2.37)

and compute

ui ¼
�
Q

di

�
x; Si ¼ u2i

2g
; edi ¼ di � Si (2.38)

Step (2) to find the smallest positive solution (x0i ) of the equation

x tanh ð2pxÞ ¼ aiðx� biÞ2 with ai ¼ L0edi
�
ui
c0

�2

; bi ¼
edi=L0

ui=c0
(2.39)

n FIGURE 2.8 The wavelength on water depth d/L0¼ 0.2 for: (a) a positive current; (b) no current; (c) a low negative current; and (d) a strong negative
current, for which Eqn (2.30) does not admit any solution (the wave is not able to travel against the stream).
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and compute

Lci ¼
edi
x0i
; kci ¼ 2p

Lci

(2.40)

Step (3) to compute

Oi ¼ ðu� uikciÞ�1 (2.41)

CHi ¼ cosh2
�
kci edi� (2.42)

SHi ¼ sinh
�
2kci edi� (2.43)

Ki ¼ 1
16

gO2
i uik

2
ci

edi
CHi

þ 1
32

g

"
2kci edi þ SHi

CHi

#
Oið1þ uikciOiÞ þ ui

8
(2.44)

Ai ¼
�
g
H2

0

16
u�1 � 1

2
pSi

H2
0

T

�
1
Ki

(2.45)

Bi ¼ 2Siui � Q

Ki
(2.46)

Ci ¼ �H2
0

16
þ 1
2
p
ui
g

H2
0

T
(2.47)

Di ¼ 1
16

þ 1
8
gO2

i k
2
ci

edi
CHi

(2.48)

Ei ¼ �3Si (2.49)

Fi ¼ Ci þ AiDi (2.50)

Gi ¼ BiDi þ Ei (2.51)

Step (4) to obtain the sequence Di for i from i¼ N� 1 to 1 by means of

Di ¼ 0:5ðdi þ diþ1ÞDiþ1 � Fi þ Fiþ1 þ Giþ1Diþ1

Gi þ 0:5ðdi þ diþ1Þ (2.52)

where Di represents the wave set-down (or set-up) on water depth di (dN is
taken so large that DN may be assumed to be zero);

Step (5) to obtain the wave height H on the given water depth d by means of

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ B1D1

p
(2.53)

2.4 WORKED EXAMPLE
Let us imagine building a submerged tunnel across a straitdsee Fig. 2.9.
Let us compute the FroudeeKrylov force, that is, the force on a ideal water
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cylinder having the same radius and being located at the same depth as the
tunnel.

The components of the FroudeeKrylov force per unit length may be esti-
mated as

fy ¼ rpR2ay (2.54)

fz ¼ rpR2az (2.55)

where the ay and az are given by Eqns (1.54) and (1.55).

Let H0¼ 15 m, T¼ 12 s, Q¼�200 m3/s/m (negative Q means that the cur-
rent is adverse to the wave propagation). The still water depth, d, and the
elevation z of the cylinder center above the seabed are, respectively, 100
and 60 m as shown in Fig. 2.9. The diameter of the cylinder is of 25 m.

The calculation is done with the following FORTRAN program.

PROGRAM CURRENT
DIMENSION AV(1000),BV(1000),DV(1000),GV(1000),FV(1000)
DIMENSION DELTAV(1000),RKCIV(1000),DSTIV(1000)
PG¼3.141592
DPG¼2.*PG
DG¼2.*9.8
RO¼1030.

WRITE(6,*)’d,zitac,diam’
READ(5,*)D,ZITAC,DIAM
ZC¼D-ZITAC

n FIGURE 2.9 Reference scheme for the worked example of Section 2.4: evaluation of the
FroudeeKrylov force on a submerged tunnel loaded by waves on an adverse current.
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.RAGG¼DIAM/2.
AREA¼PG*RAGG*RAGG
WRITE(6,*)’H0,T’
READ(5,*)H0,T
OM¼DPG/T
WRITE(6,*)’Q m3/s/m (positive or negative)’
READ(5,*)Q
TOLL¼1.E-6
IF(Q.EQ.0)Q¼TOLL

c preliminary control
QMAX¼SQRT(2.*9.8*D)*D*2./SQRT(27.)
IF(ABS(Q).GT.QMAX)STOP

N¼200
DD¼1
DO 100 I¼1,N

c loop 100: growing water depths
DI¼DþFLOAT(I-1)*DD
DV(I)¼DI

c step 1): ui
QI¼SQRT(2.*9.8*DI)*DI
X¼1
DX¼0.01
QQ¼(Q/QI)**2

c loop 90: smallest positive solution of Eqn (2.37)

90 X¼XþDX
F1¼X
F2¼1.þQQ*X*X*X
IF(F1.LT.F2)GO TO 90
X¼X-DX
DX¼DX/10.
IF(DX.GT.2.E-5)GO TO 90
UI¼(Q/DI)*X
SI¼UI*UI/DG
DSTI¼DI-SI
DSTIV(I)¼DSTI

c step 2):Lci (RLCI)
RL0¼1.56*T*T
C0¼RL0/T
UC0I¼UI/C0
DL0I¼DSTI/RL0
AI¼UC0I*UC0I/DL0I
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.BI¼DL0I/UC0I
DX¼0.01
X¼0

c loop 80: smallest solution of Eqn (2.39)

80 X¼XþDX
IF(X.GT.10)THEN
WRITE(6,*)’the wave cannot travel against the current’
STOP
ENDIF
F1¼X*TANH(DPG*X)
F2¼AI*(X-BI)**2
IF(F1.LT.F2)GO TO 80
X¼X-DX
DX¼DX/10.
IF(DX.GT.2.E-5)GO TO 80
RLCI¼DSTI/X
RKCI¼DPG/RLCI
RKCIV(I)¼RKCI

c DI¼di, UI¼ui, SI¼si, DSTI ¼dî, RLCI¼lci, RKCI¼kci

c step 3): definitions (2.41e2.51)
OI¼1./(OM-UI*RKCI)
COSA¼COSH(RKCI*DSTI)
CHI¼COSA*COSA
SHI¼SINH(2.*RKCI*DSTI)
IF(RKCI*DSTI.LT.10)THEN
AD1¼(1./16.)*9.8*OI*OI*UI*RKCI*RKCI*DSTI/CHI
AD2¼(1./32.)*9.8*((2.*RKCI*DSTIþSHI)/CHI)*OI*(1.þUI*RKCI*OI)
RKI¼AD1þAD2þUI/8.
ELSE

c the asymptotic form of KI -Eqn (2.44)- as kci dî --> inf
AD1¼0
AD2¼(1./32.)*9.8*2.*OI*(1.þUI*RKCI*OI)
RKI¼AD1þAD2þUI/8.
ENDIF
AI¼((1./16.)*9.8*H0*H0/OM-0.5*PG*SI*H0*H0/T)/RKI
BI¼(2.*SI*UI-Q)/RKI
CI¼-H0*H0/16.þ0.5*PG*(UI/9.8)*H0*H0/T
DI¼1./16.þ(1./8.)*9.8*OI*OI*RKCI*RKCI*DSTI/CHI
EI¼-3.*SI
FI¼CIþAI*DI
GI¼BI*DIþEI

c store on memory the values of AI, BI, FI, GI
AV(I)¼AI
BV(I)¼BI
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.FV(I)¼FI
GV(I)¼GI

100 CONTINUE

c step 4): obtain the sequence deltai from i¼N-1 to i¼1
I¼N
DELTAV(N)¼0

200 I¼I-1
DI¼DV(I)
DI1¼DV(Iþ1)
DELTAI1¼DELTAV(Iþ1)
FI¼FV(I)
FI1¼FV(Iþ1)
GI¼GV(I)
GI1¼GV(Iþ1)

c rnum ¼ numerator, den ¼ denominator on the RHS of Eqn (2.52)
RNUM¼0.5*(DIþDI1)*DELTAI1-FIþFI1þGI1*DELTAI1
DEN¼GIþ0.5*(DIþDI1)
DELTAV(I)¼RNUM/DEN
IF(I.EQ.1)GO TO 201
GO TO 200

201 CONTINUE

c step 5): obtain wave height H on the given water depth d
DELTA1¼DELTAV(1)
A1¼AV(1)
B1¼BV(1)

c H proceeds from Eqn (2.53)
H¼SQRT(A1þB1*DELTA1)

c delta1 is the wave set-down (or set-up) on the given water depth d
WRITE(6,7003)DELTA1

7003 FORMAT(/,1X,’DELTA ’,F7.3)

c particle acceleration of waves on current
RKCI¼RKCIV(1)
DSTI¼DSTIV(1)
RLCI¼DPG/RKCI
ATTC¼COSH(RKCI*ZITAC)/COSH(RKCI*DSTI)
AYC¼9.8*0.5*H*RKCI*ATTC

c ay (AYC) is given by Eqn (1.54)
ATTC1¼SINH(RKCI*ZITAC)/COSH(RKCI*DSTI)
AZC¼9.8*0.5*H*RKCI*ATTC1

c az (AZC) is given by Eqn (1.55)
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c Froude-Krylov force on the submerged tunnel:
FYC¼RO*AREA*AYC/1.E3
FZC¼RO*AREA*AZC/1.E3

c particle acceleration without the current
RL0¼1.56*T*T
RLI1¼RL0

70 RLI¼RL0*TANH(DPG*D/RLI1)
TEST¼ABS(RLI-RLI1)/RLI
RLI1¼RLI
IF(TEST.GT.1.E-4)GO TO 70
RL¼RLI
RK¼DPG/RL
SINA¼SINH(2.*RK*D)
TANA¼TANH(RK*D)
ARG¼SINA/(TANA*(SINAþ2.*RK*D))
CSHO¼SQRT(ARG)

c CSHO shoaling coefficient
HH¼H0*CSHO
ATT¼COSH(RK*ZITAC)/COSH(RK*D)
AY¼9.8*0.5*HH*RK*ATT
ATT1¼SINH(RK*ZITAC)/COSH(RK*D)
AZ¼9.8*0.5*HH*RK*ATT1

c Froude-Krylov force on the submerged tunnel, without the current:
FY¼RO*AREA*AY/1.E3
FZ¼RO*AREA*AZ/1.E3

WRITE(6,*)

write(6,*)’ with the current without current’
WRITE(6,2000)FYC,FY

2000 FORMAT(15X,’fy’,7X,F7.0,7X,F7.0)
WRITE(6,2001)FZC,FZ

2001 FORMAT(15X,’fz’,7X,F7.0,7X,F7.0)
WRITE(6,2002)H,HH

2002 FORMAT(15X,’H’,10X,F6.1,8X,F6.1)
WRITE(6,2003)RKCI,RK

2003 FORMAT(15X,’k’,7X,F7.4,7X,F7.4)
WRITE(6,2004)ATTC,ATT

2004 FORMAT(15X,’AF(ø)’,3X,F7.4,7X,F7.4)
WRITE(6,*)
WRITE(6,*)’(ø) AF¼attenuation factor’
END

40 CHAPTER 2 Wave Transformation near Coasts



The results are

D¼e0.030 m;

With the Current Without the Current

fy (kN/m) 419 344
fz (kN/m) 409 321

H (m) 19.5 14.8

k (m�1) 0.0363 0.0282

AF (�) 0.2383 0.3339

(�) AF¼ Depth attenuation factor.

The conclusion is that the FroudeeKrylov force on the submerged tunnel
grows of about the 25% because of the current. The FroudeeKrylov force
tends to grow for two reasons: the increase of the wave height and the in-
crease of the wave number. On the opposite, the FroudeeKrylov force
tends to decrease because of the depth attenuation factor, which decreases
with an adverse current.

2.5 CONCLUSION
Wave refraction was of central interest in the scientific literature of the years
after the Second World War (Munk and Traylor, 1947; Arthur et al., 1952;
Dorrestein, 1960). The effects of currents on wave direction were covered in
particular by Johnson (1947), Jonsson and Wang (1980), and Gonzalez
(1984). The two-dimensional problem of shoaling and set-down (or set-
up) of waves and current on a sloping seabed was given an approximate so-
lution by Jonsson et al. (1970). This solution was deeply re-examined in my
book (2000), because of its potential utility for what we could call an “En-
gineering of the Straits.”
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3.1 SEA STATE, SIGNIFICANT WAVE HEIGHT,
SPECTRUM, AUTOCOVARIANCE

3.1.1 The Concept of “Sea State”
Usually a sequence of 100e200 waves in the sea is

1. short enough that it may belong to a stationary random process;
2. long enough so that its average characteristics are close to the average

characteristics of the stationary random process.
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The stationary random process is called “sea state.” According to the linear
theory of sea states, the surface elevation h(t) at some fixed point represents
a stationary Gaussian random process of time. This may be expressed in the
form

hðtÞ ¼
XN
i¼ 1

ai cos ðuit þ εiÞ (3.1)

with the assumptions that:

N tends to infinity,
ai are infinitesimal of the same order,
ui are all different from one another,
εi are distributed uniformly in (0,2p),
εi are stochastically independent from one another.

3.1.2 The Significant Wave Height
The first characteristic of a sea state is the so called “significant wave
height”:

Hs h 4s (3.2)

where s is the root mean square (RMS) surface elevation

sh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh2ðtÞi

p
(3.3)

3.1.3 Definition of the Frequency Spectrum
The frequency spectrum, E(u), shows how the wave energy is distributed
over the frequency domain:

EðuÞduh
X
i

1
2
a2i for i such that u� du=2 < ui < uþ du=2 (3.4)

The peak period (Tp) is the period associated with the dominant frequency of
the spectrum:

Tp h
2p
up

(3.5)

Spectral moments

mj h

ZN
0

u jEðuÞdu (3.6)

are commonly used.
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3.1.4 Relationship between Autocovariance and
Spectrum

The definition of autocovariance j(T) is

jðTÞh hhðtÞhðt þ TÞi (3.7)

where T is an arbitrary time lag. With Eqn (3.1) of h(t), Eqn (3.7) becomes

jðTÞ ¼
XN
i¼ 1

XN
j¼ 1

aiaj
�
cos ðuit þ εiÞcos

�
ujðt þ TÞ þ εj

��
(3.8)

where the order temporal mean and summation have been changed. Then,
applying the addition formula to the second cosine, we obtain

jðTÞ ¼
XN
i¼ 1

XN
j¼ 1

aiaj
�
cos

�
ujT

��
cos ðuit þ εiÞcos

�
ujt þ εj

��
� sin

�
ujT

��
cos ðuit þ εiÞsin

�
ujt þ εj

���
(3.9)

Here, the first temporal mean is equal to 1/2 if i¼ j, and is equal to 0 if is j;
and the second temporal mean is equal to 0, whichever the i and j, and
therefore

jðTÞ ¼
XN
i¼ 1

1
2
a2i cos ðuiTÞ (3.10)

Let us consider the summation on the RHS of this equation. Since(
contribution to

XN
i¼ 1

1
2
a2i cos ðuiTÞ from the harmonics whose

frequency ui is betweenu� du=2 and uþ du=2

)

¼
(
cos ðuTÞ

X
i

1
2
a2i for i such that u� du=2 < ui < uþ du=2

)

¼ cos ðuTÞEðuÞdu
(3.11)

we have

XN
i¼ 1

1
2
a2i cos ðuiTÞ ¼

ZN
0

EðuÞcos ðuTÞdu (3.12)

that together with Eqn (3.10) implies

jðTÞ ¼
ZN
0

EðuÞcos ðuTÞdu (3.13)
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3.1.5 Alternative Ways to Express the Variance of
the Surface Elevation

From Eqn (3.1), it follows that

�
h2ðtÞ� ¼

XN
i¼ 1

1
2
a2i (3.14)

This equation and the definition (Eqn (3.4)) of the spectrum imply

�
h2ðtÞ� ¼

ZN
0

EðuÞdu (3.15)

With this equation and Eqn (3.3) of s, Eqn (3.2) of Hs, Eqn (3.6) of mj, and
Eqn (3.13) of j(T), we obtain the following multiple equalities

�
h2ðtÞ� ¼ s2 ¼ H2

s

16
¼ m0 ¼

ZN
0

EðuÞdu ¼ jð0Þ (3.16)

3.2 THE CONCEPT OF “VERY NARROW SPECTRUM”
Let us consider the spectrum of Fig. 3.1: a very high triangle with a very
small base du, and a finite area m0. The surface elevation at a fixed time,
to, can be written in the form

hðtoÞ ¼
XN
i¼ 1

ai cos ½FiðtoÞ� with FiðtoÞ ¼ upto þ duito þ εi (3.17)

where

dui hui � up (3.18)

n FIGURE 3.1 Very narrow spectrum.
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The surface elevation at the instant toþ n Tp, with n an arbitrary integer, can
be written as

h
�
to þ nTp

� ¼
XN
i¼ 1

ai cos
�
Fi

�
to þ nTp

��
with Fi

�
to þ nTp

�

¼ upto þ duito þ εi þ n2pþ n
dui

up
2p (3.19)

Hence

h
�
to þ nTp

�
hðtoÞ y1 (3.20)

provided that

n � up

du
(3.21)

Equation (3.20) proceeds straightforwardly from Eqns (3.17) and (3.19); it
suffices to note that Fi(toþ nTp) differs from Fi(to) of n2p, plus a term

smaller than n
	
du
2 =up



2p:

As an example, let us assume

up

�
du ¼ 106; n ¼ 10 (3.22)

Then, the difference between the Fi of the summation Eqn (3.19) and the Fi

of the summation Eqn (3.17) will be smaller than p/105 (as can be easily
verified). This means that h(toþ 10Tp) will be nearly coincident with
h(to). Naturally, even more so, the conclusion holds for h(toþ Tp),
h(toþ 2Tp),.,h(toþ 9Tp). Through the same reasoning, we may easily
realize that h(toþ 106Tp) will be generally different from h(to). Being to arbi-
trary, we may conclude that h(t) will locally approach a sinusoidal wave of
period Tp. The difference with respect to a pure sinusoidal wave is that each
wave shows a small random variation from the preceding one, and the sum
of these small variations, after a very large number of waves, can give rise to
some large variation of the wave height.

In conclusion, a sea state with a very narrow spectrum would be similar
to a sequence of sinusoidal waves. However, there would be a substantial
difference as the wave height would vary largely, although very gradu-
ally. Clearly, the narrower the spectrum, the closer the waves would
be to this ideal condition. Vice versa, the wider the spectrum, the
more irregular the waves, that is, the greater the differences among
consecutive waves.

3.2 The Concept of “Very Narrow Spectrum” 47



Here, we may realize the utility of bandwidth (or narrow bandedness) pa-
rameters aimed to quantify the degree of difference of a sea state from
the ideal sea state with a very narrow spectrum. We shall deal with such
parameters in the following section. Before doing this, we must deduce
the autocovariance associated with a very narrow spectrum.

We must execute the integral on the RHS of Eqn (3.13). The integrand is the
product of two functions E(u) and cos (uT) where E(u)dFig. 3.1dis
different from zero only in a very small interval (up� du/2, upþ du/2).
In this interval, cos (uT) may be substituted by cos (upT), with the result that

jðTÞ ¼ cos
�
upT

� Zupþdu=2

up�du=2

EðuÞdu (3.23)

and hence

jðTÞ ¼ cos
�
upT

�
jð0Þ (3.24)

3.3 BANDWIDTH AND NARROW-BANDEDNESS
PARAMETERS

Usually a bandwidth parameter approaches zero for a very narrow spec-
trum, and should approach 1 for very broad spectra.

Cartwright and LongueteHiggins (1956) used the bandwidth parameter

εh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

2

m0m4

s
(3.25)

which really is not always efficient, in that it is too sensitive to the high fre-
quency noise. Let us see why with an example. The moments of the spec-
trum of Fig. 3.2 are

m0 ¼ m01 þ m01=n ¼ m01

�
1þ n�1

�
(3.26)

m2 ¼ m01u
2
p þ ðm01=nÞn2u2

p ¼ m01u
2
pð1þ nÞ (3.27)

m4 ¼ m01u
4
p þ ðm01=nÞn4u4

p ¼ m01u
4
p

�
1þ n3

�
(3.28)

and hence

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ nÞ2

ð1þ n�1Þð1þ n3Þ

s
(3.29)

Thus, ε approaches 1 as n/N, which suggests the idea of an extreme
difference with respect to the case of the very narrow spectrum. Really,
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as n/N, the waves with this spectrum are practically the same as the
waves with the very narrow spectrum. With the naked eye, these waves
look exactly like the waves of the very narrow spectrum, and only if we
use a magnifier should we find that their surface is pitted with a lot of
very small ripples. Thus, in this case ε misses the mark. The fact is that
resorting to ε is equivalent to judging by the number of the local maxima
(or minima) being present in each wave; the greater this number, the greater
the difference from the very narrow spectrum. With the spectrum of
Fig. 3.2, each wave has an infinitely large number of local maxima due
to the very small noise on the wave surface, and this is why ε gets the upper
limit. For the same reason, ε is equal to one also for spectra of wind seas.
Indeed these seas are affected by a high frequency noise of very small
amplitude. The noise is due to the high frequency tail of the spectrum,
which approaches zero as u�5 as u/N, as we shall see in the next sec-
tion. Consequently m4 tends to infinity and ε approaches 1, just like in the
example of Fig. 3.2.

In 1975, LongueteHiggins used a new bandwidth parameter:

nh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2

m2
1

� 1
r

(3.30)

whose range is (0,N). This new parameter has the same kind of inconve-
niences of ε (even though in a more attenuated form), and indeed for the
spectrum of Fig. 3.2, it tends to infinity.

In a previous book (2000), the author suggested to consider

j� h jjðT�Þ=jð0Þj (3.31)

where

T� h abscissa of the absolute minimum of the autocovariance function:

(3.32)

n FIGURE 3.2 The spectrum used for the analysis of the bandwidth parameters.
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If the spectrum is very narrow, the autocovariance approaches a cosine, and
thus j* approaches 1. As the bandwidth grows, j* gets smaller and smaller
approaching 0. Therefore, j* is a narrow bandedness parameter, i.e., it is the
one’s complement of a bandwidth parameter.

Using j*, we shall not be muddled by the high frequency noise. For
example, the autocovariance of the spectrum of Fig. 3.2 is

jðTÞ ¼ m01 cos
�
upT

�þ 1
n
m01 cos

�
nupT

�
(3.33)

As n/N, this j(T) is a cosine affected by a very small noise. Therefore,
j* approaches 1 as in the case of the very narrow spectrum; that is, j*
correctly classifies the waves with this spectrum as very close to the waves
with the very narrow spectrum.

3.4 CHARACTERISTIC SPECTRA OF WIND SEAS
3.4.1 The JONSWAP Spectrum
When a local wind generates waves, these are called “wind sea.” If the wind
is constant and the water is deep, the spectrum is like that of Fig. 3.3 where
E(u) approaches rapidly zero on the left side, and approaches zero more
gradually on the right side. A mathematical form suggested for describing
this characteristic spectrum shape is

EðuÞ ¼ Ag2u�5 exp

�
� 5
4

	up

u


4

exp

(
ln c1 exp

"
�
�
u� up

�2
2c2

2u
2
p

#)
(3.34)

This is the so called JONSWAP spectrum (Hasselmann et al., 1973), which
as said is effective with deep water:

d >
1
2
Lp0 (3.35)

n FIGURE 3.3 The mean JONSWAP spectrum.
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The JONSWAP spectrum was the final result of a work developed in the
1950s and 1964. Phillips was the first to observe in the 1950s that the spec-
trum approaches zero, for large u, as u�5. The term A g2u�5 in the formula
(3.34) is due to him (1958). The form

EðuÞ ¼ Ag2u�5 exp

�
� 5
4

	up

u


4


(3.36)

was introduced by Pierson and Moskowitz in the 1960s. The last improve-
ment, that is the introduction of the second exponential function, was due to
the JONSWAP project in the early 1970s.

According to the researchers of the JONSWAP project, the more character-
istic values of the shape parameters c1 and c2 are

c1 ¼ 3:3; c2

� ¼ 0:07 if u � up

¼ 0:09 if u > up
(3.37)

but we may as well assume

c1 ¼ 3; c2 ¼ 0:08 (3.38)

with some negligible consequences. The spectrum with values (3.37) of
parameters c1 and c2 is called the mean JONSWAP. It is shown by
Fig. 3.3 in the nondimensional form E(u)/E(up) as a function of u/up. It
should be noted that such a nondimensional form depends only on the values
of c1 and c2. Therefore, Fig. 3.3 represents the mean JONSWAP spectrum,
whatever the peak frequency up and energy scale parameter A.

As to parameter A, it depends on the characteristics of the wave generation:
the smaller is the fetchY and the greater is the wind speed u, the larger is A.
Typical values are

0:008 < A < 0:014 with 2$103 <
gY
u2

< 2$104 (3.39)

3.4.2 The Autocovariance Relevant to the JONSWAP
Spectrum

From Eqn (3.13) between autocovariance and spectrum, and Eqn (3.34) of
the JONSWAP spectrum, it follows that

jðTÞ ¼
ZN
0

Ag2u�5exp

�
� 5
4

	up

u


4


� exp

(
ln c1 exp

"
�
�
u� up

�2
2c2

2u
2
p

#)
cos ðuTÞdu

(3.40)
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Then, replacing u with w¼u/up, we arrive at

jðTÞ
jð0Þ ¼

Z N

0
E ðwÞcos

�
2pw

T

Tp

�
dwZ N

0
E ðwÞdw

(3.41)

where

E ðwÞhw�5 exp

�
�5
4
w�4

�
exp

(
ln c1 exp

"
� ðw� 1Þ2

2c2
2

#)
(3.42)

Please note that the autocorrelation (normalized autocovariance)

jðTÞ
jð0Þ vz

T

Tp

depends only on the shape parameters c1, c2. The autocorrelation relevant to
the mean JONSWAP spectrum is shown in Fig. 3.4.

3.4.3 The Relationship Tp(Hs) Based on the
JONSWAP Spectrum

Reasoning like in the previous section, we get

m0 ¼ Ag2u�4
p

ZN
0

E ðwÞdw (3.43)

from which it follows that

Tp ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
Z N

0
E ðwÞdw4

s p

ffiffiffiffiffi
Hs

g

s
(3.44)

n FIGURE 3.4 Autocorrelation relevant to the mean JONSWAP spectrum.
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(for the step from (3.43) to (3.44), bear in mind that m0¼Hs
2/16 and

Tp¼ 2p/up). Equations (3.44) may be rewritten in the form

Tp ¼ K0ffiffiffi
A4

p p

ffiffiffiffiffi
Hs

g

s
(3.45)

where

K0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ N

0
E ðwÞdw4

s (3.46)

With the mean JONSWAP spectrum this yields

Tp ¼ 1:345ffiffiffi
A4

p p

ffiffiffiffiffi
Hs

g

s
(3.47)

3.4.4 The TMA Spectrum
The TMA spectrum (Bouws et al., 1985), founded on the work of Kitaigorod-
skii et al. (1975), Bouws et al. (1985) and Young and Verhagen (1996), is ob-
tained on multiplying the JONSWAP spectrum by a transformation function:

TMA EðuÞ ¼ JONSWAP EðuÞ TFU ðu; dÞ (3.48)

where

TFU ðu; dÞ ¼ tanh2 ðkdÞ sinh ð2kdÞ
½sinh ð2kdÞ þ 2kd� (3.49)

The TMA spectrum generalizes the applicability of the JONSWAP spec-
trum from deep water to arbitrary water depth.

For mathematical applications of the TMA, it is convenient defining the
dimensionless wave number k w:

k w ¼ k

u2
p

.
g
¼ k

2p
�
Lp0

(3.50)

From this definition and the dispersion relationship, the following equation
proceeds

k w tanh
�
2pk wd

�
Lp0

� ¼ w2 (3.51)

which admits a unique solution for k w, for given d/Lp0 and w.

The dimensionless spectrum E ðwÞ changes from the form (Eqn (3.42)), that
here will be called E

0
ðwÞ, to
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E ðwÞ ¼ E
0
ðwÞ tanh2 �2pk wd

�
Lp0

� sinh
�
4p k wd

�
Lp0

��
sinh

�
4p k wd

�
Lp0

�þ 4p k wd
�
Lp0

� (3.52)

where use has been made of the definition (Eqn (3.50)).

3.5 HOW TO OBTAIN THE FREQUENCY SPECTRUM
3.5.1 The Fourier Series
Given an odd number n of data (h1, h2,., hn), whose average is zero, being
sampled at a constant interval Dtsamp, that is to say recorded at instants

t1 ¼ 0; t2 ¼ Dtsamp;.; tn ¼ ðn� 1ÞDtsamp (3.53)

the function

hFðtÞ ¼
XN
i¼ 1

a0i cos ðuitÞ þ a00i sin ðuitÞ (3.54)

with

N ¼ ðn� 1Þ=2; ui ¼ 2p
Dtsamp

i

n
; a0i ¼

2
n

Xn

j¼ 1

hj cos
�
uitj

�
;

a00i ¼ 2
n

Xn

j¼ 1

hj sin
�
uitj

� (3.55)

is such that

hFðt1Þ ¼ h1; hFðt2Þ ¼ h2;.; hFðtnÞ ¼ hn (3.56)

hF(t) is the Fourier series, which is periodical of period TF¼ nDtsamp:

hFðt þ TFÞ ¼ hFðtÞ (3.57)

The Fourier series may be given the form (Eqn (3.1)), with the ai and εi that
are related to the coefficient of the series a0i; a00i by

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02i þ a002i

q
; cos εi ¼ a0i

�
ai; sin εi ¼ �a00i

�
ai (3.58)

From the ai and ui of the Fourier series, we can re-obtain the spectrum of the
sea state. However, there is a problem: the frequency resolution

Du ¼ uiþ1 � ui (3.59)

is smaller in the actual sea state than in the Fourier series (indeed, it is
assumed that the number of frequencies of the sea state tends to infinity).
Therefore, the spectrum obtained from the Fourier series approaches the
actual spectrum of the sea state the better the smaller the Du is. In order
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to reduce Du, there is only one thing to do: increasing the duration of the
wave record.

3.5.2 Effects of the Duration of the Wave Record
Let us imagine that two persons A and B perform the following sort of play.
Person A does a numerical simulation of a sea state, by means of Eqn (3.1)
for a given frequency spectrum. Person B does not know the number N of
harmonic wave components used by A, nor the triplets ai, ui, εi. From the
knowledge of n values (h1, h2, ., hn) of the numerical simulation sampled
at a sampling interval Dt, person B must discover which is the spectrum used
by person A.

Person A simulates a sea state with the Pierson and Moskowitz spectrum,
with a Hs of 5.6 m and a Tp of 10.1 s. As to the number N on the RHS of
(3.1), this is taken of 1250, and the 1250 frequencies ui cover uniformly
the range (0.6up, 3.1up).

Person B fixes a sample interval of 0.4 s, and a duration of the wave record
(DWR) of 1200 s. Hence, he obtains n¼ 3001 samples of the surface eleva-
tion, at time instants t1¼ 0, t2¼ 0.4 s, ., tn¼ 1200 s. By means of Eqn
(3.55), he obtains the ui and the ai of the Fourier series, and hence the spec-
trum ~EðuÞ relevant to the Fourier series (we use the symbol ~E for the spec-
trum obtained by person B, whereas with E we denote the spectrum used by
person A). Fig. 3.5 shows the spectrum E(u) used by person A for his nu-
merical simulation, and the spectrum ~EðuÞ obtained by person B through
the Fourier series. Now let us see which is the result obtained by person
B, if DWR grows from 1200 to 8000 s (n grows from 3001 to 20,001),
and hence Du is reduced from 2p/(3001$0.4) to 2p/(20001$0.4). The result

n FIGURE 3.5 Sea state: Hs[ 5.6 m, Tp[ 10.1 s. Continuous line: given spectrum. Dashed line:
spectrum obtained with a DWR of 20 min and sampling interval of 0.4 s.
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is shown in Fig. 3.6 where the agreement between the spectrum obtained
through the Fourier series and the actual spectrum appears with evidence.

Figure 3.7 shows the autocorrelation j(T)/j(0) obtained by means of Eqn
(3.13) from the actual spectrum E(u), and the autocorrelation ~jðTÞ=~jð0Þ
obtained by means of Eqn (3.13) from the spectrum ~EðuÞ of Fig. 3.5.
Notwithstanding the great difference between ~E and E, which appears
from Fig. (3.5), the difference between ~jðTÞ=~jð0Þ and j(T)/j(0) is negli-
gible! This is at least for the core of the autocorrelation, which consists in
the central wave of this function. However, the fact that the core of the auto-
correlation of the spectrum ~E is nearly the same as the core of the autocor-
relation of the spectrum E is important. Indeed we shall see in the next
chapter that the main statistical properties of waves in sea states depend
only on the configuration of the core of the autocorrelation.

n FIGURE 3.6 Same as in Fig. 3.5 with the only difference that the DWR has been
increased from 20 min to 2.2 h.

n FIGURE 3.7 Core of the autocorrelation relevant to the continuous spectrum of Fig. 3.5
versus core of the autocorrelation relevant to the dashed spectrum of Fig. 3.5.
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As said, the ~EðuÞ of Fig. 3.5 was obtained with a DWR of 1200 s, which in
our example corresponds to a sequence of about 150 individual waves. With
this DWR, we obtain carefully what more counts for wave statistics that is
the configuration of the core of the autocorrelation.

3.6 WAVE RECORD ANALYSIS
At sea, a typical DWR is 20 min (1200 s), and a typical sampling interval
may be Dt¼ 0.4 s. With wind seas of Hs ranging between about 3 m and
15 m, a record of this duration may include from about 100 to 200 individual
waves.

A routine analysis of a wave record (n¼ 3001, Dt¼ 0.4 s) may be:

1. Values of h(t)
h1, h2, ., h3001 are the time series data of the surface elevation at
a fixed point; the average (h1þ h2þ.þ h3001)/3001 must be
equal to 0.

2. Calculation of Hs�
h2ðtÞ� ¼ �

h2
1 þ h2

2 þ :::þ h2
3001

��
3001

Hs ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh2ðtÞi

p
3. Calculation of j(T)

As an example, for T¼ 1.2 s, we have

jð1:2 sÞ ¼ ðh1h4 þ h2h5 þ :::þ h2998h3001Þ=2998
4. Calculation of E(u)

N ¼ ð3001� 1Þ=2 ¼ 1500

Du ¼ 2p
�ð3001$0:4Þ ¼ 5:234$10�3 rad=s

ui ¼ i 5:234$10�3 rad=s

a0i ¼ ð2=3001Þ
X3001
j¼ 1

hj cos ½uiDt ð j� 1Þ�

a00i ¼ ð2=3001Þ
X3001
j¼ 1

hj sin ½uiDt ð j� 1Þ�

As an example: the area of the spectrum between 0.30 rad/s and
0.33 rad/s:

0:5½Eð0:30 rad=sÞ þ Eð0:33 rad=sÞ�0:03 rad=s

¼ 0:5
�
a0258 þ a00258 þ a0259 þ a00259 þ a0260 þ a00260 þ a0261 þ a00261 þ a0262 þ a00262 þ a0263 þ a00263

�
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Here, note that the interval 0.30 rad/s<u< 0.33 rad/s contains the angular
frequencies from u58¼ 0.3036 rad/s to u63¼ 0.3297 rad/s.

If one aims to obtain the basic parameters of a sea state (Hs, configuration of
the core of the autocorrelation) this routine analysis usually is effective. This
routine is also useful to get an overall idea of the spectrum. For example, in
the case of Fig. 3.5, the spectrum ~E obtained from the Fourier series coin-
cides with the actual spectrum E on low frequencies; the high frequency
tail is essentially the same for ~E and E; the location and overall size of the
bulk of the spectrum is essentially the same with E and ~E. The difference
is in the great random noise that affects this bulk in ~EðuÞ. If one aims to
deeply investigate the shape of the spectra, this person must search for
some special records wherein the sea remains stationary for some long
time interval. Indeed, increasing the DWR enables one to reduce Du, and
to better fit the spectrum. Alternatively, one may consider the average of
some dimensionless spectra of similar sea states.

3.7 SMALL-SCALE FIELD EXPERIMENTS
There are two kinds of experimental activity concerning sea waves. The
first one deals with measurement campaigns in the field. The second one
consists in experiments performed in the laboratory. The following is the
main conceptual difference between these two kinds of activity. In a mea-
surement campaign, we do not know the characteristics of the sea state
(often knowing these characteristics is the very goal of the campaign); in
laboratories, the characteristics of the sea state are prescribed (and there
may be a lot of goals: studying the distribution of wave heights, or the
loads exerted on some kind of structure, etc.). Typically in a laboratory
experiment, we shall have an array of wave gauges at some prescribed dis-
tance from one another, with these distances being related to Lp (the domi-
nant wavelength relevant to the given water depth). Not so in the field,
wherein typically there is a unique instrument (e.g., a heave buoy, or
pitch-and-roll buoy, or wave staff).

Of course, there have been most famous field measurements with an
array of instruments; however, these were aimed to study how the charac-
teristics of sea states do vary with gY =u2 (Y fetch, u wind speed). The
matter is radically different in laboratories where the distance between two
points in a wave tank or waveflume is so small that the effect of the variation
of gY =u2 is negligible.

A small-scale field experiment (SSFE) is a laboratory experiment being per-
formed in the field rather than in a wavetank or waveflume. This requires
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1. to have a small astronomical tide amplitude at the selected site;
2. to have waves of rather small size;
3. to be reasonably sure that a sea state with some prescribed characteris-

tics will occur after a short waiting time at this site;
4. to value the prescribed sea state (item iii) to be one of interest for

engineering.

As to (1) off the shore of Reggio Calabria (Eastern coast of the Straits of
Messina) the astronomical tide amplitude is typically within 0.15 m. This
tide amplitude yields a variability of d (the water depth) that has proved to
be either effectless or useful: effectless in the SSFEs on deep water; useful
in the other SSFEs (for example, in the SSFE on wave load on vertical break-
waters, which will be quoted in Chapter 14, the effect of tide helped to study
the dependence of wave load on d/Lp0).

As to requirement (2), off the shore at Reggio Calabria, there are typically
wind seas being generated by a local wind, with Hs ranging between 0.15
and 1.0 m, and Tp ranging from 1.6 to 3.8 s.

As to requirement (3), it is worthwhile telling a recent experience. The
experiment was aimed to verify the theoretical distribution of wave heights
in the space domain in a sea state of given spectrum: an array of 26 wave
gauges was positioned. The configuration of the gauges was expected to be
effective, under the assumption of: unimodal spectrum (like JONSWAP),
angle between the orthogonal to the coastline and the dominant direction
being within 20�; Th (the characteristic period of the largest waves, which
will be dealt with in the next chapter) between 2.0 and 2.2 s. History of the
experiment: gauges and electronic station were ready on May 3, 2012; after
five days (May 8, 2012) we had obtained more than 500 5-min records of
sea states with the prescribed characteristics. This was notwithstanding the
complex set of prescriptions, and especially the very narrow window
allowed for the variability of Th: only 0.20 s! Of course, after more than
20 years of work in the sea of Reggio Calabria, we know that in late spring,
sea states with these characteristics are common at that site. However, this
is a proof that, at least at some sites, requirement (3) for the SSFEs is
fulfilled.

As to requirement (4), a most typical sea state off the beach at Reggio
Calabria is a wind sea with a spectrum close to the mean JONSWAP,
with Hs¼ 0.35 m and A¼ 0.01. With Eqn (3.47), this gives
Tp¼ 2.52 s.This sea state with

Hs ¼ 0:35 m; Tp ¼ 2:52 s
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may be thought of as the 1:22.5 small-scale model of a full-scale sea state of

Hs ¼ 7:87 m; Tp ¼ 11:95 s

or as the 1:45 small-scale model of

Hs ¼ 15:75 m; Tp ¼ 16:90 s

in the Froude dynamic similarity. These two full-scale sea states are mean-
ingful, respectively, of a design sea state for some areas of the Mediterra-
nean Sea, and of a design sea state for some oceanic areas. Sometimes in
the sea area of Reggio Calabria, the spectrum exhibits a secondary peak
on some low frequency (e.g., on u¼ 0.10 rad/s). In this case, the full-
scale sea state in the Froude dynamic similarity is no longer meaningful
as a design sea state (e.g., in the 1:45 scale we would have wind waves of
16.90 s Tp being superimposed on a swell of 42 s!). All the same, these
sea states may fulfill requirement(4). As an example, several SSFEs which
will be quoted in the next chapters, re. the distribution of the wave height
in the time domain, the directional spectrum, and the Morison equation
were done for the largest possible variety of the spectrum. Hence. the spec-
trum with the peak on the low frequency was welcome for these experi-
ments. Again, with respect to requirement (4), the variety of sea states of
a natural location like Reggio Calabria was fully appreciated only with an
SSFE on wave energy absorption-conversion, which will be quoted in
Chapters 15 and 16. In fact, often at that site there are swells with a Tp be-
tween 3.0 and 6.0 s and a steepness markedly smaller than that of the wind
seas. Of course, these are useless as small-scale model of design sea states.
However, these small-scale sea states are useful to test the performances of
converters with swells (which is a crucial item given that most of the wave
energy that every year reaches coasts worldwide is carried by swells).

The NOEL (Natural Ocean Engineering Laboratory) has been constituted to
perform SSFEs, regularly, in an area of sea of 5000 m2 off the beach at
Reggio Calabria.

3.8 CONCLUSION
The first small-scale field experiment (1990) was conceived and directed by
the author with the aim to verify the quasi-determinism theory (Boccotti
et al., 1993). According to Holthuijsen (2007), that of function E(f) is the sin-
gle most important concept in his book. In fact, it is not easy to explain the
meaning of the continuous function E(f) (or E(u)). I believe that an effective
(and perhaps pleasant) way should be the sort of play of Section 3.5.2, which
may be played by two teams of students: team A in place of person A of
Section 3.5.2; and team B in place of person B.
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4.1 SURFACE ELEVATION AS A STATIONARY
GAUSSIAN PROCESS

4.1.1 The Probability of the Surface Elevation
The random process (Eqn (3.1)) with the assumptions we have made on N,
ai, ui, and εi is stationary and Gaussian. This means that the probability
p(h(t)¼ w)dw that h(t) of a given realization of the random process
falls in a fixed small interval (w,wþ dw) is equal to the probability
p(h(to)¼ w)dw that h(to) at any fixed time instant to, in a realization taken
at random, falls in the given interval (w,wþ dw), and these have the
following form:

pðhðtÞ ¼ wÞ ¼ pðhðtoÞ ¼ wÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pm0

p exp

�
� w2

2m0

�
(4.1)

The probability p(h(t)¼ w)dw is equal to the ratio between the time in which
w< h(t) < wþ dw and the total time. The probability p(h(to)¼ w)dw is
equal to the ratio between the number of realizations in which w< h(to) <
wþ dw and the total number of realizations.

Now let us see how Eqn (4.1) may be achieved. First, let us consider two
arbitrary random variables V1 and V2. If

Vn
1 ¼ Vn

2 cn (4.2)

reads “if the mean value of the nth power of V1 is equal to the mean value of
the nth power of V2, whichever the n,” then the two variables have the same
probability density function, that is,

pðV1 ¼ wÞ ¼ pðV2 ¼ wÞ (4.3)

This rather intuitive property, which proceeds formally from the theorem of
moments, will enable us to prove Eqn (4.1).

Before giving the proof, it is worthwhile to specify that we shall adopt two
different symbols for the mean: one for the time average, the other one for
the ensemble average. Specifically, hhnðtÞiwill denote the average of the nth
power of h(t) in a given realization of the process, and hnðtoÞ will denote the
average of the nth power of h at the fixed time to.

4.1.2 Proof Relevant to Any Given Realization
From Eqn (3.1) and the assumption that uisuj, if is j, it follows that

�
h4ðtÞ� ¼ 3

XN
i¼ 1

XN
j¼ 1ðjsiÞ

1
4
a2i a

2
j þ

XN
i¼ 1

3
8
a4i (4.4)
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Here, the assumptions of Section 4.2 on N and ai come into play (N being
infinitely large, ai being of the same order of one another). Indeed, under
these assumptions, Eqn (4.4) may be rewritten in the form,

�
h4ðtÞ� ¼ 3

XN
i¼ 1

XN
j¼ 1

1
4
a2i a

2
j (4.5)

which implies �
h4ðtÞ� ¼ 3

��
h2ðtÞ��2 ¼ 3m2

0 (4.6)

Now, assuming that Eqn (4.1) is actually the probability of the surface eleva-
tion, we get the same value of hh4ðtÞi:

�
h4ðtÞ� ¼

ZþN
�N

w4pðhðtÞ ¼ wÞdw ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pm0

p
ZþN

�N

w4 exp

�
� w2

2m0

�
dw ¼ 3m2

0

(4.7)

By the same way of reasoning, we can prove that whichever the n, hhnðtÞi
takes on the same value if evaluated from Eqn (3.1) of h(t) or from Eqn (4.1)
of the probability of h(t). The fact that

hhnðtÞi obtained from Eqn ð3:1Þ ¼ hhnðtÞi obtained from Eqn ð4:1Þ cn

(4.8)

implies that Eqn (4.1) is actually the probability of h(t).

4.1.3 Proof Relevant to the Ensemble at a Fixed
Time Instant

Fixing any time instant to, from Eqn (3.1), we have

h4ðtoÞ ¼
"XN

i¼ 1

ai cosðbεiÞ
#4

(4.9)

where

bεi h εi þ uito (4.10)

If the εi are distributed uniformly over the circle and are stochastically inde-
pendent from one another, also the bεi are distributed uniformly over the cir-
cle and are stochastically independent from one another. Because of this
property, it can be shown that

h4ðtoÞ ¼ 3
XN
i¼ 1

XN
j¼ 1ð jsiÞ

1
4
a2i a

2
j þ

XN
i¼ 1

3
8
a4i (4.11)
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Comparing this with Eqn (4.4) of hh4ðtÞi, we see that

h4ðtoÞ ¼ �
h4ðtÞ� (4.12)

Similarly, we can verify the equality

hnðtoÞ ¼ hhnðtÞicn (4.13)

which implies that the probability of h(to) (relevant to the ensemble at a
fixed time) is equal to the probability of h(t) relevant to any given realization.

4.2 JOINT PROBABILITY OF SURFACE ELEVATION
Let us define n random variables V1, V2, ., Vn, each of them representing
the surface elevation h or a derivative of any order of h taken at some fixed
instants generally different from one another. For example,

V1 h hðtoÞ;V2 h _hðto þ TÞ;.;Vn h €hðto þ T 0Þ (4.14)

where the dot denotes the derivative, to is any fixed time instant, and T ; T 0

are fixed time lags. The product

pðV1 ¼ w1;V2 ¼ w2;.;Vn ¼ wnÞdw1dw2.dwn (4.15)

represents the probability that V1 falls in a fixed small interval dw1 including
w1; V2 falls in a fixed small interval dw2 including w2; and so on.

In Section 4.1, we have proven that p[h(to)¼ w] is a Gaussian (normal)
probability density function. Expanding the reasoning from the probability
density of a single variable to the joint probability density of a set of random
variables, we may prove that p(V1¼ w1, V2¼ w2, ., Vn¼ wn) is multivar-
iate Gaussian, that is to say

pðV1 ¼ w1;V2 ¼ w2;.;Vn ¼ wnÞ

¼ 1

ð2pÞn=2 ffiffiffiffiffi
M

p exp

"
� 1
2M

Xn
i¼ 1

Xn
j¼ 1

Mijwiwj

#
(4.16)

where

Mij h i; j cofactor; Mh determinant (4.17)

of the covariance matrix (CM) of V1, V2, ., Vn:

CM ¼

0BBBBBB@
V2
1 V1V2 / V1Vn

V2V1 V2
2 / V2Vn

« « «
« « «

VnV1 VnV2 / V2
n

1CCCCCCA (4.18)
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The entries of this matrix are ensemble averages like h4ðtoÞ obtained in
Section 4.1. Since the ensemble averages are equal to the temporal means,
the entries of the CM may be obtained also from temporal means. This
approach is advisable.

The CM of hðtoÞ; _hðtoÞ (where to is any fixed time instant) will serve in the
next section. This is

CM ¼
0@ h2ðtoÞ hðtoÞ _hðtoÞ

_hðtoÞhðtoÞ _h2ðtoÞ

1A ¼
 
m0 0

0 m2

!
(4.19)

Hereafter, as an example, the steps to obtain the 2,2 entry of this matrix:

½ _hðtoÞ�2 ¼ �½ _hðtÞ�2� ¼
* 

�
XN
i¼ 1

aiuisinðuit þ εiÞ
!2+

¼
XN
i¼ 1

XN
j¼ 1

aiajuiuj

�
sinðuit þ εiÞsin

	
ujt þ εj


�
¼
XN
i¼ 1

0:5 a2i u
2
i ¼ m2

(4.20)

4.3 RICE’S PROBLEM (1958)
Let us call bþ an up-crossing of some fixed threshold value bdsee
Fig. 4.1dand let us consider the probability that

1. a fixed small interval
�
to � dt

2 ; to þ dt
2

�
contains a bþ; and

2. the derivative of this bþ falls in a fixed small interval (w, wþ dw).
This joint probability, that we shall call pþ(b, w)dtdw, is equal to
the probability that

3. h(to) belongs to the small interval
�
b� w dt

2 ; bþ w dt
2

�
and

4. _hðtoÞ belongs to the small interval (w, wþ dw).

n FIGURE 4.1 A bD is an up-crossing of some fixed threshold b. An individual wave is between
two consecutive 0þ.
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That is,

pþðb;wÞdtdw ¼ p½hðtoÞ ¼ b; _hðtoÞ ¼ w�wdtdw (4.21)

assuming that w is positive. (Figure 4.2 helps to realize that the probability of
(1) and (2) is equal to the probability of (3) and (4).)

Now, let us consider the probability pþ(b)dt that the fixed small interval�
to � dt

2 ; to þ dt
2

�
contains a bþ. This is related to the probability pþ(b, w)

dtdw by

pþðbÞdt ¼
ZN
0

pþðb;wÞdtdw (4.22)

Equations (4.21) and (4.22) yield

pþðbÞ ¼
ZN
0

p½hðtoÞ ¼ b; _hðtoÞ ¼ w�wdw (4.23)

That on the RHS is a joint Gaussian pdf:

p½hðtoÞ ¼ b; _hðtoÞ ¼ w� ¼ 1

2p
ffiffiffiffiffi
M

p exp


� 1
2M

	
M11b

2 þM22w
2 þ 2M12bw


�
(4.24)

n FIGURE 4.2 Graphic aid to understand Eqn (4.21).
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whereM andMij are, respectively, the determinant and the i,j cofactor of CM
Eqn (4.19), that is,

M ¼ m0m2; M11 ¼ m2; M22 ¼ m0; M12 ¼ 0 (4.25)

so that

p½hðtoÞ ¼ b; _hðtoÞ ¼ w� ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffi
m0m2

p exp


� 1
2m0m2

	
m2b

2 þ m0w
2

�

(4.26)

Equations (4.23) and (4.26) yield

pþðbÞ ¼
ZN
0

1
2p

ffiffiffiffiffiffiffiffiffiffiffi
m0m2

p exp


� 1
2m0m2

	
m2b

2 þ m0w
2

�
wdw (4.27)

At this point, we have arrived to the solution for pþ(b), which is useful because

N þðb;T Þ ¼ pþðbÞT (4.28)

where N þðb;T Þ is the expected number of bþ in a very large time
interval T .

Solving the integral on the RHS of Eqn (4.27) by substitution, from the two
last equations we get

N þðb;T Þ ¼ 1
2p

ffiffiffiffiffiffi
m2

m0

r
exp

�
� b2

2m0

�
T (4.29)

4.4 COROLLARIES OF RICE’S PROBLEM
4.4.1 Probability of Crest Height and Wave Height
In general, we have

N crðb;T Þ � N þðb;T Þ (4.30)

where N crðb;T Þ is the expected number of wave crests higher than a fixed
threshold b in time interval T . (Figure 4.1 helps to realize this inequality.)
However, in the limit as b/s/N, inequality Eqn (4.30) becomes an
equality. Therefore,

PðC > bÞ ¼ N þðb;T Þ
N þð0;T Þ as b

�
s/N (4.31)

where P(C> b) represents the probability that a wave crest be higher than
a given threshold b. Equations (4.29) and (4.31) yield

PðC > bÞ ¼ exp

�
� b2

2m0

�
as b

�
s/N (4.32)

which holds for every spectrum.
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Inequality Eqn (4.30) becomes an equality for every b if the spectrum is very
narrow. This is because each wave approaches a sinusoidal wave. Hence,

PðC > bÞ ¼ exp

�
� b2

2m0

�
(4.33)

for every b if the spectrum is very narrow. Moreover, if the spectrum is very
narrow, the wave height is twice the height of the wave crest, so that

Pðwave height > HÞ ¼ PðC > H=2Þ (4.34)

The last two equations lead to

Pðwave height > HÞ ¼ exp

�
�H2

8

�
(4.35)

4.4.2 The Mean Wave Period
The mean wave period is given by the quotient between the very large time
interval T and the number N þð0;T Þ of zero up-crossings in this interval:

Tm ¼ T =N þð0;T Þ (4.36)

(bearing in mind that the number of waves is equal to the number of zero
up-crossings). With Eqn (4.29) of N þðb;T Þ, Eqn (4.36) becomes

Tm ¼ 2p

ffiffiffiffiffiffi
m0

m2

r
(4.37)

that is-the formula of the mean wave period.

With the JONSWAP spectrum, we have

m0

m2
¼

Ag2u�4
p

Z N

0
E ðwÞdw

Ag2u�2
p

Z N

0
w2E ðwÞdw

(4.38)

where E ðwÞ is defined by Eqn (3.42), and hence

Tm ¼ Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ N

0
E ðwÞdwZ N

0
w2E ðwÞdw

vuuuuut (4.39)

The two integrals may be numerically evaluated for given values of the shape
parameters c1 andc2 in the expression of E ðwÞ, and with the values of the
mean JONSWAP spectrum (c1¼ 3.3, c2¼ 0.08), the result is

Tm ¼ 0:78Tp (4.40)
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4.5 CONSEQUENCES OF THE QD THEORY ONTO
WAVE STATISTICS

4.5.1 Period Th of a Very Large Wave
Let us consider the set of the waves with a given height H, say H¼ 3s, in a
stationary Gaussian random process. The waves of this set will be different,
even very different, from one another.

If we fixed a larger H, say H¼ 8s, we would find that the waves contained
in the set differ much less from one another. Also, in the limit as H/s/N,
all the waves of the set, apart from a negligible share, would prove to be
equal to one another. More specifically, each wave of the set would occupy
the center of a well-defined group that is the sum of a deterministic frame-
work and a residual random noise of a smaller order. The form of the deter-
ministic component is

hðTÞ ¼ jðTÞ � jðT � T�Þ
jð0Þ � jðT�Þ

H

2
(4.41)

where T* is the abscissa of the absolute minimum, being assumed to be also
the first minimum, of the autocovariance. As a consequence, it follows that,
most probably, a wave of given height H very large has a well-defined
period. This is

Th ¼ period of the central wave of the group Eqn ð4:41Þ (4.42)

where the subscript h stands for high wave.

With the JONSWAP spectrum, the deterministic wave group Eqn (4.41)
becomes

hðTÞ
H

¼ 1
2

Z N

0
E ðwÞ

�
cos

�
2pw

T

Tp

�
� cos


2pw

�
T

Tp
� T�

Tp

���
dwZ N

0
E ðwÞ

�
1� cos

�
2pw

T�

Tp

��
dw

(4.43)

For obtaining Th, we must plot the function of T/Tp on the RHS of this
equation. This function represents a dimensionless wave group. The period
of the central wave of this group is equal to Th/Tp (see Fig. 4.3).

4.5.2 The Wave Height Probability under General
Bandwidth Assumptions

Figure 4.4(a) shows two possibilities of waves with a given height H.
These possibilities are N2 because the crest elevation may take on any
value within 0 and H and the time interval between the crest and trough
may take on any positive value. The situation is suitably represented in a
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n FIGURE 4.4 The waves with a fixed height H generally show a large variety of x and s:
two examples are shown in panel (a). Plotting x versus s; generally we get a wide cloud of points
(panel (b)).

n FIGURE 4.3 Function (Eqn 4.41) obtained with the mean JONSWAP spectrum.
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plane s-x, where s is the crest-trough lag and x is the quotient between
crest elevation and crest-to-trough wave height. In particular, the two
waves (1) and (2) of Fig. 4.4(a) are represented by two distinct points in
the plane s-x.

Let us suppose to examine a very large time interval T , to gather all
the waves whose height is in a fixed small interval H, Hþ dH, and to
mark the points representative of these waves in the plane s-x. If H/s is
finite, the marked points would spread over the plane s-x, as we see in
Fig. 4.4(b). On the contrary, as H/s/N, we would look at a great con-
centration: all the points but a negligible share would fall in an open
2-ball with center at T�; 12 and radius of order (H/s)�1. In the paper
(1989) I obtained a number of these points (see also Sections 9.6e9.10
of my book (2000)). This led to the closed form solution for the asymptotic
form of the probability of wave heights in the limit as H/s/N. This is

Pðwave height > HÞ ¼ K1 exp

�
� H2

K2m0

�
; as H=

ffiffiffiffiffiffi
m0

p
/N (4.44)

where

K1 ¼
	
1þ €j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2€j

�ð1þ j�Þ
q (4.45)

K2 ¼ 4ð1þ j�Þ (4.46)

with

j� ¼
����jðT�Þ
jð0Þ

����; €j
� ¼

����€jðT�Þ
€jð0Þ

���� (4.47)

With the JONSWAP spectrum, T*/Tp and j* are obtained directly from the
function j(T)/j(0) versus T/TpdEqn (3.41). As to €j

�
it is given by

€j
� ¼

������
Z N

0
E ðwÞw2 cos

�
2pw

T�

Tp

�
dw

������Z N

0
E ðwÞw2dw

(4.48)

The probability Eqn (4.44) is used also in the form

Pða > aÞ ¼ K1 exp

�
� a2

K2

�
; as a/N (4.49)

where Pða > aÞ represents the probability that
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a ¼ wave height=s (4.50)

exceeds some fixed threshold a. Equation (4.49) holds as a tends to infinity,
that is, as P approaches zero. However, with characteristic spectra of wind
seas, it proves to be effective for P smaller than about 0.3, as we may see
in Fig. 4.5. This figure shows the ratio

aðPÞ=aRðPÞ versus P (4.51)

where a(P) is the value of a that has a given probability P to be exceeded, in
a random process with a given spectrum, and aR(P) is the value of a that has
a given probability P to be exceeded in the random process with the very nar-
row spectrum. The continuous line has been obtained with the asymptotic
Eqn (4.49), which gives

aðPÞ=aRðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

lnðK1=PÞ
8 lnð1=PÞ

s
(4.52)

The data points are from numerical simulations of stationary Gaussian
processes by Forristall (1984).

n FIGURE 4.5 Abscissa: the probability of exceedance; ordinate: the quotient between the wave height
and the wave height with a very narrow spectrum. Data points from numerical simulations of stationary
Gaussian processes by Forristall (1984).
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4.6 FIELD VERIFICATION
4.6.1 An Experiment on Wave Periods
Let us obtain the pairs ai; ~Ti for i¼ 1, N with N being the number of waves
of a record: ai is the ratio between the height of the ith wave and the s of the
sea state, and ~Ti is the ratio between the period of the ith wave and the Th of
the sea state. Let us gather the pairs ai; ~Ti of a number of records from sea
states, generally different from one another, and let us plot these pairs: each
pair is represented by one point whose abscissa is ai and whose ordinate is
~Ti. We shall obtain a cloud of points like that of Fig. 4.6. From the quasi-
determinism (QD) theory, we expect that the rightmost points of the cloud
have ordinates close to 1, and this is what typically happens.

4.6.2 The Random Variable b

In view of a verification of the distribution of wave heights in sea states, it is
convenient defining a new random variable

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

�
a2

K2
� ln K1

�s
(4.53)

b is a monotonic growing function of a, and the inverse function

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

�
b2

8
þ ln K1

�s
(4.54)

n FIGURE 4.6 Dimensionless wave period versus dimensionless wave height. Data points from
a small scale field experiment of 1990, described in Chapter 9.
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is a monotonic growing function of b. From Eqn (4.54), it follows that

P
	
b > b


 ¼ P

0B@a >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

 
b
2

8
þ ln K1

!vuut
1CA (4.55)

where b is an arbitrary threshold. Finally, from Eqns (4.49) and (4.55), it
follows that

P
	
b > b


 ¼ exp

 
� b

2

8

!
; as b/N (4.56)

If the distribution of a is given by Eqn (4.49), the distribution of b is given
by Eqn (4.56), and vice versa. As we may see, the asymptotic distribution of
the random variable b does not depend on the spectrum shape.

A clear confirmation of Eqn (4.56) is given by Fig. 4.7, where the data points
were obtained from more than six million individual waves from sea states
with a large variety of spectra (Boccotti, 2012). We see that the convergence
of the data points onto the asymptotic form Eqn (4.56) is very fast: the agree-
ment between data points and asymptotic form being nearly perfect for b > 2.

The same strict agreement between data points and asymptotic form
Eqn (4.56) emerges from a new small-scale field experiment (SSFE) of

n FIGURE 4.7 Pðb > bÞ from a small-scale field experiment of 2010 on a very large variety of
spectra, with a total number of 6,300,000 individual waves.
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2012 on the distribution of wave heights in the space domain (Boccotti,
2013). This represents a strong test of the theory given that the range of
values of K1, K2 for the waves in the space domain is different from the range
of values of K1, K2 characteristic of the waves in the time domain. As an
example, in the SSFE of 2012:

K1 (1.1, 2.5) in the space domain/K1 (1.0, 1.4) in the time domain.
K2 (4.1, 6.8) in the space domain/K2 (5.9, 7.6) in the time domain.

4.7 MAXIMUM EXPECTED WAVE HEIGHT AND
CREST HEIGHT IN A SEA STATE OF GIVEN
CHARACTERISTICS

4.7.1 The Maximum Expected Wave Height
Let us consider N consecutive waves of a sea state of given significant
height. The probability that the largest wave height of this set of N waves
is smaller than a given threshold H is equal to the probability that all the
N wave heights are smaller than H, that is,

P ðHmax < HÞ ¼ ½1� Pðwave height > HÞ�N (4.57)

which implies

PðHmax > HÞ ¼ 1� ½1� Pðwave height > HÞ�N (4.58)

Equations (4.57) and (4.58) are based on the assumption that the wave
heights are stochastically independent of one another. Given that this
assumption is not fully satisfied, Eqn (4.58) is slightly conservative,
in that it slightly overpredicts the probability of exceedance of Hmax

(see Section 5.10.1 of Boccotti, 2000).

The mean value of a positive random variable V, like Hmax, is related to the
probability of exceedance P(V> x) by

V ¼
ZN
0

PðV > xÞdx (4.59)

Hence, in the special case that V¼Hmax, we have

Hmax ¼
ZN
0

PðHmax > HÞdH (4.60)

In order to understand the meaning of Hmax, let us imagine taking n sets
each of N consecutive waves from a sea state. The first set will have a
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maximum wave height Hmax1, the second set will have a maximum
wave height Hmax2 generally different from Hmax1, and so on as far as
the nth set whose maximum wave height will be Hmaxn. Hmax repre-
sents the average of Hmax1, Hmax2, etc. Equations (4.44), (4.58), and
(4.60) yield

Hmax ¼
ZN
0

1�

1� K1 exp

�
� H2

K2m0

��N
dH (4.61)

The use of the asymptotic form Eqn (4.44) of P(wave height>H) is justified
because the integrand in Eqn (4.60) gets appreciably different from 1 for H/s
definitely greater than 4 wherein the asymptotic form proves to be fully
efficient.

4.7.2 Maximum Expected Crest Height
The reasoning done for Hmax may be repeated for obtaining bmax, the
maximum expected height of a wave crest. We have

bmax ¼
ZN
0

Pðbmax > bÞdb (4.62)

that is,

bmax ¼
ZN
0

1� ½1� PðC > bÞ�Ndb (4.63)

and, with the asymptotic form Eqn (4.32) of P(C> b):

bmax ¼
ZN
0

1�

1� exp

�
� b2

2m0

��N
db (4.64)

bmax proves to be greater than Hmax=2.

4.8 FORTRAN PROGRAMS FOR THE MAXIMUM
EXPECTED WAVE IN A SEA STATE OF GIVEN
CHARACTERISTICS

The characteristics of a sea state are Hs, duration, and spectrum shape. Here,
we assume to know these characteristics and aim to estimate height and
period of the maximum expected wave. The following FORTRAN programs
serve for this aim.
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4.8.1 A Program for the Basic Parameters
on Deep Water

Program SUMMARY calculates T*/Tp and j* (Eqn (3.41)), K0 (Eqn (3.46)),
Tm/Tp (Eqn (4.39)), Th/Tp (Eqn (4.43)), €j

�
(Eqn (4.48)), K1 (Eqn (4.45)), and

K2 (Eqn (4.46)) with the JONSWAP spectrum. The equations of these param-
eters have been obtained throughout Chapters 3 and 4; hence, the title
SUMMARY of the program. With the JONSWAP spectrum these parameters
depend only on function E ðwÞ defined by Eqn (3.42), which calls for
two shape parameters c1, c2.

PROGRAM SUMMARY
DIMENSION EW(500),WV(500)
DIMENSION TAUV(200),ETADET(200),TZU(5)
PG¼3.141592
DPG¼2.*PG
WRITE(6,*)’chi1,chi2’
READ(5,*)CHI1,CHI2
C1¼ALOG(CHI1)
C2¼2*CHI2*CHI2
WIN¼0.5
WMAX¼5

c calculation of E(w) -Eqn (3.42)-
DW¼0.02
W¼WIN-DW/2
I¼0

90 W¼WþDW
IF(W.GT.WMAX)GO TO 91
I¼Iþ1
WM1¼W-1
W2¼W*W
W4¼W2*W2
W5¼W4*W
ARG3¼WM1*WM1/C2
E3¼EXP(-ARG3)
ARG2¼C1*E3
E2¼EXP(ARG2)
ARG1¼1.25/W4
E1¼EXP(-ARG1)

c values of w and E(w) stored on memory
WV(I)¼W
EW(I)¼E1*E2/W5
GO TO 90

91 CONTINUE
IMAX¼I
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c calculation of T*/Tp and psi*
PSIMIN¼0
DTAU¼0.01
TAU¼-DTAU

70 TAU¼TAUþDTAU
c Loop 70 tau (¼T/Tp) from 0 to 1

IF(TAU.GT.1) GO TO 71
c SOMT integral, numerator of the RHS of Eqn (3.41)
c SOM0 integral, denominator of the RHS of Eqn (3.41)

SOMT¼0
SOM0¼0
DO 75 I¼1,IMAX

c Loop 75 over the stored values of w and E(w)
W¼WV(I)
COSA¼COS(DPG*W*TAU)
SOMT¼SOMTþEW(I)*COSA*DW
SOM0¼SOM0þEW(I)*DW

75 CONTINUE
PSI¼SOMT/SOM0

c PSI¼psi(T)/psi(0)
IF(PSI.LT.PSIMIN)THEN
PSIMIN¼PSI
TAUMI¼TAU
ENDIF
GO TO 70

71 CONTINUE
TASTP¼TAUMI
PSIAS¼ABS(PSIMIN)

c TASTP¼T*/Tp
c PSIAS¼psi*

c calculation of K0 - Eqn (3.46)-
SOM0¼0

c SOM0 integral on the RHS of Eqn (3.46)
DO I¼1,IMAX
SOM0¼SOM0þEW(I)*DW
ENDDO
RK0¼1./SOM0**0.25

c calculation of Tm/Tp - Eqn (4.39) -
c SOM0 integral, numerator of the RHS of Eqn (4.39)
c SOM2 integral, denominator of the RHS of Eqn (4.39)

SOM0¼0
SOM2¼0
DO I¼1,IMAX
W¼WV(I)
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.SOM0¼SOM0þEW(I)*DW
SOM2¼SOM2þEW(I)*W*W*DW
ENDDO
TMTP¼SQRT(SOM0/SOM2)

c TMTP¼Tm/Tp
c calculation of Th/Tp

DTAU¼0.01
TAUI¼-0.5
TAUF¼1
TAU¼TAUI-DTAU
J¼0

80 TAU¼TAUþDTAU
c Loop 80: TAU¼T/Tp from -0.5 to 1

IF(TAU.GT.TAUF)GO TO 81
J¼Jþ1

c SOM1 integral, numerator of the RHS of Eqn (4.43)
c SOM2 integral, denominator of the RHS of Eqn (4.43)

SOM1¼0
SOM2¼0
DO I¼1,IMAX
W¼WV(I)
ARG1¼DPG*W*TAU
ARG2¼DPG*W*(TAU-TASTP)
ARG3¼DPG*W*TASTP
SOM1¼SOM1þEW(I)*(COS(ARG1)-COS(ARG2))*DW
SOM2¼SOM2þEW(I)*(1-COS(ARG3))*DW
ENDDO
ETADET(J)¼0.5*SOM1/SOM2
TAUV(J)¼TAU

c ETADET(J) ¼ eta deterministic(tau)/H - Eqn (4.43) -
c TAUV(J)¼T/Tp

GO TO 80
81 CONTINUE

JMAX¼J

NZU¼0
DO 65 J¼2,JMAX

c Loop 65 over the stored values of eta deterministic(tau)/H - Eqn (4.43) -2
TAU¼TAUV(J)
IF(ETADET(J).GE.0.AND.ETADET(J-1).LT.0)THEN
NZU¼NZUþ1
E1¼-ETADET(J-1)
E2¼ETADET(J)
TZU(NZU)¼TAU-DTAUþDTAU*E1/(E1þE2)
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.ENDIF
65 CONTINUE

THTP¼TZU(2)-TZU(1)
c THTP¼Th/Tp
c calculation of psi..* - Eqn (4.48) -
c SOM1 integral, numerator of the RHS of Eqn (4.48)
c SOM2 integral, denominator of the RHS of Eqn (4.48)

SOM1¼0
SOM2¼0
DO I¼1,IMAX
W¼WV(I)
W2¼W*W
ARG¼DPG*W*TASTP
COSA¼COS(ARG)
SOM1¼SOM1þEW(I)*W2*COSA*DW
SOM2¼SOM2þEW(I)*W2*DW
ENDDO
PSIS¼ABS(SOM1/SOM2)

c PSIS¼psi..*
c calculation of K1 -Eqn (4.45)-

RNUM¼1þPSIS
RDEN¼SQRT(2.*PSIS*(1.þPSIAS))
RK1¼RNUM/RDEN

c calculation of K2 -Eqn (4.46)-
RK2¼4.*(1.þPSIAS)

WRITE(6,1001)TASTP
WRITE(6,1002)PSIAS
WRITE(6,1003)RK0
WRITE(6,1004)TMTP
WRITE(6,1005)THTP
WRITE(6,1006)RK1
WRITE(6,1007)RK2

1001 FORMAT(2X,’T*/Tp ’,f7.2)
1002 FORMAT(2X,’psi* ’,f7.2)
1003 FORMAT(2X,’K0 ’,f7.3)
1004 FORMAT(2X,’Tm/Tp ’,f7.2)
1005 FORMAT(2X,’Th/Tp ’,f7.2)
1006 FORMAT(2X,’K1 ’,f7.2)
1007 FORMAT(2X,’K2 ’,f7.2)

END

In this program, TAU is the ratio T/Tp. The function of TAU on the RHS of
Eqn (4.43) is calculated from TAUI¼�0.5 to TAUF¼ 1 with a step
DTAU¼ 0.01 and is stored on the vector ETADET. Then the program

82 CHAPTER 4 Wave Statistics in Sea States



searches the two zero up-crossings of this function, in the domain (TAUI,
TAUF). The TAU of the first zero up-crossing is TZU(1), and the TAU of
the second zero up-crossing is TZU(2)dsee Fig. 4.3. Th/Tp is equal to the
interval (TZU(2)� TZU(1)). With the mean JONSWAP spectrum
(c1¼ 3.3, c2¼ 0.08), the program gives the values of Table 4.1.

4.8.2 A Program for the Basic Parameters on a
Finite Water Depth, Using the Shape of the
TMA Spectrum

A program for finite water, which we shall call SUMM1, may be obtained
with the following changes from SUMMARY:

1. d and Tp must be supplied as inputs (hence the part of the program
concerning K0 may be canceled), and Tp may be obtained running
SUMMARY for deep water;

2. the dimensionless spectrum E ðwÞ must be multiplied by the transfor-
mation function TFU (see Section 3.4.6); specifically the line

EW(I)¼E1*E2/W5

must be changed into

EW(I)¼TFU(W,DLP0)*E1*E2/W5

where DLP0 is the ratio d/Lp0.

The transformation function is listed here:

FUNCTION TFU(w,DLP0)
PG¼3.141592
DPG¼2.*PG

Table 4.1 Values of Some Basic Parameters in
Sea States with the Mean JONSWAP Spectrum
T*/Tp 0.44

j* 0.73
K0 1.345

T=Tp 0.78

Th/Tp 0.92

K1 1.16

K2 6.91
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c calculation of the dimensionless wave number - Eqn (3.51)-
W2¼W*W
DX¼1
X¼0

110 X¼XþDX
F¼X*TANH(DPG*X*DLP0)
IF(F.LT.W2)GO TO 110
X¼X-DX
DX¼DX/10.
IF(DX.GT.2.E4)GO TO 110
RKW¼X

c RKW¼kw
c calculation of TFU: function on the RHS of Eqn (3.52) divided by E0(w)

ARG¼4.*PG*RKW*DLP0
IF(ARG.LT.30.)THEN
SI2¼SINH(ARG)
DEN¼SI2þARG
RMOL¼SI2/DEN
ARG¼ARG/2
TA¼TANH(ARG)
TFU¼TA*TA*RMOL
ELSE
TFU¼1
ENDIF
RETURN
END

4.8.3 A Program for the Maximum Expected Wave Height
The third program is HMAX. It calculates Hmax in a sequence of N waves of given Hs and given spectrum:

PROGRAM HMAX
DOUBLE PRECISION UPH,PC,PDBLE
CHARACTER*64 NOMEC
NOMEC¼’PROHMAX’
OPEN(UNIT¼66,FILE¼NOMEC)
WRITE(6,*)’Hs,N’
READ(5,*)HS,N
WRITE(6,*)’K1,K2’
READ(5,*)RK1,RK2
SIG¼HS/4.
RM0¼SIG*SIG
DH¼0.10
HMA¼0

c HMA value of the integral to be executed in the loop 90
H¼-DH/2.
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.90H¼HþDH

c Loop 90: integral with respect to H on the RHS of Eqn (4.61)
IF(H.GT.3.*HS)GO TO 91
ARG¼H*H/(RK2*RM0)
EE¼EXP(-ARG)
PH¼RK1*EE
UPH¼1.-DBLE(PH)
PC¼UPH**N
PDBLE¼1.-PC
P¼PDBLE

c P¼P(Hmax>H)
WRITE(66,1010)H,P

1010 FORMAT(2X,F7.2,2X,E12.4)
HMA¼HMAþP*DH
GO TO 90

91 CONTINUE
WRITE(6,1000)HMA

1000 FORMAT(2X,’Hmax ’,f7.2)
WRITE(6,*)’read file prohmax’
END

4.8.4 Worked Example
Deep water sea state: Hs¼ 8 m, duration¼ 5 h, spectrum: mean JONSWAP
with A¼ 0.01.

1. Calculation of Tp by means of Eqn (3.47):

Tp ¼ 1:345ffiffiffiffiffiffiffiffiffi
0:014

p p
ffiffiffiffiffiffiffiffiffiffiffi
8=9:8

p
¼ 12:1 s

2. Calculation of Tm:

Tm ¼ 0:78Tp ¼ 9:4 s

3. Calculation of the number of waves in the sea state:

N ¼ duration=Tm ¼ 5$3600=9:4 ¼ 1915

4. The run of program HMAX with input data Hs¼ 8 m, N¼ 1915,
K1¼ 1.16, K2¼ 6.91 gives

Hmax ¼ 15:1 m

5. Calculation of Th:

Th ¼ 0:92Tp ¼ 11:1 s
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Conclusion: the maximum expected wave in the given sea state has a height
of 15.1 m and a period of 11.1 s. Figure 4.8 shows the probability
P(Hmax>H), which is written by program HMAX on file PROHMAX
(H: first column; P: second column).

4.9 CONCLUSION
I introduced Eqns (4.42) and (4.44) (or Eqn (4.49)), respectively, in the
papers (1984) and (1989), as corollaries of the QD theory. Various compar-
isons of the asymptotic distribution (Eqn (4.49)) with oceanic data (Tayfun
and Fedele, 2007; CasasePrat and Holthuijsen, 2010) tend to support the
effectiveness of this distribution, also under the effects of second-order
corrections. The effects of third-order corrections may be of some rele-
vance in wind seas, wherein the spectrum exhibits significant variability
in space and/or time. These effects were dealt with under the narrowband
assumption, by Tayfun and Lo (1990), Mori and Janssen (2006), Tayfun
and Fedele (2007), Cherneva et al. (2009, 2013), Fedele et al. (2010).
Resorting to GrameCharlier series expansions was convenient, and the
GrameCharlier series approximation for the distribution of the wave
heights (under narrowband assumption) proved to be (Tayfun and Fedele,
2007)

Pða > aÞ ¼ exp

�
� a2

8

�
1þ L

1024
a2
	
a2 � 16


�
(4.65)

where

L ¼ l40 þ 2l22 þ l04 (4.66)

n FIGURE 4.8 Worked example of Section 4.8.4: Probability P (ordinate) that the maximum wave
height in a given sea state exceeds a given threshold H (abscissa). The maximum expected wave height
in the sea state is the integral of this function on (0,N).
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and

l40 ¼ �ðhðtÞ=sÞ4�� 3 (4.67)

l22 ¼ �ðhðtÞ=sÞ2ðbhðtÞ=sÞ2�� 1 (4.68)

l04 ¼ �ðbhðtÞ=sÞ4�� 3 (4.69)

with bhðtÞ being the Hilbert transform of h(t). The fourth-order cumulants
l40, l22, and l04 are indexes of the differences between h(t) and a station-
ary Gaussian process for which these cumulants are equal to zero. Then
Alkhalidi and Tayfun (2013) suggested to generalize Eqn (4.49) into the
form

Pða > aÞ ¼ K1 exp

�
� a2

K2

�
1þ L

16

�
a2

K2

��
a2

K2
� 2

��
This form proved to be able to fit rather well even artificially created wave-
flume conditions with rather large value of L due to fully developed third-
order freeewave interactions.
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5.1 DISTRIBUTION OF HS FOR A GIVEN
GEOGRAPHIC LOCATION

5.1.1 Definition and Characteristic Form
of the Distribution

Let us imagine we take a continuous record of the surface elevation h(t) at a
fixed location. We shall call Hs(t) the significant wave height of the sea state
being present at an instant t:

HsðtÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dt

ZtþDt=2

t�Dt=2

h2ðt0Þdt0

vuuuut (5.1)

where Dt is the duration of a record. Hs(t) is a random continuous function
that is gradually variable, has a mean value that depends on the location, is
not stationary because of a seasonal component, and has a strong statistical
asymmetry with respect to the mean.

The probability of exceedance P(Hs> h) is the ratio between the time in
which Hs is greater than some fixed threshold h and the total time:

PðHs > hÞ ¼ 1
T

X
i

DtiðhÞ (5.2)

where Dti(h) are the time intervals in which Hs exceeds h at the fixed loca-
tion, and T is the total time (see Fig. 5.1). The probability p(Hs¼ h)dh that
Hs(t) falls in a fixed small interval (h,hþ dh) is equal to the ratio between the
time in which h<Hs< hþ dh and the total time:

pðHs ¼ hÞdh ¼ 1
T

X
i

dtiðh; dhÞ (5.3)

where dti(h; dh) is the ith time interval in which h<Hs < hþ dh (see
Fig. 5.2).

n FIGURE 5.1 P(Hs > h) is the quotient between summation (Dt1DDt2D.) and total
time. Clearly, it can strongly change from one location to another.
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The functions P(Hs> h) and p(Hs¼ h) are related to each other by

PðHs > hÞ ¼
ZN

h

pðHs ¼ h0Þdh0 (5.4)

pðHs ¼ hÞ ¼ � dPðHs > hÞ
dh

(5.5)

which proceed from the definitions of these two functions.

Let us image we have 20,000 Hs data uniformly distributed over the seasons
of the year, and let us suppose 2000 out of these 20,000 Hs data exceed
2.5 m. We shall have

PðHs > 2:5 mÞ ¼ 2000
20; 000

¼ 0:10 (5.6)

Similarly, we shall obtain P(Hs> 3 m), P(Hs> 3.5 m), and so on.

The data points of P(Hs> h) are fitted by some theoretical form. In partic-
ular, in a previous book (2000) it was shown in some detail that a Weibull
2-parameter distribution

PðHs > hÞ ¼ exp

�
�
�
h

w

�u�
(5.7)

is effective to fit the asymptotic distribution of many locations of the central
Mediterranean Sea, as well as of some oceanic locations. Alternatively,
P(Hs> h) is commonly fitted by a Weibull or by a log-normal, since the
pioneering work by Battjes (1972).

5.2 THE “EQUIVALENT TRIANGULAR STORM”

5.2.1 Maximum Expected Wave Height in a Given
Storm

Let us consider a sea storm of given history Hs(t). Let us subdivide the func-
tion Hs(t) in steps of length Dt: hi will be the Hs of the ith step. The proba-
bility that the maximum wave height (Hmax) in this storm is smaller than a

n FIGURE 5.2 p(Hs[ h)dh is the quotient between summation (dt1D dt2D.) and
total time.
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given threshold H is equal to the product of (probability that all the waves of
the first step will be smaller than H)� (probability that all the waves of the
second step will be smaller than H)�..� (probability that all the waves
of the Nth step will be smaller than H), with N being the number of steps.
Accordingly, we have (Borgman, 1973)

P ðHmax < HÞ ¼
YN
i¼ 1

½1� PðH;Hs ¼ hiÞ�
Dt
Tmi (5.8)

where P(H; Hs ¼ h) is the probability that a wave height exceeds a fixed
threshold H in a sea state of Hs ¼ h; and

YN
i¼ 1

AihA1A2//AN (5.9)

From Eqn (5.8) it follows that

PðHmax > HÞ ¼ 1�
YN
i¼ 1

½1� PðH;Hs ¼ hiÞ�
Dt
Tmi (5.10)

The Dt of the step function should be small so as to fit the given Hs(t) of the
actual sea storm. Dt within 5e10 min proves to be adequate for the estimate
of P(Hmax>H).

After having obtained P(Hmax>H) (as a function of H), we may compute
the maximum expected wave height of the storm. It suffices to recall that
the mean value of a nonnegative random variable, like Hmax, is equal
to the integral over (0,N) of its probability of exceedance. The physical
interpretation of Hmax is as follows. Let us consider n storms with the
same time history. The maximum wave height of the first storm will be
Hmax 1, the maximum wave height of the second storm will be Hmax 2, and
so on. Hmax is the average of Hmax 1, Hmax 2, and so on.

5.2.2 Definition and Property of Equivalent
Triangular Storm

We can associate with each actual sea storm an equivalent triangular storm
(ETS) so defined:

1. the height a of the triangle is equal to the maximum significant wave
height in the actual storm;

2. the base b of the triangle (that is, the duration of the ETS) is
such that the maximum expected wave height of the triangular
storm is equal to the maximum expected wave height of the actual
storm.
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According to this definition, the height of the triangle is immediately ob-
tained, while the base will be obtained after a few attempts. It is convenient
to fix a small base (duration of the triangular storm). Thus we shall find the
maximum expected wave height of the triangular storm to be smaller than the
maximum expected wave height of the actual storm. Then we shall gradually
widen the base until the maximum expected wave height of the triangular
storm will be equal to the maximum expected wave height of the actual storm.

We should expect that P(Hmax>H) of the ETS is generally different from
P(Hmax>H) of the actual storm, and only their integrals over (0,N) are
equal to each other (since these integrals represent Hmax). Unexpectedly,
the two P(Hmax>H) prove to be nearly coincident to each other. This is a
general property that was found on comparing to each other the two
P(Hmax>H), the one of the ETS and the one of the actual storm, for several
scores of locations (see an example in Fig. 5.3).

In conclusion, the actual storms have some irregular histories generally
different from one another. However, an ETS can be associated with
each actual storm. The equivalence between this ETS and the actual storm
is full, since they have the same maximum value of the significant wave
height and the same probability that the maximum wave height exceeds
any fixed threshold H. Clearly, dealing with the ETS rather than with the
actual storms simplifies the mathematical approach.

In the next section we shall deal with the equivalent sea consisting of the
sequence of the ETS, and we shall obtain the solution for the return period
of sea storms of given characteristics. For this job we have to consider the
P(Hs> h) relevant to the sequence of ETS. This proves to be essentially the
same as the actual P(Hs> h) in the range of practical interest, that is, for
h> 1.5�2.0 times the average annual Hs(t).

5.2.3 Regression Base Height of the ETS
Let us define a10 and b10 as, respectively, the average height a and the
average base b of the 10 heaviest ETS in a year. Let us define

~a ¼ a

a10
; ~b ¼ b

b10
(5.11)

In a previous book (Boccotti, 2000) the following form was suggested for
fitting the regression of ~b versus ~a:

~bð~aÞ ¼ K 0 expðK 00~aÞ (5.12)

with values of K 0 and K 00 peculiar to some wide areas of the globe (see
Table 5.1).
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As to a10 and b10, some typical values are: a10¼ 7.5e8.5 m, b10¼ 60 h for
the Northeastern Pacific; a10¼ 6e7 m, b10¼ 50e55 h for the Northwestern
Atlantic; a10¼ 3.0e3.5 m, b10¼ 65e75 h for the Central Mediterranean
(off the western Sardinia coast a10 reaches 5 m and b10 90 h).

n FIGURE 5.3 A sea storm of September 2011 in the Atlantic Ocean, and its ETS. We see
that the P(Hmax > H) of the ETS (points) nearly coincides with the P(Hmax > H) of the actual storm
(continuous line). The data of the actual storm are available at NOAA-National Data Buoy Center Web
site (NDBC buoy 41048).

Table 5.1 Parameters of Eqns (5.12) and (5.13)

K 0 K 00

Northeastern Pacific 1.80 �0.59

Northwestern Atlantic 1.40 �0.46

Central Mediterranean 1.12 �0.11
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Equation (5.12) in dimensional form becomes

bðaÞ ¼ K 0b10 exp

�
K 00 a

a10

�
(5.13)

Note that the bðaÞ is decreasing (K00 being negative), and the rate of decrease
is greater in the Pacific Ocean than in the Atlantic Ocean, and greater in the
Atlantic Ocean than in the Mediterranean Sea. This phenomenon is due to
the occurrence of sharp peaks of Hs(t) in the largest storms, especially in
the oceans.

5.3 RETURN PERIOD AND AVERAGE PERSISTENCE
The return period R(Hs> h) of a sea storm wherein the Hs exceeds some
given threshold at a given location represents the average time interval
between the occurrences of two such sea storms at this location.
The average persistence DðhÞ represents the average duration of time in
which Hs remains above the given threshold h in the aforementioned
sea storms.

5.3.1 Formal Solution for the Return Period R(Hs > h)
We shall write “triangle,” “triangle height,” “base of a triangle” in place of
“ETS,” “maximum Hs in an ETS,” “duration of an ETS.”

Let us define

pAðaÞh pdf of the triangle height (5.14)

pBðbjA ¼ aÞh conditional pdf of the triangle base given the triangle height

(5.15)

N ðT Þh number of triangles being present in a very large time interval T

(5.16)

dtðh; dh; a; bÞh time in which Hs falls within a fixed small interval ðh; hþ dhÞ
in a triangle of height a and base b (5.17)

Using these definitions, we write

pAðaÞ da N ðT Þ ¼ number of triangles during T ;

the height of which belongs to a given interval ða; aþ daÞ (5.18)

pAðaÞ da N ðT Þ pBðbjaÞdb ¼ number of triangles during T ;

the height of which belongs to a given interval ða; aþ daÞ;
and the base of which belongs to a given interval ðb; bþ dbÞ

(5.19)
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½pAðaÞ da N ðT Þ pBðbjaÞdb�dtðh; dh; a; bÞ ¼ time during T ; in which Hs

belongs to a given interval ðh; hþ dhÞ; in the triangles the height of which is

between a and aþ da and the base of which is between b and bþ db

(5.20)

It will have been noted that the LHS of the first equality, that is,
pAðaÞ da N ðT Þ, multiplied by pB(bja)db becomes the LHS of the second
equality, which in turn, multiplied by dt(h,dh,a,b), becomes the LHS
of the third equality. In practice, the equalities (Eqns (5.18)e(5.20))
make a sequence. This sequence enables us to gradually trace the steps
leading to Eqn (5.20), which is the true starting point of our analysis. It
implies

Dtðh; dh;T Þ ¼
ZN

0

ZN

0

pAðaÞN ðT ÞpBðbjaÞdtðh; dh; a; bÞ db da (5.21)

where Dtðh; dh;T Þ denotes the time, during T , in which Hs is within a
small fixed interval (h, hþ dh).

As to dt(h, dh, a, b), its expression derives at once from its definition. It suf-
fices to note that dt is zero for triangles like① of Fig. 5.4 where a< h, while
dt is equal to (dh/a)b for triangles like ②. Therefore

dt
�
h; dh; a; b

�	 ¼ ðdh=aÞb if a > h

¼ 0 if a � h
(5.22)

Substituting this expression of dt in Eqn (5.21), we obtain

Dtðh; dh;T Þ ¼
ZN

h

ZN

0

pAðaÞN ðT ÞpBðbjA ¼ aÞ dh
a
b db da (5.23)

n FIGURE 5.4 Time duration of Hs within a fixed small interval (h,hD dh), in an ETS of
height a and base b. This duration is equal to (dh/a)b if a> h, while it is zero if a< h.
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Note that the lower limit of the first integral passes from 0 in Eqn (5.21) to h
in Eqn (5.23), as a consequence of the fact that dt(h, dh, a, b)¼ 0 for a� h.
Clearly, for the linearity property, the terms N ðT Þ and dh in Eqn (5.23)
may be put outside the integral. Then we may use the equality

ZN

0

pBðbjaÞbdb ¼ bðaÞ (5.24)

where bðaÞ, introduced in Section 5.2.3, represents the mean base amplitude
of the triangles with a given height a. Therefore Eqn (5.23) may be rewritten
in the form

Dtðh; dh;T Þ ¼ N ðT Þdh
ZN

h

pAðaÞ 1a bðaÞ da (5.25)

More simply, Dtðh; dh;T Þ could have been written at once in the form

Dtðh; dh;T Þ ¼ pðHs ¼ hÞdhT (5.26)

which proceeds from the definition of p(Hs¼ h) (cf. Section. 5.1.1).

Equation (5.25) gives Dt in terms of the pdf pA(a), and Eqn (5.26) gives the
same Dt in terms of the pdf p(Hs¼ h). Hence equating the RHS of the two
Eqns (5.25) and (5.26), we obtain the relation between the unknown function
pA(a) and the known function p(Hs¼ h):

N ðT Þ
ZN

h

pAðaÞ 1a bðaÞ da ¼ pðHs ¼ hÞT (5.27)

Here, differentiating with respect to h on both sides of the equation, we get

�N ðT ÞpAðhÞ 1h bðhÞ ¼ dpðHs ¼ hÞ
dh

T (5.28)

and hence

pAðaÞ ¼ � T
N ðT Þ

a

bðaÞ
dpðHs ¼ aÞ

da
(5.29)

(The change of variable from h in Eqn (5.28) to a in Eqn (5.29) is simply
formal, h and a playing the role of dummy variables.)

The number of triangles whose height is greater than some fixed threshold
h, in the time interval T , is

N ðh;T Þ ¼ N ðT Þ
ZN

h

pAðaÞ da (5.30)
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The return period R(Hs> h), that is to say, the average time interval be-
tween two consecutive triangles with height exceeding h, is related to
N ðh;T Þ by

RðHs > hÞ ¼ T
N ðh;T Þ (5.31)

The last two equations yield

RðHs > hÞ ¼ T

N ðT Þ RN

h pAðaÞ da
(5.32)

which, with the formula (Eqn (5.29)) of pA(a), becomes

RðHs > hÞ ¼ 1

� RN

h
a

bðaÞ
dpðHs ¼ aÞ

da da
(5.33)

The convergence of the integral in the last equation is quick and, on the con-
trary, bðaÞ is a very gradually varying function. Hence, we achieve an excel-
lent approximate form assuming bðaÞ to be constant on the interval of
integration, that is, assuming

bðaÞ ¼ bðhÞ (5.34)

With this assumption, the expression of R(Hs> h) becomes

RðHs > hÞ ¼ bðhÞ
� RN

h a dpðHs ¼ aÞ
da da

(5.35)

from which, integrating by parts, we arrive at

RðHs > hÞ ¼ bðhÞ
hpðHs ¼ hÞ þ PðHs > hÞ (5.36)

Finally, with the formula (Eqn (5.7)) of P(Hs> h), we obtain the following
simple formula for the return period:

RðHs > hÞ ¼ bðhÞ
1þ u

�
h
w

�u exp
�
h

w

�u

(5.37)

5.3.2 Corollary: The Equation of the Average
Persistence

We have

PðHs > hÞT ¼ time duration in which Hs > h; in the long interval T

(5.38)
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T =RðHs > hÞ ¼ number of storms in which Hs exceeds the threshold h; during T

(5.39)

from which it follows that

DðhÞ ¼ PðHs > hÞT
T =RðHs > hÞ ¼ PðHs > hÞRðHs > hÞ (5.40)

If P(Hs> h) is given by Eqn (5.7), DðhÞ takes the form

DðhÞ ¼ bðhÞ
1þ u

�
h
w

�u (5.41)

5.4 THE ENCOUNTER PROBABILITY OF A SEA
STORM WITH SOME GIVEN CHARACTERISTICS

The encounter probability P ðL;RÞ is the probability that at least one occur-
rence of a natural event of given return period R takes place during the life-
time L of a structure.

5.4.1 The Poisson Process
Let us consider a very large time interval T and subdivide it into a sequence
of small intervals dt, as in Fig. 5.5. Let us get T =dt white balls, and blacken
T =R of these balls. Then let us put all the balls in a box, shuffle the balls,
and draw them at random. Each draw is coupled with a new small interval dt:
the first draw with the first small interval, the second draw with the second
small interval, and so on. If the drawn ball is black we mark a point in the
small interval, otherwise we do not. The points so marked represent a
Poisson random point process (RPP). At the end, we shall have marked
T =R points, as many points as black balls, and consequently the mean value
of the inter-arrival times Ti will be

Ti ¼ T
T =R

¼ R (5.42)

n FIGURE 5.5 How to generate a Poisson process: subdivide the time axis into a very large number of
small intervals dt, and draw at random from a box containing white balls and black balls (one draw for
each small interval). If the drawn ball is black, mark a point in the small interval.
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Each point represents an occurrence of a natural event of given return period
R. The probability 1�P ðL;RÞ that no point occurs in the lifetime L is
equal to

1�P ðL;RÞ ¼
�
1� dt

R

�L=dt

(5.43)

Here note that (1� dt/R) is the probability that a given small interval dt does
not contain a point; and (L/dt) is the number of small intervals dt being pre-
sent in the lifetime L. Multiplying and dividing by R the exponent on the
RHS of Eqn (5.43), and applying the limit

lim
w/0

ð1� wÞ1w ¼ e�1 (5.44)

we get

P ðL;RÞ ¼ 1� exp

�
� L

R

�
(5.45)

5.4.2 A General Inequality for the Encounter
Probability

Let us consider a very long time interval of length T , and a partition
that determines a number of subintervals of length L. Whatever the RPP,
we have

P ðL;RÞ ¼ number of subintervals containing at least one point of the RPP
number of subintervals

� number of points of the RPP
number of subintervals

(5.46)

The number of points of the RPP in the interval T is equal to T =R, and the
number of subintervals is equal to T =L. Hence, it follows

P ðL;RÞ � T =R

T =L
(5.47)

that is,

P ðL;RÞ � L

R
(5.48)

5.5 THE DESIGN SEA STATE FOR GIVEN LIFETIME
AND ENCOUNTER PROBABILITY

The design data are lifetime L and encounter probability P . The minimum
allowable value of L and the maximum allowable value of P are prescribed
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for various classes of marine structures. Usually, R is obtained from L;P ,
with the relationship valid for the Poisson process:

RðL;P Þ ¼ L


ln

�
1

1�P

�
(5.49)

which proceeds from Eqn (5.45).

Then we obtain the function R(Hs> h), and we get the value of the abscissa
h(R) related to the given value of the ordinate R. h(R) is the threshold that is
exceeded on average once in R years, and the persistence of Hs above
this threshold is a random variable whose mean value D½hðRÞ� is given by
Eqn (5.40). This means that once in R years we have a stage of a storm of
a duration of 2D½hðRÞ� wherein the average Hs is equal to h(R). Figure 5.6
is helpful to realize this concept. Accordingly, we may take as design sea
state one with

Hs ¼ hðRÞ; duration ¼ 2D½hðRÞ� (5.50)

If, conservatively, we assume the maximum value of R for given L and P ,
from Eqn (5.48) we have

R ¼ L=P (5.51)

and the value of h(R) may increase within about the 3%, and in most cases of
practical interest within only the 1%, so that the consequences on the design
sea state are small.

n FIGURE 5.6 Graphic aid to realize Eqn (5.50).
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5.5.1 Worked Example
Calculation of the design sea state for an offshore platform in the Mediter-
ranean Sea:

1. Lifetime: L¼ 50 years;
2. Encounter probability: P ¼ 0:10;
3. R¼ 50/ln(1/1�0.10)¼ 475 years;
4. P(Hs> h) Eqn (5.7) with w¼ 0.874 m, u¼ 1.200;
5. bðaÞ Eqn (5.13) with K0 ¼ 1.12, K00 ¼ �0.11, a10¼ 3.4 m, b10¼ 70 h;
6. R(Hs> h) is calculated by means of Eqn (5.37) and is plotted in

Fig. 5.7; h(R) is the value of the abscissa corresponding to the ordinate
R¼ 475 years: h(475 years)¼ 7.90 m;

7. DðhÞ is calculated by means of Eqn (5.41) and is plotted in Fig. 5.7,
from which we find that Dð7:90 mÞ ¼ 3:3 h;

8. Conclusion: design sea state: Hs¼ 7.90 m, duration¼ 6.6 h.

5.6 ESTIMATE OF THE LARGEST WAVE HEIGHT
IN THE LIFETIME

5.6.1 The Design Sea State Pattern
A simple way to estimate the largest wave height in the lifetime is to
assume it equal to the maximum expected wave height in the design sea

n FIGURE 5.7 Worked example of Section 5.5: obtaining h(R) and DðhÞ, for R[ 475 years.
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state. The worked example of Section 5.5 has just shown how to calculate
Hs and the duration of the design sea state. The worked example of Section
4.8.4 had shown how to calculate the maximum expected wave height in a
sea state of given Hs and duration. The sequence of operations of the two
worked examples enables one to make an estimate of the largest wave
height in the lifetime.

5.6.2 An Advanced Approach
This consists of calculating

1. P(Hmax(L)>H), which is the probability that the maximum wave
height in the lifetime exceeds a fixed threshold H;

2. p(Hs¼ h; Hmax¼ x), which is the pdf of the Hs of the sea state in
which the maximum wave height in the lifetime, of given height x,
will occur. The formal solutions for these two probability functions,
with the ETS model, may be found in Chapter 7 of a previous book
by the author (2000). The equations of probability functions (1) and
(2) are

P
h
Hmax

�
L
�
> H

i
¼ 1� exp

8<
:� L

ZN

H

ZN

0

1
TmðhÞ p

�
x;Hs ¼ h

�

�
ZN

h

� dpðHs ¼ aÞ
da

$exp

�
bðaÞ
a

Za

0

1
Tmðh0Þ

� ln½1� Pðx;Hs ¼ h0Þ�dh0
�
da dh dx

9=
; (5.52)

p
�
Hs ¼ h;Hmax ¼ x

� ¼ K
1

TmðhÞ p
�
x;Hs ¼ h

� ZN

h

� dpðHs ¼ aÞ
da

�exp

�
bðaÞ
a

Za

0

1
Tmðh0Þ ln½1� Pðx;Hs ¼ h0Þ�dh0

�
da

(5.53)

where

Pðx;Hs ¼ hÞ ¼ Pðwave height > xÞ in a sea state of given Hs ¼ h (5.54)

pðx;Hs ¼ hÞ ¼ � dPðx;Hs ¼ hÞ
dx

(5.55)

and K in Eqn (5.53) is a normalizing factor.
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Hereafter the FORTRAN program PHL is listed, which serves for
calculating P(Hmax(L)>H) as a function of H. The value x of H is found
such that

PðHmaxðLÞ > xÞ ¼ P (5.56)

that is, the probability prescribed for the design. The output (x) of the first
part of PHL becomes the input of the second part of this program, which cal-
culates p(Hs¼ h; Hmax¼ x) as a function of h. In Section 7.7.3 of the previ-
ous edition of this some hints were given for the calculation of the integrals
in Eqns (5.52) and (5.53). These hints, which concern the limits and the steps
of integration, are used in the following program. As to P(Hs> h), Eqn (5.7)
is used, so that the equation of the pdf is

pðHs ¼ hÞ ¼ u

w

�
h

w

�ðu�1Þ
exp

�
�
�
h

w

�u�
(5.57)

and the derivative in Eqns (5.52) and (5.53) is

dpðHs ¼ aÞ
da

¼
�� u

wu

�
ðu� 1Þaðu�2Þ �

�
u2

w2u

�
að2u�2Þ

�
exp

h
�
�a
w

�ui
(5.58)

and is implemented in the function DERI. The solution for the pdf of the
triangle heights carried out in Section 5.3.1 calls for the derivative
dp(Hs¼ a)/da to be negative (see Eqn (5.29)). This condition is satisfied
in all cases of practical interest. However, for the sake of completeness func-
tion DERI is provided with a control: if dp(Hs¼ a)/da were positive the pro-
gram would be stopped.

PROGRAM PHL
CHARACTER*64 NOMEC
DIMENSION HPV(3000),FHV(3000),SHV(3000)
COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
NOMEC¼’PDFHS’
OPEN(UNIT¼60,FILE¼NOMEC)
PG¼3.141592
DPG¼2.*PG

c ________________________________________________________
c spectrum

ALPHA¼0.01
TMTP¼0.78
RK0¼1.345
RK1¼1.16
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.RK2¼6.91
c ________________________________________________________
c local wave climate

W¼2.685
U¼1.555
RKP¼1.80
RKS¼-0.59
A10¼8.0
B10¼60

c ________________________________________________________
c design prescription

PROBA¼0.10
RL¼50
RLS¼RL*365.*24.*3.6E3

c ________________________________________________________

c first part of the program: probability of the largest
c wave height in the lifetime (RL)

DDH¼1
DX¼0.5
DHP¼0.5
DA¼0.5
DHPP¼0.5
WRITE(6,*)’range of H: minimum value’
READ(5,*)HI
H¼HI-DDH

c loop 800 calculates the function of H on the LHS of Eqn (5.52)
c for various values of H, starting on HI, with step DDH

800 H¼HþDDH

c SOM is the 3-fold integral, with respect to x,h, and a,
c on the RHS of Eqn (5.52)

SOM¼0
X¼H-0.5*DX
X2¼2.*H

c loop 100: integral with respect to x
100 X¼XþDX

IF(X.GT.X2)GO TO 101
HP1¼0.3*X
HP2¼0.8*X
HP¼HP1-0.5*DHP

c loop 200: integral with respect to h (HP)
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200 HP¼HPþDHP
IF(HP.GT.HP2)GO TO 100
T1¼TM(HP)
P1¼PP(X,HP)
A1¼HP
A2¼1.5*HP
A¼A1-0.5*DA

c loop 300: integral with respect to a (A)
300 A¼AþDA

IF(A.GT.A2)GO TO 200
BB¼BMED(A)
HPP1¼0.5*A
HPP2¼A
HPP¼HPP2þ0.5*DHPP

c S4 is the integral with respect to h’ inside the exponential function
S4¼0

c loop 400: integral with respect to h’ (HPP)
400 HPP¼HPP-DHPP

IF(HPP.LT.HPP1)GO TO 401
P3¼P(X,HPP)
T2¼TM(HPP)
AA¼ALOG(1.-P3)
S4¼S4þAA/T2
GO TO 400

401 S4¼S4*DHPP
ARG¼(BB/A)*S4
EE¼EXP(ARG)
SOM¼SOMþ(1./T1)*P1*(-DERI(A))*EE*DA*DHP*DX
GO TO 300

101 CONTINUE
PROB¼1.-EXP(-RLS*SOM)
WRITE(6,7000)H,PROB

7000 FORMAT(2X,’H ’,F7.2,6X,’PROB ’,E12.3)
c it looks for the H for which PROB is equal to the prescribed value (PROBA).
c this value of H is found with an approximation of 0.01m.

IF(PROB.GT.PROBA)GO TO 800
H¼H-DDH
DDH¼DDH/10.
IF(DDH.GT.5.E-3)GO TO 800
X¼H

c ________________________________________________________
c second part of the program: distribution of the Hs of the sea state
c wherein the wave of height x (largest in the lifetime) will occur

DHP¼0.05
HP1¼0.3*X
N1¼IFIX(HP1/DHP)
HP1¼FLOAT(N1)*DHP
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.HP2¼0.7*X
HP¼HP1-DHP
I¼0

c loop 210 calculates the function of h (HP) on the LHS of Eqn (5.53)
c for various values of h,with step DHP

210 HP¼HPþDHP
IF(HP.GT.HP2)GO TO 211
T1¼TM(HP)
P1¼PP(X,HP)
A1¼HP
A2¼1.5*HP

c SOMA is the integral with respect to a on the RHS of Eqn (5.53)
SOMA¼0
A¼A1-0.5*DA

c loop 310: integral with respect to a (A)
310 A¼AþDA

IF(A.GT.A2)GO TO 311
BB¼BMED(A)
HPP1¼0.5*A
HPP2¼A
HPP¼HPP2þ0.5*DHPP

c S4 is the integral with respect to h’ inside the exponential function
S4¼0

410 HPP¼HPP-DHPP
IF(HPP.LT.HPP1)GO TO 411
P3¼P(X,HPP)
T2¼TM(HPP)
AA¼ALOG(1.-P3)
S4¼S4þAA/T2
GO TO 410

411 S4¼S4*DHPP
ARG¼(BB/A)*S4
EE¼EXP(ARG)
SOMA¼SOMA-DERI(A)*EE*DA
GO TO 310

311 CONTINUE
FH¼(1./T1)*P1*SOMA
I¼Iþ1
HPV(I)¼HP
FHV(I)¼FH

c FHV is the pdf on the LHS of Eqn (5.53), unless a constant
IF(FH.GT.FHMAX)FHMAX¼FH
IF(I.GE.2)THEN
ADDI¼0.5*(FHV(I-1)þFHV(I))
SHV(I)¼SHV(I-1)þADDI
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c SHV is the probability distribution, unless a constant
ENDIF
GO TO 210

211 CONTINUE
IMAX¼I
STOT¼SHV(IMAX)
DO I¼2,IMAX
HP¼HPV(I)
FH¼FHV(I)/FHMAX
SH¼SHV(I)/STOT

c FH is the normalized pdf on the LHS of Eqn (5.53)
c SH is the probability distribution

WRITE(60,1300)HP,FH,SH
1300 FORMAT(2X,F7.2,3X,F7.4,3X,F7.4)

ENDDO
WRITE(6,*)
WRITE(6,*)’read file PDFHS’
END

FUNCTION TM(HP)
c mean wave period in a sea state of given Hs¼HP

COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
PG¼3.141592
ARG¼HP/9.81
COSTA¼RK0/ALPHA**0.25
TP¼COSTA*PG*SQRT(ARG)
TM¼TMTP*TP
RETURN
END

FUNCTION P(X,HP)
c probability that a wave height be greater than a fixed X in a sea
c state with a given Hs¼HP

COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
RM0¼HP*HP/16
ARG¼X*X/(RK2*RM0)
P¼RK1*EXP(-ARG)
RETURN
END

FUNCTION PP(X,HP)
c pdf of the wave height in a sea state of given Hs¼HP

COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
RMOL¼RK1*2./RK2
RM0¼HP*HP/16.
ARG¼X*X/(RK2*RM0)
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.EE¼EXP(-ARG)
PP¼RMOL*(X/RM0)*EE
RETURN
END

FUNCTION BMED(A)
c regression base-height of the ETS

COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
BMED¼RKP*B10*EXP(RKS*A/A10)
BMED¼BMED*3.6E3
RETURN
END

FUNCTION DERI(A)
c derivative of the pdf of the Hs at the given geographic location

COMMON ALPHA,TMTP,RK0,RK1,RK2,W,U,RKP,RKS,A10,B10
RM1¼U*(U-1)/W**U
RM2¼U*U/W**(2.*U)
AD1¼RM1*A**(U-2)
AD2¼RM2*A**(2*U-2)
ARG¼(A/W)**U
EE¼EXP(-ARG)
DERI¼(AD1-AD2)*EE
IF(DERI.GT.0)THEN
WRITE(6,*)’dp(Hs¼a)/da > 0. Give a greater minimum value when
1 the program asks range of H: minimum value’
STOP
ENDIF
RETURN
END

5.6.3 Worked Example
Let us consider a point on deep water of the northeastern Pacific with the P(Hs> h) given by Eqn (5.7) with

w ¼ 2:685 m; u ¼ 1:555

and the regression bðaÞ of the ETS being given by Eqn (5.13) with the values of the parameters characteristic of that
area, that is to say (see Section 5.2.3)

K 0 ¼ 1:80; K 00 ¼ �0:59; a10 ¼ 8:0 m; b10 ¼ 60 h

Let us estimate the largest wave height in the lifetime, for

L ¼ 50 years; P ¼ 0:10
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The first solution of the problem (design sea state pattern (DSSP), Section
5.6.1):

1. R(Hs> h) as a function of h is calculated by means of Eqn (5.37);
2. DðhÞ is calculated by means of Eqn (5.41);
3. R(Hs> h) and DðhÞ are plotted as in Fig. 5.7;
4. Equation (5.49) with the input data ðL ¼ 50 years; P ¼ 0:10Þ yields

R¼ 475 years;
5. we enter the plot of item (3) and read h(R¼ 475 years)¼ 15.2 m,

Dð15:2 mÞ ¼ 1:5 h;
6. conclusion: design sea state

Hs ¼ 15:2 m; duration ¼ 3 h

With the mean JONSWAP spectrum with A¼ 0.01 (see Eqn (3.45) and
Section 4.8.1) we have

Tp ¼ 16:6 s; Tm ¼ 13:0 s

from which it follows that the number of waves of the design sea state is

N ¼ 830

Finally, the run of program HMAX (Section 4.8.3) with input data
Hs¼ 15.20 m, N¼ 830, K1¼ 1.16, K2¼ 6.91 gives

Hmax ¼ 27:2 m

The conclusion is that the largest wave height, with the given lifetime and
encounter probability, is

H1 ¼ 27:2 m

and occurs in a sea state of

Hs1 ¼ 15:2 m

where the subscript 1 stands for first solution.

The second solution of the problem (advanced approach, Section 5.6.2):
The values of the parameters of the spectrum and the local wave climate
must be loaded at the beginning of program PHL. Of course, they are
the same values we used for the first solution. Program PHL writes H
and P(Hmax(L)>H) for H growing from HI (suggested value: 10 m)
with initial step of 1 m. The program looks for the value of H such that
P(Hmax(L)>H)¼ 0.1 (the prescribed value of the encounter probability
that in the program is denoted by PROBA). In our case PHL shows that

PðHmaxðLÞ > H ¼ 28:6 mÞ ¼ 0:10

that is, the searched value of H is 28.6 m. This value is called x. Then the
second part of the program writes h, the normalized pdf p(Hs¼ h;
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Hmax¼ x), which is calculated by means of Eqn (5.53), and the relevant cu-
mulative distribution. This writing is done from h¼ 0.3x to h¼ 0.7x with
step dh¼ 0.05 m, and is stored on file PDFHS. The mode of this pdf turns
out to be hm¼ 13.30 m. The conclusion is that the largest wave height,
with the given lifetime and encounter probability, is

H2 ¼ 28:6 m

and the greatest probability is that it occurs in a sea state of

Hs2 ¼ 13:3 m

where the subscript 2 stands for second solution.

5.6.4 Comment on the Advanced Approach
and the DSSP

With reference to the worked example, there is a 10% probability
(the prescribed value) that the largest wave height in 50 years (the pre-
scribed lifetime) at the given location exceeds 28.6 m. Should the largest
wave height in the 50 years of the lifetime be equal to 28.6 m, then the
greatest probability is that this wave height will occur in a sea state of
13.30 m Hs. In addition to this, we know the probability of the Hs of the
sea state wherein this largest wave height of 28.6 m will occur. As an
example, with 90% probability this wave will occur in sea states with Hs

between 11.20 and 15.75 m. We realize that the advanced approach en-
ables us to answer exhaustively the typical questions of engineering for
what concerns wave prediction. As for the DSSP, notwithstanding
its greater simplicity, it yields an estimate that may be effective for prelim-
inary design purposes. Some graphs of the worked example are shown
in Fig. 5.8.

5.7 CONCLUSION
The “peak-over-threshold” (POT) approach is commonly used. The proba-
bility of exceedance

PAðhÞ ¼
ZN

h

pAðaÞda (5.59)

(with the symbols of this book) is extrapolated from the data on the percent-
age of sea storms whose Hsmax exceeds any given threshold h, at a given loca-
tion (see Ferreira and Guedes Soares, 1998; Caires and Sterl, 2005). Then the
return period R(Hs> h) is obtained by means of Eqn (5.32), with
T =N ðh;T Þ being the average interval between all storms. For obtaining
the average persistence of Hs above a given threshold h, one has to resort

5.7 Conclusion 111



to a new extrapolation of data; in particular one may obtain P(Hs> h) from
which DðhÞ proceeds by means of Eqn (5.40). Some solutions for engineer-
ing, such as the probability that the maximum wave height in the lifetime
occurs in a sea state of given Hs (dealt with in our FORTRAN program
and worked example), are beyond the possibility of the POT approach.
The ETS theory with the solutions of Sections 5.3 and 5.6 was introduced
in works (1986) and (2000) by the author. This kind of approach has been
developed in subsequent years by Arena and Pavone (2006, 2009) and by
Fedele and Arena (2010).
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6.1 WAVE FIELD IN THE OPEN SEA
6.1.1 Concept of Homogeneous Wave Field
Let us imagine that a constant wind blows over deepwater perpendicularly to a
straight and infinitely long coastline. With a given wind speed u and fetch Y
(the distance to the upwind coastline), after a certain duration of the wind a
stationary condition (sea state) is reached. A relationship between the Hs,
Tp of this sea state and theY , u (being defined as the wind speed at an eleva-
tion of 10 m above the mean sea surface) is given by the following equations:

gHs

u2
¼ A1

(
tanh

"
B1

�
gY
u2

�C1
#)D1

(6.1)
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gTp

u
¼ A2

(
tanh

"
B2

�
gY
u2

�C2
#)D2

(6.2)

with

A1 ¼ 0:24; B1 ¼ 4:14$10-4; C1 ¼ 0:79; D1 ¼ 0:572 (6.3)

A2 ¼ 7:69; B2 ¼ 2:77$10-7; C2 ¼ 1:45; D2 ¼ 0:187 (6.4)

which are based on the work by Pierson and Moskowitz (1964), Kahma
and Calkoen (1992), and Young and Verhagen (1996), being revised by
Breugem and Holthuijsen (2007) and cf. Holthuijsen (2007).

Let us consider the percent variation of Hs in one dominant wave length
along the wind direction. This is

Dh 100
dHs
dY Lp0

Hs
(6.5)

and may be rewritten in the form

Dh
100
2p

d
�
gHs

u2

�
dðgYu2 Þ

�
gTp

u

�2
,

gHs

u2
(6.6)

where the derivative of gHs/u
2 with respect to gY =u2 proceeds straightfor-

wardly from Eqn (6.1). This derivative is a function of gY =u2, so that also
D is a function of gY =u2. Calculation shows that

0:02 < D < 0:2 on 100 <
gY
u2

< 10000 (6.7)

with the largest D corresponding to the smallest gY =u2. That is, the Hs

varies by less than the 0.2% in one wave length, because of the wind action
(and this is the largest variation; that is, the variation in the wind direction).

Conclusion: in an open sea the variations of Hs from one point to another,
due to the wind action, in a square with sides of 10 wave lengths, are negli-
gible. Hence, such a square may be regarded as a homogeneous random
wave field.

6.1.2 Random Surface Elevation and Velocity
Potential

A steady and homogeneous wave field is thought of as the sum of a very
large number N of harmonic wave components, with amplitudes, fre-
quencies, and phases obeying the assumptions of Section 3.1. The directions
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of these harmonic wave components are assumed to be generally different
from one another. Accordingly, the mathematical form to the first order in
a Stokes expansion is

hðx; y; tÞ ¼
XN
i¼ 1

ai cosðkix sin qi þ kiy cos qi � uit þ εiÞ (6.8)

fðx; y; z; tÞ ¼ g
XN
i¼ 1

aiu
�1
i

cosh ½kiðd þ zÞ�
cosh ðkidÞ sinðkix sin qi þ kiy cos qi � uit þ εiÞ

(6.9)

where the relation between the wave number ki and the angular frequency
ui is

ki tanh ðkidÞ ¼ u2
i

g
(6.10)

The ith term of the sum Eqn (6.8) gives the surface elevation (and the ith
term of the sum Eqn (6.9) gives the velocity potential) of a periodic wave
of amplitude ai, frequency ui, and phase εi, whose direction of advance
makes an angle qi with the y-axis.

The surface elevation at any fixed point x, y is given by

hðtÞ ¼
XN
i¼ 1

ai cos ðuit þ ~εiÞ (6.11)

where

~εi h �ðεi þ kix sin qi þ kiy cos qiÞ (6.12)

The ~εi, like the εi, are distributed uniformly on the circle and are stochasti-
cally independent of one another, so that Eqn (6.11) represents a stationary
Gaussian process (the proof is the same as given in Section 4.1).

6.2 MAXIMUM EXPECTED WAVE HEIGHT AT
A GIVEN ARRAY OF POINTS IN THE DESIGN
SEA STATE

Let us consider two points A and B in a homogeneous random wave field. If
the two points are far from each other, the wave heights at A will be sto-
chastically independent of the wave heights at B. As a consequence, the
maximum expected wave height in two sequences of N waves, taken
contemporarily at the two points, will be equal to the maximum expected
wave height in a sequence of 2N waves taken at one fixed point. However,
if the two points are very close to each other, the maximum expected wave
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height in two sequences of N waves, taken contemporarily at the two points,
will be equal to the maximum expected wave height in a sequence of N
waves taken at one fixed point.

Let us define: amaxðNÞ, the ratio between the maximum expected wave
height Hmax in a sequence of N waves, and

ffiffiffiffiffiffi
m0

p
; amaxðN; n;DxÞ, the ratio

Hmax=
ffiffiffiffiffiffi
m0

p
, with Hmax being the maximum expected wave height in n

sequences of N waves taken contemporarily at n points aligned on the
x-axis sensibly orthogonal to the wave direction, at some distance Dx
from each other.

Figure 6.1 shows amaxðNÞ; amaxðN; 2; Lp0=6Þ; amaxðN; 2; Lp0=2Þ; amax

ð2NÞ. (The data points were taken from a small-scale field experiment
(SSFE) of 1990 described in Chapter 9.) The dataset consists of wind seas
on deep water. The figure shows that amaxðN; 2; Lp0=2Þ is close to
amaxð2NÞ, which suggests that the maximum expected wave height in a
sequence of N waves at n points sensibly aligned with the orthogonal to
the wave direction may be calculated as the maximum expected wave height
in a sequence of n N waves at one point, provided that distance Dx between

n FIGURE 6.1 amax in sequences of N and 2N waves at a single point; amax in two sequences of
N waves taken contemporarily at two different points sensibly aligned with the orthogonal to the wave
direction. The figure helps in understanding the suggestion given at the end of Section 6.2.
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two consecutive points is greater than Lp0/2. This suggestion will be applied
in Chapter 13 for estimating the maximum expected wave height at the piers
of a submerged tunnel.

6.3 DIRECTIONAL SPECTRUM: DEFINITION AND
CHARACTERISTIC SHAPE

The amplitudes, frequencies, and directions of the harmonic wave compo-
nents give rise to a directional spectrum:

Sðu; qÞdudqh
X
i

1
2
a2i for i such that u < ui < uþ du and

q < qi < qþ dq

(6.13)

In words: the product 2S(u, q)dudq represents the sum of the square ampli-
tudes of the harmonic wave components whose frequencies ui and angles qi
fall in the small rectangle (u, uþ du; q, qþ dq). The definitions Eqn (6.13)
of S(u, q) and (3.4) of E(u) yield

EðuÞ ¼
Z2p
0

Sðu; qÞdq (6.14)

The directional spectrum is generally given in the form

Sðu; qÞ ¼ EðuÞDðq;uÞ (6.15)

where D(q; u) is the directional distribution. Clearly, Eqns (6.14) and (6.15)
imply

Z2p
0

Dðq;uÞdq ¼ 1 (6.16)

The directional distribution of a wind sea with a constant wind exhibits a
typical shape that usually is fitted by the cosine-power function

Dðq;uÞ ¼ KðnÞcos2n
�
1
2
ðq� qdÞ

�
with n ¼ nðuÞ (6.17)

where cos2n is understood to be the nth power of the square cosine, K(n) is
the normalizing factor

KðnÞh
2
4Z2p

0

cos2n
1
2
qdq

3
5

�1

(6.18)

6.3 Directional Spectrum: Definition and Characteristic Shape 119



being necessary to comply with Eqn (6.16), and qd is the angle that the
dominant direction makes with the y-axis. Mitsuyasu et al. (1975) suggested

n

(
¼ np

�
u
	
up

�5
if u � up

¼ np
�
up

	
u
�2:5

if u > up

(6.19)

where np grows with gY =u2. Eqn (6.19) implies that the directional
spreading is minimum with the peak frequency up, which has obtained
several confirmations (see, in particular, Young et al., 1996; Ewans, 1998).

6.4 CLASSIC APPROACH: OBTAINING THE
DIRECTIONAL DISTRIBUTION

The classic approach, due to the work of Longuet-Higgins et al. (1963) and
Cartwright (1963), was conceived for measurements of pitch and roll. How-
ever, this approach is also applied with other kinds of measurements. The
classic approach consists of finding a directional distribution for each fre-
quency ui through a best-fit procedure. Let us see this approach here below.

Let us consider the surface elevation and its space derivatives at some fixed
point x,y. The surface elevation is given by Eqn (6.11), and the space deriv-
atives are

hxðtÞh
v

vx
hðx; y; tÞ ¼

XN
i¼ 1

aiki sin qi sin ðuit þ ~εiÞ (6.20)

hyðtÞh
v

vy
hðx; y; tÞ ¼

XN
i¼ 1

aiki cos qi sin ðuit þ ~εiÞ (6.21)

Let us obtain the relation between the average product hhxðtÞhyðtÞi and the
directional spectrum. We have



hxðtÞhyðtÞ

� ¼
XN
i¼ 1

1
2
a2i k

2
i sin qi cos qi ¼

ZN
0

Z2p
0

Sðu; qÞk2 sin q cos qdqdu

(6.22)

This average product may be obtained also from the time series data of pitch
and roll. For this aim it is convenient to resort to the Fourier series of hx(t)
and hy(t):

hxðtÞ ¼
XN
i¼ 1

a0xi cos uit þ a00xi sin uit (6.23)

hyðtÞ ¼
XN
i¼ 1

a0yi cos uit þ a00yi sin uit (6.24)
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(Note that N in Eqns (6.20) and (6.21) stands for the number (very large) of
harmonic components forming the sea state, while N in Eqns (6.23) and
(6.24) is the number of frequencies in the Fourier series, which depends
upon record length and sampling rate.)

From Eqns (6.23) and (6.24) we get



hxðtÞhyðtÞ

� ¼
XN
i¼ 1

1
2

�
a0xia

0
yi þ a00xia

00
yi


(6.25)

And from Eqns (6.22) and (6.25) we conclude that

Du

Z2p
0

Sðui; qÞk2i sin q cos qdq ¼ 1
2

�
a0xia

0
yi þ a00xia

00
yi


(6.26)

The two sides of this equation represent the contribution to the average
product hhxðtÞhyðtÞi from the components whose frequency is within
ui�Du/2 and uiþDu/2 (Du being the frequency resolution of the Fourier
series).

Using Eqn (6.15) we can rewrite Eqn (6.26) in the form

Z2p
0

Dðq;uiÞsin 2qdq ¼ a0xia
0
yi þ a00xia

00
yi

DuEðuiÞk2i
(6.27)

where the terms on the right-hand side (RHS) are all known (they proceed
from the time series data of h(t), hx(t), and hy(t)).

Of course, Eqn (6.27) alone is not enough to obtain univocally the unknown
function D(q;ui). However, some further relations of the same kind can be
obtained from an analysis of the following averages:



hðtÞh�

xðtÞ
�
;


hðtÞh�

yðtÞ
�
;
D
h2
yðtÞ � h2

xðtÞ
E

where

h�
xðtÞh hxðtÞ with each component advanced of 90� in phase; (6.28)

h�
yðtÞh hyðtÞ with each component advanced of 90� in phase: (6.29)

The further relations are

Z2p
0

Dðq;uiÞsin qdq ¼ a0ia
00
xi � a00i a

0
xi

2DuEðuiÞki (6.30)

Z2p
0

Dðq;uiÞcos qdq ¼ a0ia
00
yi � a00i a

0
yi

2DuEðuiÞki (6.31)
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Z2p
0

Dðq;uiÞcos 2qdq ¼
�
a02yi þ a002yi


� �

a02xi þ a002xi
�

2DuEðuiÞk2i
(6.32)

where a0i; a00i are the Fourier coefficients of h(t).

These relationships are for a perfect surface-following buoy. Tucker (1989)
worked out these equations, taking account of buoy response. The result is a
set of equations conceptually similar to Eqns (6.27) and (6.30)e(6.32), in
which appear the amplitudes and phases of heave and tilt response. Here,
for simplicity, we shall continue making reference to the set of the perfect
surface-following buoy, because of their conceptual equivalence to the
Tucker equations. From these equations we may obtain the first and second
angular harmonics of the directional distribution, e.g., follow this logic
sequence:

1. Consider the integral

Z2p
0

Dðq;uiÞcos qdq

2. This integral (1) has the known value that proceeds from Eqn (6.31).
3. Write the directional distribution in terms of its angular harmonics

(cf. Tucker and Pitt, 2001).
4. The integral of item (1), when executed with the series of angular har-

monics, proves to be equal to the cosine-amplitude of the first angular
harmonic.

5. As a consequence of (2) and (4), obtain the value of the cosine-
amplitude of the first angular harmonic.

Likewise, from the known value of the integral on the left-hand side (LHS)
of Eqn (6.30) we obtain the sine-amplitude of the first angular harmonic.
Then from the known values of the integrals on the LHS of Eqns (6.31)
and (6.27) we obtain, respectively, the cosine-amplitude and the sine-
amplitude of the second angular harmonic. Then, the classic assumption
of Cartwright (1963) is that the directional distribution follows the form
(Eqn (6.17)) for every ui, that is,

Dðq;uiÞ ¼ KðniÞcos2ni
�
1
2
ðq� qdiÞ

�
(6.33)

is made; and the two independent parameters of this equation, that is to say
ni and qdi (K serves to fulfill condition (6.16)), may be estimated from either
the first or the second angular harmonic of the directional distribution. The
values of the parameters generally prove to depend on the angular harmonic
that is used for the estimate, and of course this introduces some uncertainty.
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6.5 NEW APPROACH: OBTAINING INDIVIDUAL
ANGLES qI

6.5.1 The Algorithm
An alternative approach introduced by the author (2004) provides the angle
qi associated with each frequency ui. The method is based on measurements
of the surface elevation. However, it may be adapted to work with some
different kinds of measurements. This approach is reproposed here in a
more detailed form.

With reference to the scheme of Fig. 6.2(a), from Eqn (6.8) of the random
surface elevation of a sea state, we have

hAðtÞ ¼
XN
i¼ 1

ai cos ð�uit þ εiÞ (6.34)

hBðtÞ ¼
XN
i¼ 1

ai cos ðkiX sin qi � uit þ εiÞ (6.35)

Hereafter we shall use the compact notation

Ci ¼ kiX sin qi (6.36)

n FIGURE 6.2 (a) Reference scheme for obtaining the directional spectrum. (b) If q is close to 90�
(or �90�), obtaining q from the phase angle between A and B implies a small degree of precision.
Then it is convenient to obtain qr from the phase angle between A and D.
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Let us assume that we have gotten two records of the surface elevation: one
at point A and one at point B. From these two records we obtain the Fourier
series, as shown in Section 3.5.1:

hAðtÞ ¼
XN
i¼ 1

A0
i cos ðuitÞ þ A00

i sin ðuitÞ (6.37)

hBðtÞ ¼
XN
i¼ 1

B0
i cos ðuitÞ þ B00

i sin ðuitÞ (6.38)

We know the N quadruplets A0
i; A

00
i ; B

0
i; B

00
i and the N angular frequencies

ui, and we aim to obtain the N triplets ai, εi, qi. From Eqns (6.34) and
(6.37) it follows that

A0
i ¼ ai cos εi (6.39)

A00
i ¼ ai sin εi (6.40)

which yields straightforwardly the N pair ai, εi.

From Eqns (6.35) and (6.38) it follows that

A0
i cos Ci � A00

i sin Ci ¼ B0
i (6.41)

A00
i cos Ci þ A0

i sin Ci ¼ B00
i (6.42)

where use has been made of definition (Eqn (6.36)) of Ci, and of the two
equalities (Eqns (6.39) and (6.40)).

Now let us multiply

1. the LHS and the RHS of Eqn (6.41) by A0
i;

2. the LHS and the RHS of Eqn (6.41) by A00
i ;

3. the LHS and the RHS of Eqn (6.42) by A0
i;

4. the LHS and the RHS of Eqn (6.42) by A00
i .

The result is

A02
i cos Ci � A0

iA
00
i sin Ci ¼ A0

iB
0
i (6.43)

A0
iA

00
i cos Ci � A002

i sin Ci ¼ A00
i B

0
i (6.44)

A0
iA

00
i cos Ci þ A02

i sin Ci ¼ A0
iB

00
i (6.45)

A002
i cos Ci þ A0

iA
00
i sin Ci ¼ A00

i B
00
i (6.46)

Respectively, from Eqns (6.43) and (6.46), and from Eqns (6.44) and (6.45)
we arrive at

cos Ci

�
A02
i þ A002

i

� ¼ A0
iB

0
i þ A00

i B
00
i (6.47)

sin Ci

�
A02
i þ A002

i

� ¼ A0
iB

00
i � A00

i B
0
i (6.48)
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This may be rewritten in the form

tan Ci ¼ A0
iB

00
i � A00

i B
0
i

A0
iB

0
i þ A00

i B
00
i

(6.49)

sin Ci

�
A0
iB

00
i � A00

i B
0
i

�
> 0 (6.50)

cos Ci

�
A0
iB

0
i þ A00

i B
00
i

�
> 0 (6.51)

A sufficient condition for Eqns (6.49)e(6.51) to yield a unique solution for
Ci is that

jCij <p (6.52)

From definition (Eqn (6.36)) of Ci, it follows that a further sufficient condi-
tion is that

kiX < p (6.53)

that is,

X <
Li

2
(6.54)

where Li is the wavelength relevant to angular frequency ui. A unique
solution for Ci implies that also sin (qi) has a unique solution.

If points A and B are near a coast where �p/2< qi< p/2 the solution for
sin (qi) closes the problem. If points A and B are in the open sea, the question
remains whether cos (qi) is positive or negative. In order to answer this ques-
tion we have to compare to each other the time series at points A and D on
the y-axis (see Fig. 6.2(a)). We write the Fourier series at the two points in
the form

hAðtÞ ¼
XN
i¼ 1

Ai cos ðuit þ aiÞ (6.55)

hDðtÞ ¼
XN
i¼ 1

Di cos ðuit þ biÞ (6.56)

with the ai and bi in (0,2p). Therefore the time instants tA and tD of the
maximum of the ith harmonic component in the time interval (�Ti,0)
(with Ti¼ 2p/ui) at points A and D are, respectively:

tA ¼ � ai

ui
(6.57)

tD ¼ � bi

ui
(6.58)

and there are the following four alternatives:

1: jtD � tAj< Ti

2
and tD > tA0cos ðqiÞ > 0 (6.59)
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2: jtD � tAj < Ti

2
and tD < tA0cos ðqiÞ < 0 (6.60)

3: jtD � tAj > Ti

2
and tD > tA0cos ðqiÞ < 0 (6.61)

4: jtD � tAj > Ti

2
and tD < tA0cos ðqiÞ > 0 (6.62)

This is provided that the distance Y fulfills the inequality

Y <
Li

2
(6.63)

so that the time needed to cover the distance from A to D (or from D to A)
must be smaller than Ti/2.

6.5.2 The Base of the New Approach
If the ui(i¼ 1,., N) of Eqns (6.37) and (6.38) were the same as the ui

of Eqns (6.34) and (6.35), the algorithm that we have just given would
yield the N exact solutions for the triplets ai,εi,qi. However, the ui of
Eqns (6.37) and (6.38) will be the ones of a Fourier series and will
be generally different from the actual ui of Eqns (6.34) and (6.35)
representing the sea state. Thus, the algorithm of Section 6.5.1 will not
yield the actual ai,εi, and qi of the sea state. However, the frequency spec-
trum and the directional spectrum that we shall obtain will be similar,
respectively, to the actual frequency spectrum and the actual directional
spectrum. Usually, the smaller the frequency resolution uiþ1�ui (that
is, the greater the duration of a wave record (DWR)), the closer should
be the agreement between the calculated spectra and the actual spectra.
Note that a few qi will remain indeterminate in that sin (qi) will not fulfill
the inequality

jsin ðqiÞj < 1 (6.64)

However, the energy of the harmonic components with indeterminate qi is
typically a small share of the total energy of the spectrum, so that we can
discard these components.

6.6 SUBROUTINES FOR CALCULATION OF THE
DIRECTIONAL SPECTRUM WITH THE NEW
METHOD

6.6.1 Subroutine FOUR
The input ETA(N,1), ETA(N,2), ETA(N,3) (N¼ 1, NMAX) are the time
series data of the surface elevation, respectively, at points A, B, and D.
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The subroutine performs the Fourier transform and yields the Fourier
coefficients:

AIPðI; 1Þ ¼ a0i, AISðI; 1Þ ¼ a00i at point A; AIPðI; 2Þ ¼ a0i, AISðI; 2Þ ¼ a00i
at point B; AIPðI; 3Þ ¼ a0i, AISðI; 3Þ ¼ a00i at point D; for I¼ 1,IMA (IMA
cannot exceed (NMAX-1)/2).

SUBROUTINE FOUR(ETA,AIP,AIS,OVF,AIV)
COMMON NMAX,IMA,DT
DIMENSION ETA(300001,3),OVF(150000),AIV(150000)
DIMENSION AIP(150000,3),AIS(150000,3)
PG¼3.141592
DPG¼2.*PG
DUR¼DT*FLOAT(NMAX)
DOMI¼DPG/DUR
IULT¼3*IMA
ITOT¼0
WRITE(6,*)
WRITE(6,*)’subroutine FOUR’

c Loop 200: L ¼ 1 – > point A, L ¼ 2 — > point B, L ¼ 3 – > point D
c I ¼ 1,IMA; IMA ¼ number of the Fourier frequencies being employed

DO 200 L¼1,3
DO 200 I¼1,IMA
ITOT¼ITOTþ1
OMI¼DOMI*FLOAT(I)
OVF(I)¼OMI
IF((ITOT/1000)*1000.EQ.ITOT)THEN
WRITE(6,2666)ITOT, IULT

2666 FORMAT(2X,’done ’,I6,5X,’total ’,I6)
ENDIF
AIP(I,L)¼0
AIS(I,L)¼0.

c Loop 210: for calculation of ai0,ai00

DO 210 J¼1,NMAX
TJ¼DT*FLOAT(J-1)
AIP(I,L)¼AIP(I,L)þETA(J,L)*COS(OMI*TJ)
AIS(I,L)¼AIS(I,L)þETA(J,L)*SIN(OMI*TJ)

210 CONTINUE
AIP(I,L)¼AIP(I,L)*2./FLOAT(NMAX)
AIS(I,L)¼AIS(I,L)*2./FLOAT(NMAX)

200 CONTINUE
DO I¼1,IMA
AI1¼AIP(I,1)
AI2¼AIS(I,1)
AIV(I)¼SQRT(AI1*AI1þAI2*AI2)
ENDDO
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.RETURN
END

6.6.2 Subroutine SDI
Subroutine SDI employs the Fourier coefficients obtained by Subroutine
FOUR, and applies the algorithm of Section 6.5.1 to obtain the qi. These
are stored on vector TETV1(I), whose range is (�180�, 180�). If qi proves
to be indeterminate (inequality 6.64 not satisfied), this qi is given the conven-
tional value 999.

SUBROUTINE SDI(TETV1)
COMMON NMAX,IMA,DT,AB,AD,DEPTH
COMMON AIP(150000,3),AIS(150000,3),OVF(150000),
AIV(150000)
DIMENSION TETV1(150000)
X¼AB
Y¼AD
PG¼3.141592
DPG¼2.*PG

DO 600 I¼1,IMA
OMI¼OVF(I)
PEI¼DPG/OMI
RLI¼WLENGTH(DEPTH,PEI)
RKI¼DPG/RLI
AI1¼AIP(I,1)
AI2¼AIS(I,1)
BI1¼AIP(I,2)
BI2¼AIS(I,2)
DI1¼AIP(I,3)
DI2¼AIS(I,3)
SCI¼AI1*BI2-AI2*BI1
CCI¼AI1*BI1þAI2*BI2
ARG¼SCI/CCI

c ARG is the RHS of Eqn (6.49)
CI¼ATAN(ARG)

c CI is defined by Eqn (6.36)
c the domain of CI is (-PG,PG)

IF(SCI.GT.0.AND.CCI.LT.0)CI¼PGþCI
IF(SCI.LT.0.AND.CCI.LT.0)CI¼-(PG-CI)
SI¼CI/(RKI*X)

c SI ¼ sin(tetai)
c___________________________________________________________

c here the calculation of sin(thetai) is completed
c now the subroutine starts the calculation of the sign of
cos(thetai)
c___________________________________________________________
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c ALFAI is alphai on the RHS of Eqn (6.55)
c BETAI is betai on the RHS of Eqn (6.56)
c the domain of alphai is 0,DPG
c the domain of betai is 0,DPG

ARG¼-AI2/AI1
ALFAI¼ATAN(ARG)
ARG¼-DI2/DI1
BETAI¼ATAN(ARG)
IF(-AI2.GT.0.AND.AI1.LT.0)ALFAI¼PGþALFAI
IF(-AI2.LT.0.AND.AI1.LT.0)ALFAI¼PGþALFAI
IF(-AI2.LT.0.AND.AI1.GT.0)ALFAI¼DPGþALFAI
IF(-DI2.GT.0.AND.DI1.LT.0)BETAI¼PGþBETAI
IF(-DI2.LT.0.AND.DI1.LT.0)BETAI¼PGþBETAI
IF(-DI2.LT.0.AND.DI1.GT.0)BETAI¼DPGþBETAI

c TA ¼ tA Eqn (6.57)

c TD ¼ tD Eqn (6.58)
TA¼-ALFAI/OMI
TD¼-BETAI/OMI
DIFF¼ABS(TD-TA)
TI¼DPG/OMI
TI2¼TI/2.

c the following are the four alternatives given by

Eqns (6.59)e(6.62)
IF(DIFF.LT.TI2.AND.TD.GT.TA)CO¼1
IF(DIFF.LT.TI2.AND.TD.LT.TA)CO¼�1
IF(DIFF.GT.TI2.AND.TD.GT.TA)CO¼�1
IF(DIFF.GT.TI2.AND.TD.LT.TA)CO¼1

c CO¼1 –> cos(thetai)>0
c CO¼-1 –> cos(thetai)<0

IF(ABS(SI).GT.1)THEN
TETV1(I)¼999
GO TO 600
ENDIF
TETI¼ASIN(SI/CO)
IF(CO.LT.0.AND.SI.LT.0)TETI¼-PGþTETI
IF(CO.LT.0.AND.SI.GT.0)TETI¼PGþTETI
TETV1(I)¼TETI*180./PG

c TETV1(I) ¼ thetai
c The domain of TETV1(I) is (-180ø,180ø)
600 CONTINUE

RETURN
END

6.6.3 Subroutine SDIR
On rotating the x,y-axis 90� clockwise we can calculate angles qri of the ith
component (see Fig. 6.2(b)). The algorithm is essentially the same as that of
Subroutine SDI, with the difference that sin ðqriÞ is obtained from the time
series data at points A and D, instead of A and B; and the sign of
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cos ðqriÞ is obtained from the time series data at points A and B, instead of A
and D. The conversion from qri to qi is obtained with the equations

qi ¼ qri � 90� if qri � 90� > �180� (6.65)

qi ¼ qri þ 270� otherwise (6.66)

SDI cannot be accurate if qi is close to 90� (or �90�), given that the wave
direction is nearly parallel to the line AB. Similarly, SDIR is not accurate if
qi is close to 0�, or 180� or �180�. Therefore, it is advisable to use SDIR if
jqij is close to 90� and SDI if jqij is close to 0� or 180�. Otherwise, one may
use SDI or SDIR at his or her choice. The values of qi obtained by means of
SDIR are stored on TETV2(I).

SUBROUTINE SDIR(TETV2)
COMMON NMAX,IMA,DT,AB,AD,DEPTH
COMMON AIP(150000,3),AIS(150000,3),OVF(150000),
AIV(150000)
DIMENSION TETVR(150000),TETV2(150000)
X¼AD
Y¼AB
PG¼3.141592
DPG¼2.*PG

DO 600 I¼1,IMA
OMI¼OVF(I)

RKI¼OMI*OMI/9.8
AI1¼AIP(I,1)
AI2¼AIS(I,1)
BI1¼AIP(I,2)
BI2¼AIS(I,2)
DI1¼AIP(I,3)
DI2¼AIS(I,3)
SCI¼AI1*DI2-AI2*DI1
CCI¼AI1*DI1þAI2*DI2
ARG¼SCI/CCI
CI¼ATAN(ARG)
IF(SCI.GT.0.AND.CCI.LT.0)CI¼PGþCI
IF(SCI.LT.0.AND.CCI.LT.0)CI¼CI-PG
SI¼CI/(RKI*X)

c SI ¼ sin(thetari)
c___________________________________________________________
c here the calculation of sin(thetari) is completed
c now the subroutine starts the calculation of the sign of
cos(thetari)
c___________________________________________________________

ARG¼-AI2/AI1
ALFAI¼ATAN(ARG)
ARG¼-BI2/BI1
BETAI¼ATAN(ARG)
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.IF(-AI2.GT.0.AND.AI1.LT.0)ALFAI¼PGþALFAI
IF(-AI2.LT.0.AND.AI1.LT.0)ALFAI¼PGþALFAI
IF(-AI2.LT.0.AND.AI1.GT.0)ALFAI¼DPGþALFAI
IF(-BI2.GT.0.AND.BI1.LT.0)BETAI¼PGþBETAI
IF(-BI2.LT.0.AND.BI1.LT.0)BETAI¼PGþBETAI
IF(-BI2.LT.0.AND.BI1.GT.0)BETAI¼DPGþBETAI
TA¼-ALFAI/OMI
TB¼-BETAI/OMI
DIFF¼ABS(TB-TA)
TI¼DPG/OMI
TI2¼TI/2.
IF(DIFF.LT.TI2.AND.TB.GT.TA)CO¼-1
IF(DIFF.LT.TI2.AND.TB.LT.TA)CO¼1
IF(DIFF.GT.TI2.AND.TB.GT.TA)CO¼1
IF(DIFF.GT.TI2.AND.TB.LT.TA)CO¼-1
IF(ABS(SI).GT.1)THEN
TETV2(I)¼999
GO TO 600
ENDIF
TETIR¼ASIN(SI/CO)
IF(CO.LT.0.AND.SI.LT.0)TETIR¼-PGþTETIR
IF(CO.LT.0.AND.SI.GT.0)TETIR¼PGþTETIR
TETVR(I)¼TETIR*180./PG

c TETVR(I) ¼ thetari
c The domain of TETVR(I) is (-180ø,180ø)

c conversion thetari ——> thetai (Eqns (6.65) and (6.66))
TEST¼TETVR(I)-90
IF(TEST.GT.-180)THEN
TETV2(I)¼TETVR(I)-90
ELSE
TETV2(I)¼TETVR(I)þ270
ENDIF

c TETV2(I) ¼ thetai
c The domain of TETV2(I) is (-180ø,180ø)
600 CONTINUE

RETURN
END

6.6.4 Program TESTDS
Program TESTDS enables us to test the subroutines for the directional spec-
trum. The first part of the program generates the time series data ETA(N,1),
ETA(N,2), and ETA(N,3) at the given points A, B, and D through a numer-
ical simulation of a sea state with a given directional spectrum consisting of
NK prisms: base of the kth prism: O1V(k)-O2V(k), TE1V(k)-TE2V(k); ratio
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between the volume of the kth prism and the total volume of the spectrum:
FRAIN(k); number of harmonic components¼ number of frequencies of the
kth prism¼NDOV(k); number of angles of the kth prism¼NTEV(k). For
the generation of random phase angles εi use is made of a routine from
the book by Press et al. (1992).

The second part of the program aims to obtain the directional spectrum
from the three time series data by means of subroutines FOUR, SDI, and
SDIR. The spectrum is obtained with the definition (Eqn (6.13)), from the
triplets ai, qi.

Note: the largest angular frequency considered is uimax ¼ p rad=s, so that
the smallest wavelength is Li¼ 6.24 m (deep water), and AB¼ X¼ 2 m,
AD¼ Y¼ 2 m fulfill conditions (Eqns (6.54) and (6.63)).

PROGRAM TESTDS
CHARACTER*64 NOMEC
COMMON NMAX,IMA,DT,AB,AD,DEPTH
COMMON AIP(150000,3),AIS(150000,3),OVF(150000),
AIV(150000)
DIMENSION ETA(300001,3)
DIMENSION TETV(150000),TETV1(150000),TETV2(150000)
DIMENSION OV(50000),TV(50000),EPS(50000),A1V(50000)
DIMENSION O1V(50),O2V(50),TE1V(50),TE2V(50),AA(50)
DIMENSION FRAIN(50),NDOV(50),NTEV(50)
REAL ran0,AM
PARAMETER (IA¼16807,IM¼2147483647,AM¼1./IM,IQ¼127773,
IR¼2836,
*MASK¼123459876)
NOMEC¼’DOMAINS’
OPEN(UNIT¼50,STATUS¼’OLD’,FILE¼NOMEC,ERR¼233)
GO TO 234

233 STOP
234 CONTINUE

NOMEC¼’OUTSP’
OPEN(UNIT¼65,FILE¼NOMEC)

PG¼3.141592
DPG¼2.*PG
PG4¼PG/4.
WRITE(6,*)’d’
READ(5,*)DEPTH
WRITE(6,*)’NK’
READ(5,*)NK
RM0¼1
IMAX¼0
DO K¼1,NK
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.READ(50,*)
O1V(K),O2V(K),TE1V(K),TE2V(K),FRAIN(K),NDOV(K),NTEV(K)
IMAX¼IMAXþNDOV(K)
RM0P¼RM0*FRAIN(K)
RM0PP¼RM0P/FLOAT(NDOV(K))
AA(K)¼SQRT(2.*RM0PP)
ENDDO
I¼0

c Loop 280, wherein I runs from 1 to IMAX, generates
c amplitudes AIV(I), angular frequencies OV(I), and angles
c of the wave direction of the harmonic wave components

DO 280 K¼1,NK
O1¼O1V(K)
O2¼O2V(K)
TE1¼(PG/180.)*TE1V(K)
TE2¼(PG/180.)*TE2V(K)
NDIV¼NDOV(K)
DO¼(O2-O1)/FLOAT(NDIV)
DTE¼(TE2-TE1)/FLOAT(NTEV(K))
O¼O1-DO/2.
TE¼TE1-DTE

90 O¼OþDO
IF(O.GT.O2)GO TO 91
I¼Iþ1
TE¼TEþDTE
IF(TE.GT.TE2)TE¼TE1þDTE/2.
OV(I)¼O
TV(I)¼TE
A1V(I)¼AA(K)
GO TO 90

91 CONTINUE
280 CONTINUE

c Loop 281 generates the IMAX random phase angles of the
c harmonic wave components

IDUM¼1
DO 281 I¼1,IMAX
IDUM¼IEOR(IDUM,MASK)
K¼IDUM/IQ
IDUM¼IA*(IDUM-K*IQ)-IR*K
IF (IDUM.LT.0) IDUM¼IDUMþIM
RAN0¼AM*IDUM
IDUM¼IEOR(IDUM,MASK)
EPS(I)¼DPG*RAN0

281 CONTINUE

AB¼2.
AD¼2.
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.DT¼0.4
WRITE(6,*)’duration sea state in hours’
READ(5,*)DUR
DUR¼DUR*3.6E3
NMAX¼1þDUR/DT
N¼0

100 N¼Nþ1
IF(N.GT.NMAX)GO TO 101
IF((N/1000)*1000.EQ.N)WRITE(6,*)’random wave simulation ’,N,NMAX
T¼DT*FLOAT(N-1)

DO L¼1,3
ETA(N,L)¼0
ENDDO

DO I¼1,IMAX
OM¼OV(I)
PE¼DPG/OM
RL¼WLENGTH(DEPTH,PE)
RK¼DPG/RL
TE¼TV(I)
EP¼EPS(I)
A1¼A1V(I)
ARGA¼-OM*TþEP
ARGB¼RK*AB*SIN(TE)þARGA
ARGD¼RK*AD*COS(TE)þARGA
COSA¼COS(ARGA)
COSB¼COS(ARGB)
COSD¼COS(ARGD)
ETA(N,1)¼ETA(N,1)þA1*COSA
ETA(N,2)¼ETA(N,2)þA1*COSB
ETA(N,3)¼ETA(N,3)þA1*COSD
ENDDO
GO TO 100

101 CONTINUE
c___________________________________________________________

c the random time series at points A,B,D have been generated;
c hereafter the directional spectrum will be obtained from
c these three time series
c___________________________________________________________

DOMI¼DPG/DUR
OMAX¼PG
IMA¼OMAX/DOMI

CALL FOUR(ETA,AIP,AIS,OVF,AIV)
CALL SDI(TETV1)
CALL SDIR(TETV2)

134 CHAPTER 6 SpaceeTime Theory of Sea States



.RM01¼0
ERR¼0
DO I¼1,IMA
TW1¼TETV1(I)
TW2¼TETV2(I)
AMP¼AIV(I)
ADD¼AMP*AMP/2.
ITI¼2
IF(TW1.GT.-180.AND.TW1.LT.-120)ITI¼1
IF(TW1.GT.-60.AND.TW1.LT.60)ITI¼1
IF(TW1.GT.120.AND.TW1.LT.180)ITI¼1
IF(ITI.EQ.1)THEN
TETV(I)¼TW1
ELSE
TETV(I)¼TW2
ENDIF
IF(TETV(I).EQ.999)ERR¼ERRþADD
RM01¼RM01þADD
ENDDO
ERR¼ERR/RM01
WRITE(6,1000)ERR

1000 FORMAT(2X,’indeterminate ’,E12.4)
c ERR is the share of the wave energy of the spectrum, for which,
c inequality Eqn (6.64) is not fulfilled

WRITE(6,*)’O1,O2,DOM’
READ(5,*)O1,O2,DOM
WRITE(6,*)’TE1,TE2,DTE’
READ(5,*)TE1,TE2,DTE
O2M¼O2-DOM
TE2M¼TE2-DTE
O¼O1-DOM
I¼0

150 O¼OþDOM
IF(O.GT.O2MþDOM/10.)GO TO 160
I¼Iþ1
TE¼TE1-DTE
J¼0

140 TE¼TEþDTE
IF(TE.GT.TE2MþDTE/10.)GO TO 150
J¼Jþ1
SOMT¼0
SOMTP¼0

c the following loop considers all the harmonic wave components used for
c the numerical simulation based on the given directional spectrum;
c and sums the square amplitude of those whose angular
c frequency falls in (O,OþDOM) and angle theta falls in (TE,TEþDTE)
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DO N¼1,IMAX
AX¼A1V(N)
OO¼OV(N)
TT¼TV(N)*180./PG
SOMT¼SOMTþ0.5*AX*AX
IF(OO.GT.O.AND.OO.LT.OþDOM.AND.TT.GT.TE.AND.TT.LT.
TEþDTE)THEN
SOMTP¼SOMTPþ0.5*AX*AX
ENDIF
ENDDO

SOMS¼0
SOMSP¼0

c the following loop considers all the harmonics of the Fourier series
c at point A, and sums the square amplitude of those whose angular
c frequency falls in (O,OþDOM) and angle theta falls in (TE,TEþDTE)

DO N¼1,IMA
AX¼AIV(N)
OO¼OVF(N)
TT¼TETV(N)
IF(TT.EQ.999)GO TO 888
SOMS¼SOMSþ0.5*AX*AX
IF(OO.GT.O.AND.OO.LT.OþDOM.AND.TT.GT.TE.AND.TT.LT.
TEþDTE)THEN
SOMSP¼SOMSPþ0.5*AX*AX
ENDIF

888 CONTINUE
ENDDO
RT¼100.*SOMTP/SOMT
RS¼100.*SOMSP/SOMS

c RT represents the percent energy of the actual spectrum on the
c domain (O,OþDOM),(TE,TEþDTE)
c Rs represents the percent energy of the output spectrum on the
c domain (O,OþDOM),(TE,TEþDTE)

OO1¼O
OO2¼OþDOM
TT1¼TE
TT2¼TEþDTE
WRITE(6,7000)OO1,OO2,TT1,TT2,RT,RS
WRITE(65,7000)OO1,OO2,TT1,TT2,RT,RS

7000 FORMAT(2X,F7.2,1X,F7.2,2X,F6.0,1X,F6.0,1X,F6.1,1X,F6.1)
GO TO 140

160 CONTINUE
WRITE(6,*)
WRITE(6,*)’READ FILE OUTSP’
END
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6.6.5 Function WLENGTH
In order to speed up calculation it is convenient to resort to the equation

L ¼
�
1� 2p

6
d

L0

� ffiffiffiffiffi
gd

p
T (6.67)

which yields the wavelength with an error within the 0.25% on the range d/
L0< 0.20 (see Boccotti, 2000, Section 1.5.5). The following
function applies to Eqn (6.67) if d/L0< 0.20 and sequence (1.25) if d/
L0> 0.20.

FUNCTION WLENGTH(D,T)
PG¼3.141592
DPG¼2.*PG
RL0¼(9.8/DPG)*T*T
DL0¼D/RL0
IF(DL0.LT.0.20)THEN
RL¼(1-(DPG/6)*(D/RL0))*SQRT(9.8*D)*T
ELSE
RLP¼RL0

144 RL¼RL0*TANH(DPG*D/RLP)
TEST¼ABS(RL-RLP)/RL
RLP¼RL
IF(TEST.GT.2.5E-3)GO TO 144
ENDIF
WLENGTH¼RL
RETURN
END

6.7 WORKED EXAMPLE OF OBTAINING A
DIRECTIONAL SPECTRUM

A directional spectrum consists of three distinct prisms (NK ¼ 3) with the
characteristics given in Table 6.1.

Table 6.1 Worked Example: The Directional Spectrum Consists of
Three Prisms with These Characteristics

u1

(rad/s)
u2

(rad/s)
q1
(degrees)

q2
(degrees)

Percent Wave
Energy

1 0.4 0.6 0 20 30%

2 1.0 1.2 60 80 40%

3 1.4 1.6 �140 �120 30%

6.7 Worked Example of Obtaining a Directional Spectrum 137



Program TESTDS reads file DOMAINS that contains the data of this table
as well as the number of frequencies ui and angles qi to be used for the
numerical simulation. File DOMAINS used here is the following:

A numerical simulation of a sea state on 100 m water depth with this spec-
trum is performed with the first part of program TESTDS. Then, with a
DWR of 20 min and a sampling rate of 0.4 s (NMAX¼ 3001), by means
of subroutines FOUR, SDI, and SDIR we obtain the directional spectrum
represented in Fig. 6.3(a). With a DWR of 10 h we obtain the directional
spectrum of Fig. 6.3(b). The share of wave energy whose direction remains
indeterminate is equal to 5$10�4 with the DWR of 20 min, and is reduced to
about 10�5 with the DWR of 10 h.

What counts is that, even with the DWR of 20 min, we are able to catch the
essential features of the directional spectrum: the energy of the actual spectrum
is distributed (30%, 40%, and 30%, respectively) on three domains of (0.2 rad/
s$20�), and the energy of the spectrum obtained from the time records, on
these domains, is 28%, 40%, and 25%, respectively. With the DWR of
10 h, the directional spectrum calculated proves to be close to the actual one.

Note that if one is given the values of the four integrals on the LHS of Eqns
(6.27) and (6.30e6.32), as with the classic method, one can obtain only the
first and the second angular harmonic components of the directional distri-
bution. Here, the D(q;u) is a rectangle and requires a greater number of
angular harmonic components to be satisfactorily approximated (see
Fig. 6.4). Thus we may realize why the classic method needs some further
informations, besides the values of the four aforementioned integrals. These
additional informations must concern the very shape of the directional distri-
bution. In our particular case, one should a priori know that this distribution
has a rectangular shape.

Note that the result of program TESTDS is given in file OUTSP wherein the
first two columns give the range of u in rad/s, the 3rd and the 4th columns
give the range of q in degree, the 5th and the 6th columns give the percentage
of the energy of the spectrum. The 5th column is for the actual spectrum, the
6th column is for the spectrum obtained with the new method. Note that the
actual spectrum is obtained with the ai, ui, and qi used for the numerical
simulation (as such it may somewhat differ from the given spectrum). The

File DOMAINS
0.4 0.6 0 20 0.30 1040 40

1.0 1.2 60 80 0.40 1120 40

1.4 1.6 �140 �120 0.30 1026 38
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n FIGURE 6.3 Worked example: (a) result obtained with a 20 min DWR; (b) result obtained with a
10 h DWR; (c) the given directional spectrum.
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n FIGURE 6.4 The directional distribution of the first wave family of the directional spectrum of the worked example, and what is obtained with some
increasing number of angular harmonic components.
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inputs from console for Fig. 6.3(a) and (b) were: O1¼0, O2¼2, DOM¼0.05;
TE1¼�180, TE2¼180, DTE¼5. For obtaining the energy content on rect-
angles of 0.2 rad � 20�, DOM and DTE must be changed, respectively,
into 0.2 and 20.

6.8 CONCLUSION
The classic method (Eqns (6.27) and (6.30)e(6.32)) does not enable us to
discover the form of the actual spectrum, starting from some time series
data. In particular, the classic method does not enable us to discover that
the directional spectrum of a sea state is that of Fig. 6.3(c). Besides time
series data, the classic method needs some general information on the config-
uration of the directional distribution to be found. With wind seas, this infor-
mation consists of the Cartwright equation; that is, the directional
distribution is expected to have the general form (Eqn (6.33)). The new
method (Eqns (6.49)e(6.51) and (6.59)e(6.62)) does not need this kind
of information, and can work with only the time series data at three points
(two points in the proximity of a coast). It succeeds in discovering the
configuration of the directional spectrum without receiving any clue on
this configuration, as we have seen in the worked example. However, this
capability has been proven only in sea states consisting of families of waves
with generally distinct directions provided that these families have also some
distinct ranges of frequencies (as with the case of Fig. 6.3). With a typical
DWR (20 min for a full-scale sea state), I have always found that the new
method is able to yield an essential overall picture of the directional spec-
trum of this kind of sea state. Having the original FORTRAN program avail-
able, the reader is invited to check and deepen this conclusion.

Obtaining the directional spectrum near a coast with the new method was
the object of an SSFE described by Boccotti et al. (2011).

The classic approach based on the work of Longuet-Higgins et al. (1963)
and Cartwright (1963) is correctly developed from Eqn (6.8) of the random
surface elevation. However, the fact that the output is D(q;ui) may be
misleading and may suggest the idea of a variety of angles with a unique
frequency; that is, the idea of a surface elevation having the form

hðx; y; tÞ ¼
XN
i¼ 1

XM
j¼ 1

aij cos
�
kix sin qj þ kiy cos qj � uit þ εij

�
(6.68)

in place of the form of Eqn (6.8). Whether or not the cause is in the approach
to the directional spectrum, it is a matter of fact that form (Eqn (6.68)) is
disseminated in the literature (cf. Eqn (22) of Massel and Brinkman
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(1998), or Eqns (3.1) and (3.2) of Jensen (2005)). Here, pay attention: wave
field (Eqn (6.68)) does not comply with the condition of spatial homogene-
ity. Indeed, the variance of the surface elevation proves to be



h2ðtÞ� ¼

XN
i¼ 1

XM
j¼ 1

a2ij
2
þ
XN
i¼ 1

XM
j¼ 1

XM
k¼ 1
ksj

aijaik
2

cos
�
kix sin qj þ kiy cos qj

þ εij � kix sin qk � kiy cos qk � εik

� (6.69)

And, as such, it is a random function of x, y.
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7.1 CROSS-COVARIANCES: HOMOGENEOUS
RANDOM WAVE FIELD

The quasi-determinism (QD) theory uses the cross-covariance of the surface
elevation:

JðX; Y; T ; xo; yoÞh hhðxo; yo; tÞhðxo þ X; yo þ Y ; t þ TÞi (7.1)

With Eqn (6.8) of h(x,y,t) we have

JðX; Y; T; xo; yoÞ ¼
XN
i¼ 1

XN
j¼ 1

aiaj
�
cos ðAiðtÞÞcos

�
AjðtÞ þ Bj

��
(7.2)

where we have resorted to the compact notations

*These Complements Are Needed for the QD Theory.
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AiðtÞ ¼ kixo sin qi þ kiyo cos qi � uit (7.3)

Bj ¼ kjX sin qj þ kjY cos qj � ujT (7.4)

The average in Eqn (7.2) may be rewritten in the form

h:i ¼ �
cos ðAiðtÞÞcos

�
AjðtÞ

�
cos Bj

�� �
cos ðAiðtÞÞsin

�
AjðtÞ

�
sin Bj

�
(7.5)

The second average on the right-hand side (RHS) of Eqn (7.5) is zero
whichever the i, j; the first average is zero if is j, and is equal to 0.5
cos Bi if i¼ j. Hence, Eqn (7.2) is reduced to

JðX; Y; T; xo; yoÞ ¼
XN
i¼ 1

1
2
a2i cos Bi (7.6)

and replacing Bi with its expression (Eqn 7.4):

JðX; Y; T; xo; yoÞ ¼
XN
i¼ 1

1
2
a2i cos ðkiX sin qi þ kiY cos qi � uiTÞ (7.7)

With the definition Eqn (6.13) of directional spectrum this becomes

JðX; Y ; T; xo; yoÞ ¼
ZN
0

Z2p
0

Sðu; qÞcos ðkX sin qþ kY cos q� uTÞdqdu

(7.8)

The QD theory also uses the cross-covariance of the surface elevation and
the velocity potential:

FðX; Y; z; T ; xo; yoÞh hhðxo; yo; tÞfðxo þ X; yo þ Y; z; t þ TÞi (7.9)

On replacing h with its expression (6.8) and f with its expression (6.9), and
doing essentially the same steps as we have done for J, we arrive at

FðX; Y; z; T; xo; yoÞ ¼ g

ZN
0

Z2p
0

Sðu; qÞu�1cosh ½kðd þ zÞ�
cosh ðkdÞ

� sin ðkX sin qþ kY cos q� uTÞdqdu
(7.10)

7.2 SEA STATES NONHOMOGENEOUS IN SPACE
7.2.1 Sea States Near Breakwaters
The surface elevation h(x,y,t) and the velocity potential f(x,y,z,t) of a peri-
odic wave before a vertical reflecting wall are given by Eqns (1.68, 1.69).
Hence, h and f of a sea state, which is the sum of a very large number N
of small periodic waves, are given by
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hðx; y; tÞ ¼ 2
XN
i¼ 1

ai cos ðkix sin qi � uit þ εiÞcos ðkiy cos qiÞ (7.11)

fðx; y; z; tÞ ¼ 2g
XN
i¼ 1

aiu
�1
i

cosh ½kiðd þ zÞ�
cosh ðkidÞ

� sin ðkix sin qi � uit þ εiÞcos ðkiy cos qiÞ
(7.12)

In other words: if we put a vertical reflecting wall in the plane y¼ 0,
the random wave field Eqns (6.8, 6.9) take on the form Eqns (7.11)
and (7.12).

If we put a semi-infinite vertical wall in the plane y¼ 0, with the origin at
x¼ 0, the wave field Eqns (6.8, 6.9) becomes

hðr; b; tÞ ¼
XN
i¼ 1

ai½Fðr; b;ui; qiÞcos ðuit þ εiÞ þ Gðr; b;ui; qiÞsin ðuit þ εiÞ�

(7.13)

fðr; b; z; tÞ ¼ g
XN
i¼ 1

aiu
�1
i

cosh ½kiðd þ zÞ�
cosh ðkidÞ ½Gðr; b;ui; qiÞcos ðuit þ εiÞ

� Fðr; b;ui; qiÞsin ðuit þ εiÞ�
(7.14)

where r and b are the polar coordinates (see the definition sketch of Fig. 1.8).
The ith terms of these two summations represent the flow field due to an inci-
dent wave of amplitude ai, frequency ui, phase εi, whose direction makes an
angle qi with the y-axis. The functions F(r,b;u,q) and G(r,b;u,q) were
defined in Section 1.8.1.

The surface elevation at every fixed point of both wave fields Eqns (7.11)
and (7.13) represents a stationary Gaussian process (as usually, the proof
exploits the assumptions on the ai, ui, εi, and N). A big novelty with respect
to the random wave field Eqn (6.8) in the open sea is that here the wave field
is no longer homogeneous in space. It is nonhomogeneous because of the
diffraction induced by the breakwater. Indeed, the variance of the surface
elevation of wave field Eqn (7.11) is

s2ðyÞ ¼ 4
XN
i¼ 1

1
2
a2i cos

2 ðkiy cos qiÞ (7.15)

and the variance of wave field Eqn (7.13) is

s2ðr; bÞ ¼
XN
i¼ 1

1
2
a2i
�
F2ðr; b;ui; qiÞ þ G2ðr; b;ui; qiÞ

�
(7.16)
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7.2.2 Diffraction Coefficients before a Long Upright
Breakwater

With the definition of directional spectrum, Eqn (7.15) may be rewritten in
the form

s2ðyÞ ¼ 4
ZN
0

Z2p
0

Sðu; qÞcos2 ðky cos qÞdqdu (7.17)

Figure 7.1 shows the function s2(y)/s2(0) obtained by means of Eqn (7.17)
with a characteristic spectrum of wind seas for the case of orthogonal wave
attack (i.e., the dominant direction of the incident waves is orthogonal to the
wall). For a comparison, the figure shows also

s2ðyÞ
s2ð0Þ ¼ cos2

�
2p

y

L

	
(7.18)

of the periodic waves (for the same condition of wave attack orthogonal to
the wall).

As we may see, the difference between wind seas and periodic waves is
great. The variance of the periodic waves fluctuates between maxima equal
to the maximum at the wall and minima equal to zero, and the fluctuations
go on as far as an infinite distance from the wall. The variance of the wind-
generated waves is a damped oscillatory function of the distance from the

n FIGURE 7.1 Variance of the surface elevation as a function of the distance from the wall for an
orthogonal wave attack.
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wall; and, at only one or two wavelengths from the wall, it approaches a
constant value being equal to half of the value at the wall.

The diffraction coefficient Cd of the waves interacting with some solid
obstacle is defined as the ratio between the root mean square (RMS) surface
elevation at a given point and the RMS surface elevation of the incident
waves (for the periodic waves, Cd coincides with the ratio between
the wave height at the given point and the height of the incident waves, as
we saw in Chapter 1). In the case of the long breakwater it is convenient
to write

CdðyÞhsðyÞ
s

¼ sðyÞ
sð0Þ

sð0Þ
s

(7.19)

where s is the RMS surface elevation of the wave field Eqn (6.8) that would
be there without the wall. Indeed, the quotient sð0Þ=s is equal to 2 for
whichever be the spectrum, and hence we have the relationship

CdðyÞ ¼ 2
sðyÞ
sð0Þ (7.20)

that enables us to deduce Cd from the function s2ðyÞ=s2ð0Þ of Fig. 7.1. At
the wall Cd is equal to 2, and starting on about one wavelength from the wall,

approaches 2
ffiffi
1
2

q
¼ ffiffiffi

2
p

.

7.2.3 Diffraction Coefficients in the Lee of an
Upright Breakwater

With the definition of directional spectrum, Eqn (7.16) of the variance of the
surface elevation becomes

s2ðr; bÞ ¼
ZN
0

Z2p
0

Sðu; qÞ�F2ðr; b;u; qÞ þ G2ðr; b;u; qÞ�dqdu (7.21)

and hence the diffraction coefficient is given by

Cdðr; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRN

0

R 2p
0 Sðu; qÞ½F2ðr; b;u; qÞ þ G2ðr; b;u; qÞ�dqduRN

0

R 2p
0 Sðu; qÞdqdu

vuut (7.22)

Figure 7.2 shows the values of Cd for a case of an orthogonal attack ðqd ¼ 0Þ
and for the case of an inclined attack ðqd ¼ 45�Þ. This figure should be
compared with Fig. 1.10. The comparison shows that:

1. in the more sheltered area of the geometric shadow the Cd of a wind
sea is practically coincident with the Cd of the periodic waves;
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2. within the dark area of the geometric shadow (see Fig. 7.2) the Cd of
the wind sea is at least 50% greater than the Cd of the periodic waves;

3. along the wave-beaten wall, the Cd of the wind sea settles on the con-
stant value 2 at a short distance from the breakwater’s tip, while the
Cd of the periodic waves exhibits an infinite sequence of local maxima
greater than 2 and local minima smaller than 2.

n FIGURE 7.2 Diffraction coefficient of wind seas (mean JONSWAP spectrum, directional distribution of Mitsuyasu et al. with np¼ 20). Comparing this figure
with Fig. 1.10, it may be noted that the Cd of the wind seas, in the dark areas, is at least 50% greater than the Cd of the periodic waves.
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It is apparent that the really important matter is point (2) above; that is, the
large difference between the Cd of wind seas and the Cd of periodic waves in
the “dark area” in the lee of a breakwater.

7.3 CROSS-COVARIANCES: NONHOMOGENEOUS
RANDOM WAVE FIELDS

7.3.1 Before a Long Upright Breakwater
For obtaining J for a sea state before a long breakwater, h in Eqn (7.1)
must be replaced by its Eqn (7.11), and the result may be written in the form

JðX; Y ; T; xo; yoÞ ¼ 4
XN
i¼ 1

XN
j¼ 1

aiajCiDj

�
cos ðAiðtÞÞcos

�
AjðtÞ þ Bj

��
(7.23)

with the definitions

Ci ¼ cos ðkiyo cos qiÞ (7.24)

Di ¼ cos ½kiðyo þ YÞcos qi� (7.25)

AiðtÞ ¼ kix sin qi � uit þ εi (7.26)

Bi ¼ kiX sin qi � uiT (7.27)

The average on the RHS of Eqn (7.23) is equal to 0.5 cos Bi if i¼ j and
otherwise is zero, so that

JðX; Y ; T; xo; yoÞ ¼ 4
XN
i¼ 1

1
2
a2i CiDi cos Bi (7.28)

and, with the definition of directional spectrum,

JðX; Y; T ; xo; yoÞ ¼ 4
ZN
0

Z2p
0

Sðu; qÞcos ðkyo cos qÞcos ½kðyo þ YÞcos q�

$cos ðkX sin q� uTÞdqdu
(7.29)

With the same sequence of steps we obtain the expression of F for the wave
field before the long breakwater; we have to replace h with its Eqn (7.11)
and f with Eqn (7.12) in Eqn (7.9), with the result:

FðX; Y; z; T ; xo; yoÞ ¼ 4g
ZN
0

Z2p
0

Sðu; qÞu�1cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðkyo cos qÞ

$cos ½kðyo þ YÞcos q�sin ðkX sin q� uTÞdqdu
(7.30)
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7.3.2 In the Lee of an Upright Breakwater
For the wave field Eqn (7.13) we must work with polar coordinates, and
hence the definitions of J and F are slightly different.

We have

JðR; b; T; ro; boÞh hhðro; bo; tÞhðR; b; t þ TÞi (7.31)

(see Fig. 7.3), so that Eqn (7.13) of h(r,b,t) yields

JðR; b; T; ro; boÞh
XN
i¼ 1

XN
j¼ 1

aiaj
�½Foi cos ðAiðtÞÞ þ Goi sin ðAiðtÞÞ�

$
�
Fj cos

�
AjðtÞ þ Bj

�þ Gj sin
�
AjðtÞ þ Bj

��� (7.32)

where

Foi ¼ Fðro; bo;ui; qiÞ (7.33)

Goi ¼ Gðro; bo;ui; qiÞ (7.34)

Fi ¼ FðR; b;ui; qiÞ (7.35)

Gi ¼ GðR; b;ui; qiÞ (7.36)

AiðtÞ ¼ uit þ εi (7.37)

Bi ¼ uiT (7.38)

The average on the RHS of Eqn (7.32) is equal to zero if is j, and is

h:i ¼ 1
2
ðFoiFi þ GoiGiÞcos ðBiÞ þ 1

2
ðFoiGi � GoiFiÞsin ðBiÞ (7.39)

n FIGURE 7.3 Reference scheme for the cross-covariance in polar coordinates.

152 CHAPTER 7 Complements of SpaceeTime Theory of Sea States



if i¼ j. Hence Eqn (7.32) is reduced to

JðR; b; T; ro; boÞh
XN
i¼ 1

1
2
a2i ½ðFoiFi þ GoiGiÞcos ðBiÞ

þ ðFoiGi � GoiFiÞsin ðBiÞ�
(7.40)

and, with the definition of directional spectrum:

JðR; b; T; ro; boÞ ¼
ZN
0

Z2p
0

Sðu; qÞf½Fðro; bo;u; qÞFðR; b;u; qÞ

þ Gðro; bo;u; qÞ$GðR; b;u; qÞ�cos ðuTÞ
þ ½Fðro; bo;u; qÞGðR; b;u; qÞ
� Gðro; bo;u; qÞFðR; b;u; qÞ�$sin ðuTÞgdqdu (7.41)

Similarly, we obtain

FðR; b; z; T; ro; boÞ ¼ g
ZN
0

Z2p
0

Sðu; qÞu�1cosh ½kðd þ zÞ�
cosh ðkdÞ

f� ½Fðro; bo;u; qÞFðR; b;u; qÞ
þ Gðro; bo;u; qÞGðR; b;u; qÞ�sin ðuTÞ
þ ½Fðro; bo;u; qÞGðR; b;u; qÞ
� Gðro; bo;u; qÞ$FðR; b;u; qÞ�cos ðuTÞgdqdu

(7.42)

7.3.3 Cross-correlation of the Surface Elevation
In the deduction of the QD theory (Chapter 8) it is convenient to resort to
the cross-correlation, defined as

bJðX; Y ; T; xo; yoÞh hbhðxo; yo; tÞbhðxo þ X; yo þ Y; t þ TÞi (7.43)

where

bhðx; y; tÞ ¼ hðx; y; tÞ
sðx; yÞ (7.44)

bJ ranges from �1 to 1. It is �1 or 1, respectively, if for every t

hðxo þ X; yo þ Y; t þ TÞ ¼ �Khðxo; yo; tÞ (7.45)

or

hðxo þ X; yo þ Y; t þ TÞ ¼ Khðxo; yo; tÞ (7.46)

where K is any positive constant. If h(xoþ X,yoþ Y,tþ T) is stochastically
independent from h(xo,yo,t), bJ is 0.
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7.4 MAXIMUM EXPECTED WAVE HEIGHT IN
A NONHOMOGENEOUS SEA STATE

Preliminarily it is convenient rewriting Eqn (4.61) in the form

Hmax ¼ s

ZN
0

�
1�

�
1� K1 exp


� u2

K2

��N�
du (7.47)

where the dimensional variable H has been replaced by u¼H/s. For a
nonhomogeneous wave field, like Eqn (7.11) or (7.13), where the RMS sur-
face elevation and the spectrum vary in general from one point to another,
Eqn (7.47) may be reproposed in the form

Hmaxðx; yÞ ¼ Cdðx; yÞ s
ZN
0

�
1�

�
1� K1ðx; yÞexp


� u2

K2ðx; yÞ
��N�

du

(7.48)

where s is the RMS surface elevation of the incident waves. Calculations
show that usually

Hmaxðx; yÞyCdðx; yÞ Hmax (7.49)

7.5 CONCLUSION
The diffraction coefficient of a random wave field is generally obtained with
the equation

Cdðx; yÞ ¼
0@ZN

0

Z2p
0

Sðu; qÞ C2
dðx; y;u; qÞdqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu
1A1=2

(7.50)

where Cd(x,y;u,q) is the diffraction coefficient of a periodic wave wherein u
is the angular frequency and q is the angle between the direction and y-axis.
Probably the first application of this equation was due to Goda et al. (1978).
It was a nice application to port engineering. Equation (7.50) implies that, for
obtaining the diffraction coefficient of a random nonhomogeneous wave
field, it is sufficient to know the directional spectrum of the incident waves
and diffraction coefficients of periodic unidirectional waves. In other words,
it is not necessary to work with functions of surface elevation like Eqns
(7.11)e(7.14). However, this kind of work becomes necessary in view of
the application of the QD theory. Indeed, as we shall see in the next chapters,
the QD theory calls for the cross-covariances J and F. The first time this
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work was done is presumed to be in my paper (1988). Then this work was
done by Filianoti (see Filianoti, 2000) for the case of the detached break-
water and the breakwater gap.
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8.1 THE NECESSARY AND SUFFICIENT CONDITION
FOR THE OCCURRENCE OF A WAVE CREST
OF GIVEN VERY LARGE HEIGHT

The condition

hðtoÞ ¼ b (8.1)

where to is a given time instant and b is a given positive value, in the limit as
b/s/N, and is not only necessary but also sufficient in probability for the
occurrence of a wave crest of given height b. (“A is sufficient in probability
for the occurrence of B” means that “given A, the probability approaches 1
that B occurs.”)
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Copyright © 2015 Elsevier Inc. All rights reserved. 157
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Actually, the necessary and sufficient condition in probability is

hðtoÞ ¼ b; _hðtoÞ ¼ 0 (8.2)

However, the reasoning we are going to do is the same whether starting
from condition (8.1) or from condition (8.2), and the conclusion is exactly
the same. The advantage in dealing with condition (8.1) rather than with con-
dition (8.2) is that one works with a 2� 2 covariance matrix rather than
3� 3, so the mathematical steps are lighter.

In order to prove that condition (8.1) is sufficient, let us consider the condi-
tional probability of the surface elevation at any fixed time instant toþ T
given condition (8.1). We have

p½hðto þ TÞ ¼ ujhðtoÞ ¼ b� ¼ p½hðtoÞ ¼ b; hðto þ TÞ ¼ u�
p½hðtoÞ ¼ b� (8.3)

From Section 4.2 we know that

p½hðtoÞ ¼ b; hðto þ TÞ ¼ u�

¼ 1

2p
ffiffiffiffiffi
M

p exp

�
� 1
2M

�
M11b

2 þ 2M12buþM22u
2
��

(8.4)

p½hðtoÞ ¼ b� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pm0

p exp

�
� b2

2m0

�
(8.5)

Hence, it follows that

p½hðto þ TÞ ¼ ujhðtoÞ ¼ b� ¼
ffiffiffiffiffiffiffiffiffiffi
m0

2pM

r
exp½FðuÞ� (8.6)

where F(u) denotes the function

FðuÞ ¼ � 1
2M

�
M11b

2 þ 2M12buþM22u
2
�þ b2

2m0
(8.7)

which may be rewritten in the form

FðuÞ ¼ �M22

2M
ðu� umÞ2 þ FðumÞ (8.8)

where um is the abscissa of the maximum:

um ¼ �M12

M22
b (8.9)

(The determinant and the i,i cofactors of a covariance matrix are positive,
and this is why we have concluded that the function F(u) has a maximum.)
From Eqns (8.6) and (8.8) we get

p½hðto þ TÞ ¼ ujhðtoÞ ¼ b� ¼
ffiffiffiffiffiffiffiffiffiffi
m0

2pM

r
exp½FðumÞ�exp

�
�M22

2M
ðu� umÞ2

�
(8.10)
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Now let us obtain the cofactorsMij and the determinantM. The random vari-
ables here are h(to) and h(toþ T) and hence the covariance matrix is

CM ¼
�

m0 jðTÞ
jðTÞ m0

�
(8.11)

so that

M11 ¼ m0; M22 ¼ m0; M12 ¼ �jðTÞ; M ¼ m2
0 � j2ðTÞ (8.12)

Here, it can be proven that F(um)¼ 0. However, this proof is not strictly
necessary for our goal, so that we limit ourselves to note that the random
variable h(toþ T), given condition (8.1), has the following:

CONDITIONAL AVERAGE ¼ um (8.13)

CONDITIONAL STANDARD DEVIATION ¼
ffiffiffiffiffiffiffiffi
M

M22

r
(8.14)

which implies

CONDITIONAL AVERAGE ¼ jðTÞ
jð0Þ b (8.15)

CONDITIONAL STANDARD DEVIATION < s (8.16)

The conditional average is a deterministic function of T; that is,

hðto þ TÞ ¼ jðTÞ
jð0Þ b (8.17)

Since the standard deviation of the random surface elevation with respect to
this deterministic function is smaller than s, the random function h(toþ T) is
asymptotically equal to the deterministic function hðto þ TÞ, if b/s tends to
infinity. Finally, given that hðto þ TÞ has its absolute maximum at to, and
this maximum is b, we conclude that condition (8.1) is sufficient for the
occurrence of a wave crest of given height b, if b/s/N.

8.2 A SUFFICIENT CONDITION FOR THE
OCCURRENCE OF A WAVE OF GIVEN
VERY LARGE HEIGHT

The condition

hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2
(8.18)

where to is a given time instant and H is a given positive value, in the limit as
H/s/N is sufficient and necessary in probability for the occurrence of a
wave of given height H. Actually, this is not exactly the sufficient and neces-
sary condition in probability. As to being sufficient: given condition (8.18)
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(with H/s/N) the probability approaches 1 to have the occurrence of a
wave height H plus a very small random difference of order (H/s)�1s. As
to being necessary: given a very large wave height H, the probability ap-
proaches 1 that the following occur:

hðtoÞ ¼
�
1
2
þ dx

�
H; hðto þ T�Þ ¼

�
�1
2
þ dx

�
H (8.19)

with dx being a very small random difference of order (H/s)�1. However,
these very small random differences are negligible for the conclusions of
this chapter. (They become nonnegligible in the problem of the probability
of wave heights leading to Eqn (4.44). Sections 9.7e9.10 of a previous book
by the author (2000) may serve to deepen this item.)

In order to prove that condition (8.18) is sufficient, let us consider the con-
ditional probability of the surface elevation at any fixed time instant toþ T
given condition (8.18). We have

p

�
hðto þ TÞ ¼ u

			hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2

�

¼
p

�
hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2
; hðto þ TÞ ¼ u

�

p

�
hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2

� (8.20)

From Section 4.2 we know that

p

�
hðtoÞ ¼ 1

2
H; hðto þ T�Þ ¼ �1

2
H; hðto þ TÞ ¼ u

�

¼ 1

ð2pÞ3=2
ffiffiffiffiffi
M

p exp



� 1
2M

�
M33u

2 þ 2ðM13 �M23Þ 12Hu

þðM11 þM22 � 2M12Þ 14H
2

��
; (8.21)

p

�
hðtoÞ ¼ 1

2
H; hðto þ T�Þ ¼ �1

2
H

�

¼ 1

2p
ffiffiffiffi
~M

p exp

�
� 1

2 ~M

�
~M11 þ ~M22 � 2 ~M12

� 1
4
H2

�
;

(8.22)

where Mij and M are the i,j cofactor and the determinant of the covariance
matrix of h(to), hðto þ T�Þ, h(toþ T); that is,

CM ¼

0
B@

jð0Þ jðT�Þ jðTÞ
jðT�Þ jð0Þ jðT � T�Þ
jðTÞ jðT � T�Þ jð0Þ

1
CA; (8.23)
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and ~Mij and ~M are the i,j cofactor and the determinant of the covariance ma-
trix of h(to), hðto þ T�Þ. (Note that ~M is equal toM33.) Hence, it follows that

p

�
hðto þ TÞ ¼ u

			hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2

�
¼

ffiffiffiffiffiffiffiffiffiffi
M33

2pM

r
exp½FðuÞ�

(8.24)

where F(u) here denotes the function

FðuÞ ¼ � 1
2M

�
M33u

2 þ 2ðM13 �M23Þ 12Huþ ðM11 þM22 � 2M12Þ 14H
2

� M

M33

�
~M11 þ ~M22 � 2 ~M12

�H2

4

�
(8.25)

which may be rewritten in the form

FðuÞ ¼ �M33

2M
ðu� umÞ2 þ FðumÞ (8.26)

where um is the abscissa of the maximum:

um ¼ M23 �M13

M33

H

2
(8.27)

From Eqns (8.24) and (8.26) we get

p

�
hðto þ TÞ ¼ u

			hðtoÞ ¼ H

2
; hðto þ T�Þ ¼ �H

2

�

¼
ffiffiffiffiffiffiffiffiffiffi
M33

2pM

r
exp½FðumÞ�$exp

�
�M33

2M
ðu� umÞ2

� (8.28)

Now let us obtain the cofactors Mij and the determinant M of the covariance
matrix Eqn (8.23). When dealing with large covariance matrices it is conve-
nient to resort to some compact symbols for the entries of these matrices. In
this case let us define

a ¼ jð0Þ; b ¼ jðT�Þ; c ¼ jðTÞ; d ¼ jðT � T�Þ (8.29)

so that the covariance matrix and the relevant cofactors are reduced to

CM ¼
0
@ a b c

b a d
c d a

1
A (8.30)

M11 ¼ a2 � d2 (8.31)

M12 ¼ cd � ab (8.32)

M13 ¼ bd � ac (8.33)

M23 ¼ bc� ad (8.34)
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M33 ¼ a2 � b2 (8.35)

M ¼ a
�
a2 � d2

�þ bðcd � abÞ þ cðbd � acÞ (8.36)

Here, it can be proven that F(um)¼ 0. However, this proof is not strictly
necessary for our goal, so that we limit ourselves to note that the random var-
iable h(toþ T), given condition (8.18), has

CONDITIONAL AVERAGE ¼ um (8.37)

CONDITIONAL STANDARD DEVIATION ¼
ffiffiffiffiffiffiffiffi
M

M33

r
(8.38)

which implies

CONDITIONAL AVERAGE ¼ c� d

a� b

H

2
(8.39)

CONDITIONAL STANDARD DEVIATION < s (8.40)

Later we shall prove the inequality Eqn (8.40).

The conditional average is a deterministic function of T, that is,

hðto þ TÞ ¼ jðTÞ � jðT � T�Þ
jð0Þ � jðT�Þ

H

2
(8.41)

Since the standard deviation of the random surface elevation with respect to
this deterministic function is smaller than s, the random function h(toþ T) is
asymptotically equal to the deterministic function hðto þ TÞ, if H/s tends to
infinity. Since

1. hðto þ TÞ has its absolute maximum at to, and this maximum is H/2;
2. hðto þ TÞ has its absolute minimum at to þ T�, and this minimum is

�H/2.

we conclude that condition (8.18) is sufficient for the occurrence of a
wave of given height H, if H/s/N. This is provided that the wave
crest at to and the wave trough at to þ T� in the deterministic wave
hðto þ TÞ are the crest and trough of the same wave. Whether or not
this condition is satisfied depends on the shape of the spectrum.
This condition is satisfied with characteristic spectra of wind seas like
JONSWAP or Pierson and Moskowitz.

It remains to prove the inequality Eqn (8.40). We must prove that

aða2 � d2Þ þ bðcd � abÞ þ cðbd � acÞ
a2 � b2

< a (8.42)
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This may be rewritten in the form

a

2
641� c2 þ d2 � 2cd

�
b
a


a2 � b2

3
75 < a (8.43)

that is proven if we succeed in proving that

c2 þ d2 � 2cd

�
b

a

�
> 0 (8.44)

Here we note that

�1 <
b

a
< 0 (8.45)

(b/a being the ratio between the absolute minimum and the absolute
maximum of the autocovariance); as to the product cd it may be either pos-
itive or negative (according to the value of T). If cd> 0, the inequality is
satisfied because the term �2cd(b/a) is greater than zero. If cd< 0 it follows
that

c2 þ d2 � 2cd

�
b

a

�
> c2 þ d2 þ 2cd ¼ ðcþ dÞ2 > 0 (8.46)

which completes the proof.

8.3 A NECESSARY CONDITION FOR THE
OCCURRENCE OF A WAVE OF GIVEN
VERY LARGE HEIGHT

We shall prove that condition (8.18) is necessary in probability for the
occurrence of a wave of given height H, as H/s/N.

8.3.1 General Necessary Condition
A general necessary condition for the occurrence of a wave of given height
H is that the surface elevation is xH, with x in (0,1), at a time instant to, and is
ðx� 1ÞH at a later time instant toþ T (to being the instant of the wave crest
and toþ T the instant of the wave trough). The mathematical form of this
general necessary condition is

hðtoÞ ¼ xH; hðto þ TÞ ¼ ðx� 1ÞH with 0 < x < 1 (8.47)

For focusing the general necessary condition, look at Fig. 4.4(a) (see
Chapter 4), which shows two waves with a fixed height H and different
values of x and T(¼s).
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8.3.2 The Probability P(H,T,x)
Let us consider the probability that the surface elevation at an instant to falls
between

xH and xH þ dh1

and, at a later time toþ T, falls between

ðx� 1ÞH and ðx� 1ÞH þ dh2

to, H, T, x being arbitrarily fixed, and dh1, dh2 being two fixed small inter-
vals. The probability under examination is given by

PðH; T; xÞ ¼ 1

2p
ffiffiffiffiffi
M

p $exp



� 1
2M

�
M11x

2H2 þM22ðx� 1Þ2H2

þ 2M12xðx� 1ÞH2
��

dh1dh2

(8.48)

Here Mij and M are, respectively, the i,j cofactor and the determinant of the
covariance matrix of h(to) and h(toþ T):

CM ¼
�
jð0Þ jðTÞ
jðTÞ jð0Þ

�
(8.49)

It is convenient to resort to the compact symbols

a ¼ jð0Þ; c ¼ jðTÞ (8.50)

with which matrix and cofactors get the form

CM ¼
�
a c
c a

�
(8.51)

M11 ¼ a; M22 ¼ a; M12 ¼ �c; M ¼ a2 � c2 (8.52)

Let us rewrite Eqn (8.48) in the compact form

PðH; T ; xÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

p exp

"
� 0:5f ðT; xÞ

�
H

s

�2
#
dh1dh2 (8.53)

where

f ðT ; xÞ ¼ a
�
ax2 þ aðx� 1Þ2 � 2cxðx� 1Þ�

a2 � c2
(8.54)

Let us develop the terms in the square parentheses on the right-hand side
(RHS). We have

½:� ¼ ð2a� 2cÞx2 � ð2a� 2cÞxþ a (8.55)
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that may be rewritten in the form

½:� ¼ 2ða� cÞðx� 0:5Þ2 þ 0:5ðaþ cÞ (8.56)

that together with Eqn (8.54) yields

f ðT; xÞ ¼ 2aða� cÞðx� 0:5Þ2 þ 0:5aðaþ cÞ
ðaþ cÞða� cÞ (8.57)

This may be rewritten in the form

f ðT ; xÞ ¼ 2a
aþ c

ðx� 0:5Þ2 þ a

2ða� cÞ (8.58)

With the definitions (Eqn (8.50)) of the compact symbols a and c we
arrive at

f ðT ; xÞ ¼ 2
jð0Þ

jð0Þ þ jðTÞ
�
x� 1

2

�2

þ 1
2

jð0Þ
jð0Þ � jðTÞ (8.59)

8.3.3 Analysis of the Function fðT; xÞ
The second term on the RHS of Eqn (8.59), that is to say

1
2

jð0Þ
jð0Þ � jðTÞ

is independent of x, and its absolute minimum on the domain T> 0 occurs at
T ¼ T� (given that T� is the abscissa of the absolute minimum of j(T)). The
first term on the RHS of Eqn (8.59), that is to say

2
jð0Þ

jð0Þ þ jðTÞ
�
x� 1

2

�2

is zero if x ¼ 1
2, and is greater than zero if xs1

2. Therefore, the absolute
minimum of the function f ðT; xÞ for T in (0,N) and x in (�N,N) occurs
at T ¼ T� and x ¼ 1

2.

8.3.4 Condition (8.18) Is Necessary
The fact that the absolute minimum of f ðT; xÞ occurs at T ¼ T�, x ¼ 1

2
implies

PðH; T; xÞ
P
�
H; T�; 12

/0 as H=s/N; (8.60)

for every fixed pair T ; x with TsT� and/or xs1
2. In other words: as

H/s/N, the probability that the surface elevation is xH at an instant to
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and is ðx� 1ÞH at an instant toþ T, for any fixed pair T ; xwith TsT� and/or
xs1

2, is negligible with respect to the probability that the surface elevation is
1
2H at to and is �1

2H at to þ T�. Hence, as H/s/N, condition (8.18)
becomes necessary in probability for the occurrence of a wave of given
height H.

8.4 THE FIRST DETERMINISTIC WAVE FUNCTION
IN SPACE AND TIME

“Given a very large wave crest of height b at a time instant to at a point
xo, yo” is equivalent to given:

hðxo; yo; toÞ ¼ b (8.61)

This is what proceeds from Section 8.1. Here let us consider the conditional
probability of the surface elevation at any fixed point xoþ X, yoþ Y at time
instant toþ T, given condition (8.61). We have

p½hðxo þ X; yo þ Y ; to þ TÞ ¼ ujhðxo; yo; toÞ ¼ b�

¼ p½hðxo; yo; toÞ ¼ b; hðxo þ X; yo þ Y; to þ TÞ ¼ u�
p½hðxo; yo; toÞ ¼ b�

(8.62)

What is most important is that we make no restriction about whether the
wave field is or is not homogeneous in space. For example, the wave field
may be on the open sea, or before a long breakwater, or in the lee of a ver-
tical breakwater.

Given that both h(xo, yo, to) and h(xoþ X, yoþ Y, toþ T) represent stationary
Gaussian processes of time, the steps to be done are the same leading from
Eqns (8.1) to (8.10), and the result is

p½hðxo þ X; yo þ Y; to þ TÞ ¼ ujhðxo; yo; toÞ ¼ b�

¼
ffiffiffiffiffiffiffiffiffiffi
M22

2pM

r
exp

�
�
�
M22

2M

�
ðu� umÞ2

� (8.63)

where

um ¼ �M12

M22
b (8.64)

Now let us obtain the cofactorsMij and the determinantM. The random vari-
ables here are h(xo, yo, to) and h(xoþ X, yoþ Y, toþ T) and hence the covari-
ance matrix is

CM ¼
�

s2ðxo; yoÞ JðX; Y ; T; xo; yoÞ
JðX; Y; T ; xo; yoÞ s2ðxo þ X; yo þ YÞ

�
(8.65)
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We have

M11 ¼ s2ðxo þ X; yo þ YÞ (8.66)

M22 ¼ s2ðxo; yoÞ (8.67)

M12 ¼ �JðX; Y; T; xo; yoÞ (8.68)

M ¼ s2ðxo; yoÞs2ðxo þ X; yo þ YÞ �J2ðX; Y; T; xo; yoÞ (8.69)

The random surface elevation h(xoþ X, yoþ Y, toþ T), given that h(xo, yo,
to)¼ b, has

CONDITIONAL AVERAGE ¼ um (8.70)

CONDITIONAL STANDARD DEVIATION ¼
ffiffiffiffiffiffiffiffi
M

M22

r
(8.71)

which implies

CONDITIONAL AVERAGE ¼ JðX; Y; T; xo; yoÞ
s2ðxo; yoÞ b (8.72)

CONDITIONAL STANDARD DEVIATION < sðxo þ X; yo þ YÞ (8.73)

The conditional average is a deterministic wave function of X, Y, T that may
be rewritten in the form

hðxo þ X; yo þ Y; to þ TÞ ¼ J
_ ðX; Y ; T; xo; yoÞ

�
b

sðxo; yoÞ
�
sðxo þ X; yo þ YÞ

(8.74)

where J
_

is the cross-correlation whose range is (�1,1) (cf. Section 7.3.3).
From Eqn (8.73) we know that the standard deviation of the random surface
elevation with respect to this deterministic function is smaller than s(xoþ X,
yoþ Y). Conclusion: the random surface elevation h(xoþ X, yoþ Y, toþ T)
is asymptotically equal to the deterministic wave function hðxo þ X; yo þ Y ;
to þ TÞ, as b/s(xo, yo) tends to infinity.

It must be pointed out that there is no restriction on the ratio s(xoþ X,
yoþ Y)/s(xo, yo). In particular, xo, yomay be a point in the lee of a breakwater
and xoþ X, yoþ Ymay be a point on the wave-beaten wall of the breakwater,
so that the ratio s(xoþ X, yoþ Y)/s(xo, yo) is very large. Nevertheless, if we
know that at point xo, yo a wave crest occurs with a height b that is excep-
tionally large with respect to the root mean square surface elevation at this
point, we may expect that the surface elevation at xoþ X, yoþ Ywill be close
to a well-defined deterministic wave function given by Eqn (8.74). Hence,
even if the wave crest recorded in the lee is much smaller than the waves
at the outer wall, the fact of having found a wave crest that is exceptionally
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large with respect to the average in the lee will enable us to predict how the
waves are even at the outer wall.

8.5 THE VELOCITY POTENTIAL ASSOCIATED WITH
THE FIRST DETERMINISTIC WAVE FUNCTION
IN SPACE AND TIME

The form (Eqn (8.74)) of the deterministic wave function is effective
for understanding the sense of the QD theory; however, for calculation,
the form

hðxo þ X; yo þ Y; to þ TÞ ¼ JðX; Y ; T; xo; yoÞ
s2ðxo; yoÞ b (8.75)

is more straightforward. Associated with this deterministic wave function is
a distribution of velocity potential in the water, which to the lowest order in
a Stokes expansion is given by

fðxo þ X; yo þ Y; z; to þ TÞ ¼ FðX; Y ; T; z; xo; yoÞ
s2ðxo; yoÞ b (8.76)

The surface elevation (Eqn (8.75)) and the velocity potential (Eqn (8.76))
satisfy the linear flow equations. In particular, we shall prove that h and f

satisfy the first linear flow equation under the hypothesis that h and f satisfy
this equation. That is to say, we shall prove that

h ¼ �1
g

�
vf

vT

�
z¼0

(8.77)

provided that

h ¼ �1
g

�
vf

vt

�
z¼0

(8.78)

With the formulas (8.75) and (8.76) of h and f, the equality (8.77) (to be
proved) takes on the form

JðX; Y; T ; xo; yoÞ
s2ðxo; yoÞ b ¼ �1

g

�
v

vT
FðX; Y; T ; z; xo; yoÞ b

s2ðxo; yoÞ
�
z¼0

(8.79)

where the term b/s2(xo, yo) cancels. With the definitions (7.1) and (7.9) ofJ
and F, the equality to be proved becomes

hhðxo; yo; toÞhðxo þ X; yo þ Y; t þ TÞi

¼ �1
g

�
v

vT
hhðxo; yo; tÞfðxo þ X; yo þ Y; z; t þ TÞi

�
z¼0

(8.80)
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wherein the order “derivative with respect to T,” “average with
respect to t” may be inverted, with the result that the equality to be proved
becomes

hhðxo; yo; toÞhðxo þ X; yo þ Y; t þ TÞi

¼
��

hðxo; yo; tÞ
�
�1
g

�
v

vT
fðxo þ X; yo þ Y ; z; t þ TÞ

��
z¼0

and this equality is proved since

hðxo þ X; yo þ Y; t þ TÞ ¼
�
�1
g

�
v

vT
fðxo þ X; yo þ Y ; z; t þ TÞz¼0 (8.81)

as a consequence of Eqn (8.78). Equation (8.81) says that random surface
elevation h and the relevant velocity potential f satisfy the linear flow
Eqn (8.78) at point xoþ X, yoþ Y, at time instant tþ T.

8.6 THE SECOND DETERMINISTIC WAVE FUNCTION
IN SPACE AND TIME

“Given a very large wave of height H at a time instant to at a point xo, yo” is
equivalent to

hðxo; yo; toÞ ¼ H

2
; hðxo; yo; to þ T�Þ ¼ �H

2
(8.82)

This is what proceeds from Sections 8.2 and 8.3.

Given condition (8.82) as H/s(xo, yo)/N, the random surface elevation
h(xoþ X, yoþ Y, toþ T) is asymptotically equal to the deterministic
function

hðxo þ X; yo þ Y ; to þ TÞ ¼ JðX; Y; T ; xo; yoÞ �JðX; Y; T � T�; xo; yoÞ
Jð0; 0; 0; xo; yoÞ �Jð0; 0; T�; xo; yoÞ

H

2

(8.83)

and the velocity potential associated with this deterministic wave function is

fðxo þ X; yo þ Y ; z; to þ TÞ ¼ FðX; Y ; z; T ; xo; yoÞ � FðX; Y ; z; T � T�; xo; yoÞ
Jð0; 0; 0; xo; yoÞ �Jð0; 0; T�; xo; yoÞ

H

2

(8.84)

The deterministic wave function (Eqn (8.83)) is obtained starting from
condition (8.82) and reasoning as in Section 8.4. Then with the same
reasoning done in Section 8.5, one can verify that deterministic wave func-
tion (Eqn (8.83)) and velocity potential (Eqn (8.84)) satisfy the linear flow
equations.
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8.7 COMMENT: A DETERMINISTIC MECHANICS
IS BORN BY THE THEORY OF PROBABILITY

Given a wave with a known height H, if H/s is very large, the conditional
standard deviation of the random surface elevation is negligible with respect
to the conditional average surface elevation. This conditional average repre-
sents a deterministic wave function of space and time. Hence, the actual
(random) waves will be very close to this deterministic wave function. Asso-
ciated with this deterministic wave function is a very precise distribution of
velocity potential in the water.

The conclusion is that a deterministic mechanics consisting of the determin-
istic wave function (Eqn (8.83)) and the relevant velocity potential (Eqn
(8.84)) is born by the theory of probability.

What the author finds exciting is that Eqns (8.83) and (8.84) hold for an arbi-
trary configuration of the solid boundary (of course, provided that the flow is
frictionless). Only the relationship between functionsJ andF and the direc-
tional spectrum S(u,q) of the incident waves changes with the solid bound-
ary (several examples of this relationship are given in Chapter 7).

The sense of the QD theory is the following: if a wave with an exceptionally
large height H occurs at some point xo, yo at a time instant to, it is most prob-
able that the occurrence of this wave happens in a very precise (determin-
istic) way.

Note that the assumption that given wave height H is very large with respect
to s of the sea state may be consistent with the Stokes assumption that the
wave height is small with respect to the bottom depth and the wavelength.
Of course, what has been said in this section regarding the wave of given
height H conceptually holds also for the wave crest of given height b.

8.8 CONCLUSION
In the spring of 1980 the author realized that a wave with a given very large
crest height in a Gaussian sea state is close to the autocovariance (Eqn
(8.17)) and published this result in papers (1982, 1983). After this result
the author wondered whether determinism can be born within a chaotic pro-
cess. In fact, the result suggested two opposite conclusions. Let us review
these conclusions in simple words; to do this we shall resort to the evidence
of numbers. (The reader should bear in mind that we are dealing with a
Gaussian random process of unlimited duration and unlimited wave height).
Let us assume that the j* of this stationary random Gaussian process is
equal to 0.60. In this process, a wave with a crest height of b ¼ 100s will
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have a height H ¼ 1.6 100s ¼ 160s. Because of the statistical symmetry of
the Gaussian process, a wave with an elevation of the trough of �100s will
have a profile opposite to that of the wave of crest height 100s. Hence a
consequence of Eqn (8.17) with our example is that

1. a wave of given crest height 100s has a deterministic height of 160s;
2. a wave of given height 160s does not have a deterministic crest

height: indeed, there is the same probability that this wave has a crest
of 100s or a trough of �100s (which implies a crest of 60s).

Item (1) suggests a positive conclusion: yes, determinism can be born
within a chaotic process. Item (2) suggests the opposite conclusion. The
author was able to solve this contradiction with the proof shown in Sections
8.2 and 8.3 of the present chapter: a wave of given very large height H is
close to the deterministic wave function (8.41); what this implies, in our
example, is that a wave of given height 160s has a deterministic crest height
of 80s. This does not contradict what proceeds from Eqn (8.17), since the
number of wave crests of 100s is very small with respect to the number
of wave heights of 160s. In other words, the set of waves having the given
height of 160s consists of waves all with the crest height of 80s, except for a
very small fraction of anomalous elements of the set. This very small fraction
includes the whole set of waves with the given crest height of 100s. Hence,
the general conclusion is: yes, determinism can be born within a chaotic
process. This was called “quasi-determinism” because of the presence of
the very small fractions of anomalous elements. The first time the term
quasi-determinism appeared was in a paper by the author (1984), where
Eqn (8.41) was also disclosed.

Some time later the author made substantial progress when Eqn (8.83) was
applied to the space-time; this was in 1986, and the publication was in the
paper (1989). Here, the author showed that a very large wave of given height
H occurs at some fixed point xo, yo because this point is struck home by a
well-defined wave group. This group has a deterministic (new) mechanics
that we shall analyze in detail in the next chapter. Finally, in June 1987
the author applied Eqn (8.83) to Gaussian wave fields being nonhomoge-
neous in space (publication in the papers (1988) and (1997b)). It was an
exciting experience! We shall see a few examples in Chapter 11. In partic-
ular, we shall see that a very large wave of given height occurs at a fixed
point xo, yo far from a long breakwater, because of a collision of two
wave groups. The logic is that of quasi-determinism: if a wave with a given
very large height will occur at some fixed point, we can predict, with a prob-
ability approaching 1, the story of this occurrence. This result implies that “a
deterministic mechanics can be born within a chaotic process,” which is an
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aspect of the possibility that determinism can be born within a chaotic
process.

In the 1980s the author knew Rice’s work (1944, 1945, 1958) on the anal-
ysis of stationary random Gaussian processes, and the author did not know
some subsequent works on the same subject. In particular, Lindgren (1972)
had shown that the behavior of hb(t) is well determined by the behavior
of j(t) as b / N, where hb is the random Gaussian function, given that
at t ¼ 0 there is a local maximum of ordinate b. This is essentially the
same as Eqn (8.17). However, the approach was different from the author’s:
in his paper Lindgren focused on mathematical random functions, whereas
in the papers (1982, 1983) the author focused on waves. If the author had
not reobtained independently Eqn (8.17) through the approach focused on
waves, the author would not have arrived at the QD theory. Professor
Leon Borgman played an important role with an open-minded review of
the author’s early work (acknowledged in the paper (1983)).

The more difficult part of the basic proof of the QD theory is that concern-
ing the necessary condition. The original forms the author gave in the 1980s
were rather complicated, and only some years later (1997a) the author
reached the simple form that is given in Section 8.3 of this chapter.
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9.1 WHAT DOES THE DETERMINISTIC WAVE
FUNCTION REPRESENT?

9.1.1 A Three-Dimensional Wave Group
With Eqn (7.8) of J, Eqn (8.75) of the first deterministic wave function,
and Eqn (8.83) of the second deterministic wave function become,
respectively

hðxo þ X; yo þ Y ; to þ TÞ ¼ b

ZN
0

Z2p
0

Sðu; qÞ

� cosðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.1)
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hðxo þ X; yo þ Y; to þ TÞ ¼ H

2

ZN
0

Z2p
0

Sðu; qÞfcos ðkX sin qþ kY cos q� uTÞ

� cos ½kX sin qþ kY cos q

� uðT � T�Þ� gdqdu=
ZN
0

Z2p
0

Sðu; qÞ½1

� cosðuT�Þ�dqdu
(9.2)

Figure 9.1 shows somepictures of the deterministicwave function (9.2). Point
xo,yo of the wave of given exceptionally large height H is at the center of the
framed area. The input data are: deep water; spectrum: mean JONSWAP;
directional distribution: Mitsuyasu et al. with np ¼ 20; dominant direction

n FIGURE 9.1 In the open sea, deterministic wave function (8.83) represents a wave group that strikes
home point xo,yo, at the apex of its development stage.
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parallel to the y-axis. We see a three-dimensional wave group transiting
xo,yo. Thus, the theory implicitly reveals the existence of a well-defined
physical unit, that is, the three-dimensional wave group. The theory also
reveals two basic features of this group. First, the individual waves have a
propagation speed greater than the group velocity, so that each of them
runs along the envelope from the tail where it is born to the head where it
dies (follow wave B during its evolution). Second, the wave group has a
development stage that is followed by a decay stage; in the development
stage the three-dimensional envelope shrinks, so that the height of the central
wave grows to a maximum.

As we may see, the answer of the theory is simple and clear. In words it
says: “if you record an exceptionally large wave at a point at sea, you
can expect that most probably it is the center of a well-defined group at
the apex of its development.”

The wave groups are similar to the human families. Let us think of the
house of Medici of Florence. Throughout the fourteenth and fifteenth cen-
tury this family had a development stage up to a maximum at the age of
Lorenzo the Magnificent. Then during the two following centuries the fam-
ily had a progressive decay. In the four centuries from 1300 AD to 1700 AD
a lot of individuals of this family were born, grew up, and died. The same is
true of the waves: the group is like the family, and the individual waves are
like the members of the family. The wave group at the apex of the devel-
opment stage is like the house of Medici at the age of Lorenzo the Magnif-
icent, and the wave at the center of the group at the apex of its development
is like Lorenzo the Magnificent in the years of his full maturity.

The propagation speed of the wave group is nearly equal to the group
velocity cG (cf. Section 1.10) associated with the period Tp, and the prop-
agation speed of each individual wave is nearly equal to the phase speed c
associated with Tp. Therefore, on deep water, the propagation speed of
each individual wave is nearly twice the propagation speed of the wave
group. The fact that each individual wave moves along the envelope leads
to a few amazing transformations: the wave that goes to occupy the central
position of the group at the apex of the development stage nearly doubles
its height in a run of only one wavelength! Moreover, as an individual wave
approaches the central position of the group, its wave period and wave-
length reduce itself. As it leaves the central position, a compensating
stretch occurs.

In Fig. 9.1 we see first the replacement of wave A by wave B at the envelope
center, and then the replacement of wave B by wave C. At sea the replace-
ment at the envelope center sometimes becomes well evident. This occurs if
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a large wave like A in the first image of Fig. 9.1 is spilling near the crest.
Then this wave leaves the central position (second image), it gets smaller,
and it sheds its whitecap. Then the next wave (B) takes the central position,
and it starts spilling near the crest. Then, wave B leaves the central position,
which is occupied by the next wave (C), and this wave in its turn starts
spilling near the crest. In these cases the whitecap is like a crown passing
from one wave to the next one.

9.1.2 The Core of the Quasi-Determinism Theory
We shall call G1 the deterministic wave group given by Eqn (9.1), and G2
the deterministic wave group given by Eqn (9.2). The sequence of pictures of
G1 looks essentially like the sequence of pictures of G2.

However, there are some differences. Figure 9.2 shows these two wave
groups in the time domain at point xo,yo (they represent the records that
would be done by an ideal gauge at point xo,yo at the center of the framed
area). The reason for this difference is the following:

n FIGURE 9.2 Wave group G1 and wave group G2 at point xo,yo, in the time domain.
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A wave group yields its maximum crest elevation at a point 1 and its
maximum wave height at a point 2 somewhat after point 1. At point 1
the envelope center coincides with the wave crest. Then the wave crest is
reduced because it leaves the envelope center, and the following trough
grows because it approaches the envelope center. At point 2 the envelope
center coincides with the zero between the crest and the trough. The
quasi-determinism (QD) theory says “if you record a wave crest at a fixed
point xo,yo, with a given exceptionally large height b, you may expect that
most probably your point xo,yo is point 1”; and “if you record a wave at a
fixed point xo,yo, with a given exceptionally large height H, you may expect
that most probably your point xo,yo is point 2.”

Is this the only difference between G2 and G1? It is not exactly so. We have
seen that a wave group has a development stage in which the three-
dimensional envelope shrinks, and a decay stage in which the three-
dimensional envelope stretches. Well, wave group G1 gets the apex of its
development stage at the very instant wherein the envelope center transits
at point 1 (which gives a further small contribution to yield the exceptional
crest elevation at point 1); whereas G2 gets the apex of its development
stage at the instant wherein the envelope centre transits at point 2 (which
gives a further small contribution to yield the exceptional wave height at
point 2).

Thus the full response of the theory is, first: “if you record a wave crest at
a fixed point xo,yo, with a given exceptionally large height b, you may
expect that most probably your point xo,yo is point 1, and that the wave group
has got the apex of its development at the very instant wherein the envelope
center transits at point 1”; second: “if you record a wave at a fixed point
xo,yo, with a given exceptionally large height H, you may expect that most
probably your point xo,yo is point 2, and that the wave group has got the
apex of its development at the very instant wherein the envelope center tran-
sits at point 2.”Now we can appreciate the overall consistency between Eqns
(8.17) and (8.41): the first represents wave group G1 in the time domain at
point xo,yo; the second represents wave group G2 in the time domain at
point xo,yo.

9.2 PARTICLE VELOCITY AND ACCELERATION
IN WAVE GROUPS

The deterministic velocity potential associated to wave groups (8.75) and
(8.83) is given, respectively, by Eqns (8.76) and (8.84). With Eqn (7.30)
of the cross-covariance, f becomes, respectively
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fðxo þ X; yo þ Y ; z; to þ TÞ ¼ gb

ZN
0

Z2p
0

Sðu; qÞu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

� sin ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.3)

fðxo þ X; yo þ Y ; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

� fsin ðkX sin qþ kY cos q� uTÞ
� sin ½kX sin qþ kY cos q� uðT � T�Þ�g

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.4)

Particle velocity and acceleration in the wave groups proceed on differenti-
ating these functions f. We have:

Wave Group G1

vxðxo þ X; yo þ Y ; z; to þ TÞ ¼ gb
ZN
0

Z2p
0

Sðu; qÞk sin qu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

$cos ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.5)

vyðxo þ X; yo þ Y ; z; to þ TÞ ¼ gb

ZN
0

Z2p
0

Sðu; qÞk cos qu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

$cos ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.6)
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vzðxo þ X; yo þ Y; z; to þ TÞ ¼ gb
ZN
0

Z2p
0

Sðu; qÞku�1 sinh ½kðd þ zÞ�
cosh ðkdÞ

$sin ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.7)

axðxo þ X; yo þ Y ; z; to þ TÞ ¼ gb

ZN
0

Z2p
0

Sðu; qÞk sin q
cosh ½kðd þ zÞ�

cosh ðkdÞ
$sin ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.8)

ayðxo þ X; yo þ Y ; z; to þ TÞ ¼ gb

ZN
0

Z2p
0

Sðu; qÞk cos q cosh ½kðd þ zÞ�
cosh ðkdÞ

$sin ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.9)

azðxo þ X; yo þ Y ; z; to þ TÞ ¼ � gb

ZN
0

Z2p
0

Sðu; qÞk sinh ½kðd þ zÞ�
cosh ðkdÞ

$cos ðkX sin qþ kY cos q� uTÞ

� dqdu

,ZN
0

Z2p
0

Sðu; qÞdqdu

(9.10)

Wave Group G2

vxðxo þ X; yo þ Y; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk sin qu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

$
n
cos ðkX sin qþ kY cos q� uTÞ

� cos ½kX sin qþ kY cos q� uðT � T�Þ�
o

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.11)

9.2 Particle Velocity and Acceleration in Wave Groups 179



vyðxo þ X; yo þ Y; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk cos qu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ

$
�
cos ðkX sin qþ kY cos q� uTÞ

� cos ½kX sin qþ kY cos q� uðT � T�Þ��

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.12)

vzðxo þ X; yo þ Y; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞku�1 sinh ½kðd þ zÞ�
cosh ðkdÞ

$
�
sin ðkX sin qþ kY cos q� uTÞ

� sin ½kX sin qþ kY cos q� uðT � T�Þ��

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.13)

axðxo þ X; yo þ Y; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk sin q cosh ½kðd þ zÞ�
cosh ðkdÞ

$
�
sin ðkX sin qþ kY cos q� uTÞ

� sin ½kX sin qþ kY cos q� uðT � T�Þ��

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.14)

ayðxo þ X; yo þ Y; z; to þ TÞ ¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk cos q cosh ½kðd þ zÞ�
cosh ðkdÞ

$
�
sin ðkX sin qþ kY cos q� uTÞ

� sin ½kX sin qþ kY cos q� uðT � T�Þ��

� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.15)
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azðxo þ X; yo þ Y; z; to þ TÞ ¼ �g
H

2

ZN
0

Z2p
0

Sðu; qÞk sinh ½kðd þ zÞ�
cosh ðkdÞ

$
�
cos ðkX sin qþ kY cos q� uTÞ

� cos ½kX sin qþ kY cos q� uðT � T�Þ��
� dqdu

,ZN
0

Z2p
0

Sðu; qÞ½1� cos ðuT�Þ�dqdu

(9.16)

If the wave of the given height H very large is a zero down-crossing wave,
both Eqn (9.2) of h and Eqns (9.11)e(9.16) of vx, vy, vz, ax, ay, az must be
multiplied by (�1).

The knowledge of particle velocities and accelerations enables us to calcu-
late the wave loads on cylinders of small diameter, by means of the Morison
equation (as we shall see in Chapter 12). Then the knowledge of particle
accelerations enables us to calculate the Froude-Krylov forces on isolated
bodies. As we have already seen in Chapter 2, the Froude-Krylov force is
the force acting on an ideal water body with the same volume and shape
as the solid body. As such, the Froude-Krylov force is related to ax, ay,
az by

F ¼
Z
W

r
�
axix þ ayiy þ aziz

�
dW (9.17)

where W denotes the volume of the water body. Calculation of the Froude-
Krylov force is a preliminary step that is necessary for calculating wave
loads on large isolated bodies with an arbitrary shape. In Chapter 10 we shall
see which calculation must be done for passing from the Froude-Krylov
force to the actual wave force on the solid body. Then, in Chapter 13 we shall
see some examples of calculations of wave loads on large isolated bodies.

Typically, we shall assume

H ¼ Hmax or b ¼ bmax (9.18)

where Hmax and bmax are, respectively, the maximum expected wave height
and the maximum expected crest elevation in the design sea state (Chapter 5).
With Eqns (9.11)e(9.16) we shall be able to calculate the effect of the wave
with the maximum expected height, and with Eqns (9.5)e(9.10) we shall be
able to calculate the effect of the wave crest with the maximum expected
height.
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9.3 THE SUBROUTINE QD
The inputs are X, Y, z, T, and UD (if the wave of the given very large height
H is a zero up-crossing/ UD¼ 1; otherwise, UD¼�1). NCALL must be
1, except for a preliminary call, as we shall see later.

The outputs are h, vx, vy, vz, ax, ay, az. The subroutine is specified for the
mean JONSWAP spectrum, and the directional distribution of Mitsuyasu
et al. However, for changing the spectrum or the directional distribution
one has to operate on a small number of variables, which are those included
between the two lines of asterisks.

The program must supply: d, Hs, H, A, qd, and np. (Alternatively, the pro-
gram may give Tp in place of Hs and A. In this case one has to cancel a
pair of lines from the subroutine, which serve to obtain Tp from Hs and A.)

A preliminary call of the subroutine must be done with NCALL¼ 0. This
serves to compute the directional spectrum S(u, q) with steps du, dq suitable
for the numerical integrations. The values of S(u, q) are stored on memory
(SOT(I,J)) for the next calls of the subroutine.

The calculation is made with Eqns (9.2) and (9.11)e(9.16). All of the output
variables are the result of the ratio of two integrals with respect to u and q.
The integral in the denominator is the same for the whole set of variables and
is denoted by DENOINT. The integral in the numerator is denoted ETAINT,
VXINT, VYINT, etc.

Program EXAMPLE shows an easy application, with the inputs of subrou-
tine QD being given from the console.

SUBROUTINE QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
COMMON D,HS,H,TP,TST,ALPHA, TETAD,RNP
COMMON IMAX,JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
DIMENSION EO(300),DTE(150)
G¼9.8
G2¼G*G
PG¼3.141592
DPG¼2.*PG
IF(NCALL.GT.0)GO TO 500

c*******************************************
RK0¼1.345
CHI1¼3.3
CHI2¼0.08
CST¼0.44

c*******************************************
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COST¼RK0/ALPHA**0.25
TP¼COST*PG*SQRT(HS/G)
TST¼CST*TP
ALCHI1¼ALOG(CHI1)
CHI2Q¼CHI2*CHI2
OMP¼DPG/TP
DOMEGA¼OMP/50.
O1¼0.5*OMP
O2¼3.*OMP
OMPQ¼OMP*OMP
DTETA¼PG/100.
TE1¼-PG/2.
TE2¼PG/2.
OM¼O1-DOMEGA/2.
I¼0

c Loop 90: the grid of values of the directional spectrum, being necessary
c for the execution of the double integrals, is loaded on memory
90 OM¼OMþDOMEGA

IF(OM.GT.O2)GO TO 91
I¼Iþ1
OMV(I)¼OM

c values of omega stored on OMV(I) (I¼1,IMAX)
PE¼DPG/OM
RL0¼(G/DPG)*PE*PE
DL0¼D/RL0
IF(DL0.GT.0.5)THEN
RKV(I)¼DPG/RL0
ELSE
RLP¼RL0

300 RL¼RL0*TANH(DPG*D/RLP)
TES¼ABS(RL-RLP)/RL
RLP¼RL
IF(TES.GT.1.E-4)GO TO 300
RKV(I)¼DPG/RL
ENDIF

c k(omega) stored on RKV(I)
OMM5¼1./OM**5
ARG¼(OM-OMP)**2/(2.*CHI2Q*OMPQ)
E3¼EXP(-ARG)
ARG¼ALCHI1*E3
E2¼EXP(ARG)
ARG¼1.25*(OMP/OM)**4
E1¼EXP(-ARG)
EO(I)¼ALPHA*G2*OMM5*E1*E2

c EO(I)¼SSE(omega)
c*******************************************

9.3 The Subroutine QD 183



IF(OM.LE.OMP)THEN
RN¼RNP*(OM/OMP)**5
ELSE
RN¼RNP*(OMP/OM)**2.5
ENDIF

c*********************************************
DN¼2.*RN
TE¼TE1-DTETA/2
J¼0

80 TE¼TEþDTETA
IF(TE.GT.TE2)GO TO 81
J¼Jþ1
TETV(J)¼TEþTETAD

c values of theta stored on TETV(J) (J¼1,JMAX)
ABC¼ABS(COS(TE/2.))
DTE(J)¼ABC**DN
GO TO 80

81 CONTINUE
JMAX¼J
SOMT¼0
DO J¼1,JMAX
SOMT¼SOMTþDTE(J)*DTETA
ENDDO
RKN¼1./SOMT

c RKN¼K(n) (Eqn 6.18)
DO J¼1,JMAX
DTE(J)¼RKN*DTE(J)

c DTE(J)¼D(theta;omega)
SOT(I,J)¼DTE(J)*EO(I)

c directional spectrum stored on SOT(I,J)
ENDDO
GO TO 90

91 CONTINUE
IMAX¼I
IF(NCALL.EQ.0)GO TO 501

500 CONTINUE
c ETAINT¼double integral numerator RHS of Eqn (9.2)
c VXINT¼double integral numerator RHS of Eqn (9.5)
c VYINT¼double integral numerator RHS of Eqn (9.6)
c VZINT¼double integral numerator RHS of Eqn (9.7)
c AXINT¼double integral numerator RHS of Eqn (9.8)
c AYINT¼double integral numerator RHS of Eqn (9.9)
c AZINT¼double integral numerator RHS of Eqn (9.10)
c DENOINT¼double integral denominator RHS of Eqn (9.2) or (9.5)e(9.10)

ETAINT¼0
VXINT¼0
VYINT¼0
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.VZINT¼0
AXINT¼0
AYINT¼0
AZINT¼0
DENOINT¼0
DO I¼1,IMAX
DO J¼1,JMAX
OM¼OMV(I)
OM1¼1./OM
RK¼RKV(I)

c A1 attenuation factor of horizontal components
c A2 attenuation factor of vertical components
c for large kd both A1 and A2 tend to exp(kz). This
c asymptotic form is used (for large kd) in order to avoid
c overflow errors in cosh(kd)

IF(RK*D.GT.20)THEN
A1¼EXP(RK*Z)
A2¼A1
ELSE
A1¼COSH(RK*(DþZ))/COSH(RK*D)
A2¼SINH(RK*(DþZ))/COSH(RK*D)
ENDIF
TE¼TETV(J)
S¼SOT(I,J)
ST¼SIN(TE)
CT¼COS(TE)
ARG1¼RK*X*STþRK*Y*CT-OM*T
ARG2¼RK*X*STþRK*Y*CT-OM*(T-TST)
CO1¼COS(ARG1)
CO2¼COS(ARG2)
SI1¼SIN(ARG1)
SI2¼SIN(ARG2)
ETAINT¼ETAINTþS*(CO1-CO2)
VXINT¼VXINTþS*OM1*RK*A1*ST*(CO1-CO2)
VYINT¼VYINTþS*OM1*RK*A1*CT*(CO1-CO2)
VZINT¼VZINTþS*OM1*RK*A2*(SI1-SI2)
AXINT¼AXINTþS*RK*A1*ST*(SI1-SI2)
AYINT¼AYINTþS*RK*A1*CT*(SI1-SI2)
AZINT¼AZINT-S*RK*A2*(CO1-CO2)
DENOINT¼DENOINTþS*(1.-COS(OM*TST))
ENDDO
ENDDO
ETA¼UD*0.5*H*ETAINT/DENOINT
VX¼UD*0.5*G*H*VXINT/DENOINT
VY¼UD*0.5*G*H*VYINT/DENOINT
VZ¼UD*0.5*G*H*VZINT/DENOINT
AX¼UD*0.5*G*H*AXINT/DENOINT

9.3 The Subroutine QD 185



.AY¼UD*0.5*G*H*AYINT/DENOINT
AZ¼UD*0.5*G*H*AZINT/DENOINT

501 CONTINUE
c the values of all the double integrals (ETAINT, VXINT,VYINT, VZINT,
c AXINT, AYINT,AZINT,DENOINT) should have been multiplied by the
c product DTETA*DOMEGA; however this product cancels on executing
c the ratios ETAINT/DENOINT, VXINT/DENOINT, etc

RETURN
END

PROGRAM EXAMPLE
COMMON D,HS,H,TP,TST,ALPHA,TETAD,RNP
COMMON IMAX,JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
PG¼3.141592
DPG¼2.*PG
WRITE(6,*)’d,Hs,H’
READ(5,*)D,HS,H
WRITE(6,*)’alpha,thetad(degree),np’
READ(5,*)ALPHA,TETAD,RNP
WRITE(6,*)’zero up-crossing wave -> 1, down-crossing -> -1’
READ(5,*)UD
TETAD¼TETAD*PG/180.
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
NCALL¼NCALLþ1

500 WRITE(6,*)’X,Y,Z,T’
READ(5,*)X,Y,Z,T
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
WRITE(6,1000)ETA
WRITE(6,1001)VX,VY,VZ
WRITE(6,1001)AX,AY,AZ

1000 FORMAT(2X,F7.2)
1001 FORMAT(2X,3(F7.2,1X))

GO TO 500
END

9.4 EXPERIMENTAL VERIFICATION OF THE QUASI-DETERMINISM THEORY:
BASIC CONCEPTS

9.4.1 Obtaining the Deterministic Wave Function from Time Series Data
Let us imagine two wave gauges at two points A and B in a sea area. We measure the surface elevation at these two
points in the same time instants. The sample interval is Dt, and n is the number of samples per record per gauge. We
wonder “what may we expect to happen at point B provided that a wave with a given height H, being exceptionally
large with respect to the sea state, occurs at point A?” According to the QD theory, point A is xo,yo and point B is
xoþ X,yoþ Y. The expected surface elevation at xoþ X,yoþ Y is given by Eqn (8.83). Using the definition (7.1) of
J, Eqn (8.83) may be rewritten in the form
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hBðto þ TÞ ¼
�
hAðtÞhBðt þ TÞ�� �

hAðtÞhBðt þ T � T�Þ��
h2
AðtÞ

�� �
hAðtÞhAðt þ T�Þ� H

2
(9.19)

where

hAðtÞ ¼ hðxo; yo; tÞ (9.20)

hBðtÞ ¼ hðxo þ X; yo þ Y; tÞ (9.21)

and T* is the lag of the absolute minimum of the autocovariance

jðTÞ ¼ �
hAðtÞhAðt þ TÞ� (9.22)

The averages in Eqn (9.19) may be obtained from the time series data. As an
example, let Dt¼ 0.1 s and n¼ 3001 as it is currently taken at the NOEL;
then for obtaining hBðto þ TÞ with T¼ 0.6 s we shall have to perform the
following average:

�
hAðtÞhBðt þ 0:6sÞ� ¼ hA1hB7 þ hA2hB8 þ/þ hA2995hB3001

2995
(9.23)

where hAi
denotes the ith sample value at point A.

9.4.2 Resorting to Time Series Data of Pressure
Head Waves

Equation (9.19) holds also for pressure head waves at some depth beneath
the water level. More generally, all that has been shown until now holds
whether h is the surface elevation or the fluctuating pressure head at
some fixed depth beneath the water level. Hence, one may test the theory
either with surface waves or with pressure head waves, at one’s own
choice. Working with pressure head waves is preferable. Aside from the
fact that the author attracted to pressure head waves, there is the fact
that, at the NOEL, the cost of a small-scale field experiment (SSFE) on
pressure head waves is an order of magnitude smaller than the cost of
the same SSFE on surface waves.

9.4.3 A Typical Experiment Aimed to Verify the
Theory

There is an array of gauges. The largest distance between two gauges is
within a few wave lengths. These gauges record the surface elevation at
the same time instants. Many records are taken in many sea states.
The largest ratio H/s is searched in each record. This is the largest value
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of H/s from all the zero up-crossing waves and all the zero down-crossing
waves obtained by the whole array of gauges in the record. This will be
called (H/s)max i, where i denotes the number of the record. To fix the ideas
let us think of these numbers:

number of gauges: 30
record duration: 300 s
number of records: 1000

Let us imagine that the largest value of the ratio (H/s)max i has occurred in
the record i¼ 600 at to¼ 200 s, that the record was done by gauge number
25, and that the wave of this largest H/s was a zero up-crossing wave. Then
we apply Eqn (9.19) with A¼ point of gauge 25, and B¼ point of gauge 1,
then B¼ point of gauge 2, and so on, until B¼ point of gauge 30.
Of course, the time series data used for the averages in Eqn (9.19) will
be those of record number 600. Thus, we obtain the hðto þ TÞ at the 30
points of the wave gauges, as a function of the time lag T (T typically
ranges from �3Tp to 3Tp). Finally, the deterministic h is compared to
the random h in record number 600.

9.5 RESULTS OF SMALL-SCALE FIELD EXPERIMENTS
In an early SSFE in 1990 there were nine piles, each of which supported a
wave gauge (the plan of the piles is shown in Fig. 9.3). The wave with the
largest ratio H/s was recorded at point 3. It was a zero down-crossing wave
with a H/s¼ 9.6.

Figure 9.4(a) shows the deterministic hðto þ TÞ calculated with Eqn (9.19),
and Fig. 9.4(b) shows the random h(t) at the locations of the gauges. The

n FIGURE 9.3 Plan of the wave gauges in the SSFE of 1990 aimed to verify the QD theory. (The data
acquisition system had eight channels so that one of the wave gauges had to be disconnected. In the
stage of the experiment wherein the largest wave height occurred, the disconnected gauge was no. 6.)
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relative phases at the traverse of points 1e7 reveal that the angle between the
direction of wave advance (of the deterministic wave) and the y-axis was
about 10�. Hence, if the center of the wave crest passed at point 3 it had
to pass very close to point 9. At point 9, A is at the center of the envelope,
and B is in the envelope tail. At point 3, B is at the center of the envelope,
and A is in the envelope head.

Of course, there are some differences between random h and deterministic
h and indeed the QD theory states that h becomes asymptotically equal to h

only as H/s tends to infinity. Besides these main discrepancies due to resid-
ual randomness, there are some discrepancies due to nonlinearity effects,
which produce some local distortion of the wave profile that cannot be fore-
seen by the linear QD theory. However, the overall closeness between the

n FIGURE 9.4 SSFE of 1990 (see the plan of the gauges in Fig. 9.3). The figure compares the actual waves (b) with deterministic waves (a) when the wave
with the largest H/s was recorded (this was a zero down-crossing wave with H/s¼ 9.6 recorded by gauge no. 3).
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random waves (h) and the deterministic waves (h) was evident since that
early experiment of 1990.

The more recent SSFEs deal with waves in the space-time domain. Besides
time series at some fixed points, these experiments enable one to obtain
wave profiles in the space domain. This is possible because the wave gauges
are close to each other and sensibly aligned with the wave direction, as is
shown in Fig. 9.5.

This novelty has made it possible to take a step forward into verification of the
QD theory. Indeed, some cases were found wherein the overall closeness be-
tween randomwave profiles and deterministic wave profiles is really amazing.
In particular, look at Fig. 9.6, where the continuous lines represent the deter-
ministic wave profiles and the dashed lines represent the random wave pro-
files, for a case of a ratio H/s¼ 9.22. Figure 9.6 proves that the wave
groups of the QD theory do exist in the field. The figure shows the transit
of one of these groups over the gauge array (GA). In the first line of the figure
(to� 5 s), on the right-hand side of the GA there is the near-calm that precedes
the arrival of a wave group; on the left-hand side there is wave crest A, which
is decreasing because it precedes the envelope center. On the opposite in the
last line (toþ 6 s), on the left-hand side of the GA there is the near-calm that
follows the transit of a wave group; on the right-hand side there is wave crest E
that is growing because it follows the envelope center, which has already left
the GA. The envelope center is close to the locations of wave crests B, C, and
D, respectively, at to� 2 s, toþ 1 s, and toþ 4 s. Wave crests B and C nearly
complete their life cycle during the passage over the GA. In particular, wave
crest B is in its growing stage from to� 4 s to to� 2 s and in the decay stage
from to� 2 s to to; wave crest C is in its growing stage from to� 2 s to
toþ 1 s, and in the decay stage from toþ 1 s to toþ 2 s.

n FIGURE 9.5 The gauges of a recent SSFE (2010) aimed to verify the QD theory. There was an array of 26 pressure transducers, each of which was
connected with a small vertical tube with a bending section (like a small periscope). Pressure head waves were measured 0.80 m beneath the mean water
level.
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n FIGURE 9.6 Small-scale field experiment of 2010. What happened when a zero down-crossing wave
of H/s¼ 9.22 was recorded by gauge no. 18 (the location of this gauge is shown by a small vertical
segment in the picture relevant to time instant to). Dashed line: actual (random) wave. Continuous line:
deterministic wave.
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9.6 CONCLUSION
The characteristic mechanics of wave groups shown in Section 9.1.1 were
disclosed in a paper by the author (1989). Only some years later than the
publication of the paper (1989) the author realized the overall physical con-
sistency of the theory, which here has been called “core of the theory”
(Section 9.1.2), and was disclosed in the book (2000). The SSFEs of 1990
and 2010 were described, respectively, by Boccotti et al. (1993) and Boccotti
(2011).

Two full-scale field experiments on the configuration of wave group G1
near the exceptionally large wave crest were performed by Phillips et al.
(1993a,b). Some nonlinearity effects on the wave groups were dealt with
by Arena (2005), Arena and Fedele (2005), Fedele and Arena (2005), Arena
et al. (2008), and Arena and Guedes Soares (2009). The QD theory has
widened the view on sea wave groups: from statistics to mechanics.
A wave group was dealt with in the time domain and defined as a sequence
of waves with heights greater than some given (large) threshold. The anal-
ysis was purely in statistics: concerning the number of waves (Kimura,
1980; van Vledder, 1992; Medina and Huspeth, 1990), or the wave energy
of the group (Medina and Hudspeth, 1994).
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10.1 FURTHER PROOF THAT THE QD THEORY
HOLDS FOR ARBITRARY CONFIGURATIONS
OF THE SOLID BOUNDARY

It can be proved that the deterministic velocity potential f satisfies every
boundary condition, provided that random velocity potential f satisfies
this boundary condition.

For simplicity, and without loss of generality, we shall assume the solid
boundary to be a cylinder (see the reference scheme of Fig. 10.1). Provided
that

vf

vz
¼ vf

vy
tan b at x ¼ x1; y ¼ y1; z ¼ z1 (10.1)
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where x1, y1, z1 is an arbitrary point of the cylinder surface, we aim to
prove that

vf

vz
¼ vf

vY
tan b at X ¼ x1 � xo; Y ¼ y1 � yo; z ¼ z1 (10.2)

That is, we aim to prove the following equality:�
v

vz

�
b
FðX; Y; z; T; xo; yoÞ

s2ðxo; yoÞ ¼
�

v

vY

�
b
FðX; Y; z; T; xo; yoÞ

s2ðxo; yoÞ tan b

at X ¼ x1 � xo; Y ¼ y1 � yo; z ¼ z1

(10.3)

If the definition (Eqn (7.9)) of F is used, and b/s2(xo, yo) is canceled from
both the LHS and the RHS, the equality to be proved becomes

v

vz
hhðxo; yo; tÞfðx; y; z; t þ TÞi ¼ v

vy
hhðxo; yo; tÞfðx; y; z; t þ TÞitan b

at x ¼ x1; y ¼ y1; z ¼ z1

(10.4)

To prove this equality, one has to invert the order derivative-average both
on the LHS and on the RHS, and use the equality Eqn (10.1).

10.2 DETERMINISTIC PRESSURE FLUCTUATIONS
ON SOLID BODY

The pressure fluctuation Dp is related to velocity potential f by

Dpðxo þ X; yo þ Y ; z; to þ TÞ ¼ �r
vfðxo þ X; yo þ Y; z; to þ TÞ

vT
(10.5)

n FIGURE 10.1 Reference scheme: QD theory with an arbitrary solid boundary.
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which, with Eqn (8.76) of f, becomes

Dpðxo þ X; yo þ Y; z; to þ TÞ ¼ �r

�
v

vT

�
b
FðX; Y; z; T ; xo; yoÞ

s2ðxo; yoÞ (10.6)

and with the definition (Eqn (7.9)) of F:

Dpðxo þ X; yo þ Y; z; to þ TÞ ¼ � r

�
v

vT

�

� b
hhðxo; yo; tÞfðxo þ X; yo þ Y; z; t þ TÞi

s2ðxo; yoÞ
(10.7)

Finally, on inverting the order derivative with respect to Teaverage with
respect to t, we arrive at

Dpðxo þ X; yo þ Y ; z; to þ TÞ ¼ b
hhðxo; yo; tÞð�r v

vTÞfðxo þ X; yo þ Y ; z; t þ TÞi
hh2ðxo; yo; tÞi

(10.8)

and hence

Dpðxo þ X; yo þ Y; z; to þ TÞ ¼ b
hhðxo; yo; tÞDpðxo þ X; yo þ Y; z; t þ TÞi

hh2ðxo; yo; tÞi
(10.9)

If a wave crest with a given height b occurs at point xo, yo at time instant to,
and b/s(xo, yo)/N, the random wave pressure in space and time, in a
neighborhood of xo, yo, will be asymptotically equal to this deterministic
function.

If a wave with a given height H occurs at point xo, yo, and H/s(xo, yo)/N,
the random wave pressure in space and time, in a neighborhood of xo, yo, will
be asymptotically equal to the deterministic function

Dpðxo þ X; yo þ Y ; z; to þ TÞ
¼ H

2
½hhðxo; yo; tÞDpðxo þ X; yo þ Y ; z; t þ TÞi

� hhðxo; yo; tÞDpðxo þ X; yo þ Y; z; t þ T � T�Þi�
=½�h2ðxo; yo; tÞ

�� hhðxo; yo; tÞhðxo; yo; t þ T�Þi�

(10.10)

which proceeds from the velocity potential (Eqn (8.84)).

These equations of Dp are valid for every point in the water, and
thus in particular at the boundary of a solid body with an arbitrary
configuration.
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10.3 COMPARING WAVE PRESSURES ON AN
ISOLATED SOLID BODY TO THE WAVE
PRESSURES ON AN EQUIVALENT WATER BODY

In 1992 and 1993, two small-scale field experiments (SSFEs) were executed
in the sea area of the NOEL, for comparing, in real time, wave forces on
large isolated bodies to the FroudeeKrylov force. The field laboratory of
the 1992 experiment is shown in Fig. 10.2. The structure was the 1:50 scale
model of an offshore gravity platform of the North Sea.

In the 1:50 scale, the typical sea states consisting of wind seas of about
0.30 m Hs corresponded to full-scale sea states of about 15 m Hs which
are realistic design sea states for the North Sea. Wave pressures were
recorded by an array of pressure transducers at several points (1, 2, 3, 4)
at the boundary of the platform, and the surface elevation was recorded at
point 0 above the center of platform’s base, by means of an ultrasonic probe.
The wave pressures were contemporarily recorded at points (1, 2, 3, 4) with
the same spatial configuration of the points at the boundary of the platform,
far away where the diffraction effects were negligible. Points (1, 2, 3, 4) may

n FIGURE 10.2 A small-scale field experiment of 1992. 1:50 scale model of supporting structure of a gravity offshore platform, and points where wave
pressure or surface elevation was measured.
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be thought of as points at the boundary of an ideal water platform with the
same volume and shape as the solid platform. The surface elevation at point
0 above the center of the base of the equivalent water platform was recorded
by a second ultrasonic probe.

The field laboratory of the 1993 experiment is shown in Fig. 10.3. The
structure was the 1:30 scale model of a hypothesis of submerged tunnel
across the Messina Straits. Here, the typical 0.30 m Hs corresponded to a
full-scale Hs of 9 m, which is consistent with the Hs of the cautious design
sea state. Here too, wave pressures were measured at a number of points
(5, 12) of the boundary of the solid cylinder, and at the points (5, 12) with
the same spatial configuration of the boundary of an ideal water cylinder
with the same geometry as the solid cylinder (same radius, same immersion,
same water depth, same orientation). The surface elevation was recorded
at point 0 above the section of the solid cylinder with points (5, 12). The
surface elevation was recorded also at point 0 above the section of the equiv-
alent water cylinder with points (5, 12).

n FIGURE 10.3 A small-scale field experiment of 1993. 1:30 scale model of a piece of floating tunnel, and points where surface elevation was
measured.
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10.4 THE REASON THE WAVE FORCE ON THE SOLID
BODY IS GREATER THAN THE
FROUDEeKRYLOV FORCE

Figure 10.4(a) shows the deterministic wave pressure Dpi=si at the points
(i¼ 1, 2, 3, 4) at the boundary of the solid body of the first experiment.
That is, the figure shows the ratio between

Dpiðto þ TÞ ¼ H

2
$
hh0ðtÞDpiðt þ TÞi � hh0ðtÞDpiðt þ T � T�Þi

hh2
0ðtÞi � hh0ðtÞh0ðt þ T�Þi (10.11)

n FIGURE 10.4 Small-scale field experiments of 1992 and 1993. (a) Wave pressures at various points of the platform if a wave of given very large
height passes at central point 0; (b) wave pressures at various points of the horizontal cylinder if a wave of given very large height passes at point 0 above
this cylinder; obtained on applying the algorithm of the QD theory with time series data.
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and

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDp2i ðtÞi

q
(10.12)

Equation (10.11) is the same as Eqn (10.10) for the special case that point xo,
yo is point 0 and point xoþ X, yoþ Y, z is point i. Figure 10.4(b) shows the
deterministic wave pressure Dpi=si at the points (i¼ 5, 6,.,12) at
the boundary of the solid body of the second experiment. Figure 10.5 is

n FIGURE 10.5 Small-scale field experiments of 1992 and 1993. (a) Wave pressures at various points of the water body equivalent to the platform if
a wave of given very large height passes at central point 0; (b) wave pressures at various points of the water cylinder equivalent to the solid cylinder if a
wave of given very large height passes at point 0 above this water cylinder, obtained on applying the algorithm of the QD theory with time series data.
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the same as Fig. 10.4, with the only difference that the water body is consid-
ered in place of the solid body, and hence, the time series data of (0, 1, 2,.)
are used instead of (0, 1, 2,.).

On comparing Fig. 10.5 to Fig. 10.4, we see that the phase angle between a
pair of points at the solid body is nearly twice the phase angle between the
same pair of points at the water body. For example, the time shift between
point 1 and point 2 at the column of the platform is 0.134 s, whereas the
time shift between the same pair of points at the water body is 0.067 s.

Typically, a larger phase angle implies a larger pressure difference between
the wave beaten half of a cylinder and the sheltered half, and this is the
essential reason why the horizontal force on the solid cylinder is greater
than the horizontal force on the water cylinder.

As to the effect of the amplitude of the pressure fluctuations, let us consider
the RMS pressure fluctuation si at various points. As to points like 3, 4 of the
platform base and 3, 4 of the equivalent water body, si is the same in 3, 4, 3,
4. Nearly the same holds also for points 1, 2, 1, 2 of the column and of its
equivalent water body.

The si at the tunnel are shown in Fig. 10.6. We see that, from the water
cylinder to the solid cylinder, the si grows on the upper half, and is
decreased on the lower half. Of course, this is the reason the amplitude
of the vertical wave force on the tunnel is greater than the amplitude of
the vertical FroudeeKrylov force.

On the opposite, we see that the average si either on the wave-beaten half-
cylinder or on the sheltered half cylinder has only a small change from the

n FIGURE 10.6 Small-scale field experiment of 1993. The polar diagram represents the average ratio
ffiffiffiffiffiffiffiffiffiffiffiffi
hDp2i ðtÞi
hDp29 ðtÞi

r
in the whole set of records. Here, i denotes

the location of the ith measurement point. The diagram on the left is relevant to the water cylinder. The diagram on the right is relevant to the solid cylinder.
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water cylinder to the solid cylinder. This implies that the amplification of the
horizontal wave force from the horizontal water cylinder to the horizontal
solid cylinder depends essentially on the reduction of the propagation speed
of the pressure head waves at the solid cylinder, just as it happens for the
vertical cylinder.

10.5 COMPARING WAVE FORCE ON AN ISOLATED
SOLID BODY TO THE FROUDEeKRYLOV FORCE

The y-z components of the sectional wave force on the tunnel were obtained
by means of

Fy ¼
X12
i¼ 5

CyiDpi (10.13)

Fz ¼
X12
i¼ 5

CziDpi (10.14)

where

Cy5 ¼ 0; Cy6 ¼ C1; Cy7 ¼ C0; Cy8 ¼ C1; Cy9 ¼ 0; Cy10 ¼ �C1; Cy11

¼ �C0; Cy12 ¼ �C1

(10.15)

Cz5 ¼ �C0; Cz6 ¼ �C1; Cz7 ¼ 0; Cz8 ¼ C1; Cz9 ¼ C0; Cz10

¼ C1; Cz11 ¼ 0; Cz12 ¼ �C1 (10.16)

C0 ¼ 2R sinðp=8Þ; C1 ¼ C0 cosðp=4Þ (10.17)

Equations of the form

Fy ¼
Xn

i¼ 1

CyiDpi (10.18)

Fz ¼
Xn

i¼ 1

CziDpi (10.19)

Fy ¼
Xn

i¼ 1

CyiDpi (10.20)

Fz ¼
Xn

i¼ 1

CziDpi (10.21)

may be used for calculating the random (actual) wave force and the deter-
ministic wave force on a solid body with an arbitrary configuration. With
Eqn (10.11) in Eqns (10.20) and (10.21), we get

Fyðto þ TÞ ¼
Xn

i¼ 1

Cyi

H

2
$
hh0ðtÞDpiðt þ TÞi � hh0ðtÞDpiðt þ T � T�Þi

hh2
0ðtÞi � hh0ðtÞh0ðt þ T�Þi (10.22)
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Fzðto þ TÞ ¼
Xn

i¼ 1

Czi

H

2
$
hh0ðtÞDpiðt þ TÞi � hh0ðtÞDpiðt þ T � T�Þi

hh2
0ðtÞi � hh0ðtÞh0ðt þ T�Þi (10.23)

Finally, on inverting the order
P

with respect to ieaverage with respect to t,
we arrive at

Fyðto þ TÞ ¼
�
h0ðtÞFyðt þ TÞ�� �

h0ðtÞFyðt þ T � T�Þ�
hh2

0ðtÞi � hh0ðtÞh0ðt þ T�Þi $
H

2
(10.24)

Fzðto þ TÞ ¼ hh0ðtÞFzðt þ TÞi � hh0ðtÞFzðt þ T � T�Þi
hh2

0ðtÞi � hh0ðtÞh0ðt þ T�Þi $
H

2
(10.25)

which is the relationship between the deterministic wave force and the
random (actual) wave force.

A property that emerged, on the whole, from the two SSFEs was the
following:

Fyðto þ TÞ ¼ CdoFyðto þ TÞ (10.26)

Fzðto þ TÞ ¼ CdvFzðto þ TÞ (10.27)

where

F is the deterministic wave force on the solid cylinder;
F is the deterministic wave force on the water cylinder;

and Cdo and Cdv are, respectively, the diffraction coefficient of the hor-
izontal wave force, and the diffraction coefficient of the vertical wave
force:

Cdo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2

y ðtÞi
hF2

yðtÞi

s
(10.28)

Cdv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2

z ðtÞi
hF2

z ðtÞi

s
(10.29)

Both the experiments were concerned with wind seas, and y was close to the
dominant wave direction; moreover, in the second experiment, ywas also the
orthogonal to the horizontal cylinder. A proof of properties (Eqns (10.28)
and (10.29)) is shown in Fig. 10.7.
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10.6 A GENERAL MODEL FOR CALCULATING THE
DIFFRACTION COEFFICIENT OF WAVE FORCES

We refer to the sketch of Fig. 10.8 showing the cross-section of a vertical wa-
ter cylinder. Let us think of the cylinder as being subjected to two horizontal
wave forces F0

o ðtÞ and F00
o ðtÞ, the first one acting on the left half-cylinder

n FIGURE 10.7 Small-scale field experiment of 1993. Solid line: deterministic wave force on the tunnel. Dashed line: product of the diffraction coefficient
and the deterministic wave force on the equivalent water cylinder. Deterministic forces obtained on applying the algorithm of the QD theory with the time
series data.

n FIGURE 10.8 Reference scheme for Eqns (10.30) and (10.31).
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(the wave beaten half) and the second one acting on the right half-cylinder
(the sheltered half).

These forces are

F0
o ðtÞ ¼

Zp=2
�p=2

Dpmax cosð�kR cos b� utÞR cos bdb (10.30)

F00
o ðtÞ ¼

Zp=2
�p=2

Dpmax cosðkR cos b� utÞR cos bdb (10.31)

where Dpmax is the amplitude of the pressure fluctuation at the given depth.
On passing from the water cylinder to the solid cylinder, what changes is
only the phase angle: the phase angle of a pair of points like P0, P00 grows

from 2kR cos b to F R 2kR cos b

and we have seen that the phase speed reduction factor F R is about 2.

Therefore, the forces F0
o and F00

o on the two halves of the solid cylinder are

F0
oðtÞ ¼

Zp=2
�p=2

Dpmaxcosð �F R kR cos b� utÞR cos bdb (10.32)

F00
o ðtÞ ¼

Zp=2
�p=2

DpmaxcosðF R kR cos b� utÞR cos bdb (10.33)

From Eqns (10.30) and (10.31) and Eqns (10.32) and (10.33), we get

Fy ðtÞ ¼ F0
o ðtÞ � F00

o ðtÞ ¼ �2DpmaxR
Zp=2

�p=2

sinðkR cos bÞ sinðutÞ cos bdb

(10.34)

FyðtÞ ¼ F0
oðtÞ � F00

o ðtÞ ¼ �2DpmaxR

Zp=2
�p=2

sinðF R kR cos bÞ sinðutÞ cos bdb

(10.35)

and hence

Cdoh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2

y ðtÞi
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2

y ðtÞi
q ¼

�����
Z p=2

�p=2
sinðF R kR cos bÞcos bdb

�����
�����
Z p=2

�p=2
sinðkR cos bÞcos bdb

�����
(10.36)
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The following suggestions proceed from the experience of the two SSFEs of
1992 and 1993:

1. Equation (10.36) may be applied also with horizontal cylinders
(provided that the wave attack is orthogonal to the cylinder axis);

2. k in Eqn (10.36) may be calculated with the peak period Tp;
3. F R may be taken as 1.75 for a base of a gravity platform, and 2 for

columns of a gravity platform and tunnels.

As to Cdv for submerged tunnels, it proved to be about 10% smaller than
Cdo . Equation (10.36) and the suggestions enable one to do a quick esti-
mate of the diffraction coefficient. However, we recommend also doing a
precise estimate. Then, with the same gauge array suitable for obtaining
Cdo and/or Cdv one may also verify the crucial conclusions (Eqns (10.26)
and (10.27)).

10.7 OVERALL SYNTHESIS
The conclusion of this chapter consists of Eqns (10.26), (10.27) and (10.36).
Equations (10.26) and (10.27) say that extreme wave loads on large isolated
bodies are equal to the FroudeeKrylov force multiplied by the diffraction co-
efficient. Equation (10.36) may be used for calculating this coefficient. Equation
(10.36) is based on the fact that the horizontal wave force on a large isolated
body is greater than the horizontal FroudeeKrylov force only because of a
reduction of the propagation speed of pressure head waves at the solid body.
Hereafter is a FORTRAN program to calculate Cdo by means of Eqn (10.36).

PROGRAM CODIF
PG¼3.141592
DPG¼2.*PG
G¼9.8
WRITE(6,*)’d,diam,Tp’
READ(5,*)D,DIAM,TP
WRITE(6,*)’FR’
READ(5,*)FR
R¼DIAM/2
RLP0¼(G/DPG)*TP*TP

c RLP0¼dominant wavelength on deep water
RLP¼RLP0

75 RL¼RLP0*TANH(DPG*D/RLP)
TEST¼ABS(RL-RLP)/RL
RLP¼RL
IF(TEST.GT.1.E�4)GO TO 75

c RL¼dominant wavelength on water depth d
RK¼DPG/RL
DBETA¼PG/200.
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.BETA1¼-PG/2.
BETA2¼PG/2.
BETA¼BETA1-DBETA/2.

c RINTNUM¼integral numerator RHS Eqn (10.36)
c RINTDEN¼integral denominator RHS Eqn (10.36)

RINTNUM¼0
RINTDEN¼0

c Loop 90: integrals on the RHS of Eqn (10.36)

90 BETA¼BETA+DBETA
IF(BETA.GT.BETA2)GO TO 91
ARG¼FR*RK*R*COS(BETA)
RINTNUM¼RINTNUM+SIN(ARG)*COS(BETA)
ARG¼RK*R*COS(BETA)
RINTDEN¼RINTDEN+SIN(ARG)*COS(BETA)
GO TO 90

91 CONTINUE
CDO¼ABS(RINTNUM)/ABS(RINTDEN)
WRITE(6,1000)CDO

1000 FORMAT(2x,’Cdo¼’,F7.3)
END

10.8 CONCLUSION
The SSFEs of 1992 and 1993 were described, respectively, by the author
(1995) and (1996). These were unusual experiments, not only for their nature
of SSFEs. For the first time, as far as is known, there was a real-time com-
parison between measured wave force and measured Froude-Krylov force.
Then, the QD theory was exploited to evidence the relationship between
actual wave forces and FroudeeKrylov forces. In particular, it exploited
the fact that the Dpi obtained through QD Eqn (10.11) always looks regular,
as in Figs 10.4 and 10.5, even though it is obtained from random time-series
data of surface elevation and wave pressures. Recently, some experiments to
verify the QD theory have been performed in a waveflume (Petrova et al.,
2011). Notwithstanding their peculiarity, the SSFEs of 1992, 1993 could
also be verified in a waveflume at one’s choice.
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11.1 BEFORE A BREAKWATER
11.1.1 Equations of Deterministic Waves before

an Upright Breakwater
The deterministic surface elevation before a long breakwater, provided that
a very large wave of given height H occurs at some given point xo,yo, is
given by Eqn (8.83) with Eqn (7.29) of J:

hðxo þ X; yo þ Y ; to þ TÞ

¼ H

2

ZN
0

Z2p
0

Sðu; qÞcos ðk yo cos qÞcos ½kðyo þ YÞcos q�$fcos ðkX sin q� uTÞ

� cos ½kX sin q� uðT � T�Þ�gdqdu
,ZN

0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ

� ½1� cos ðuT�Þ�dqdu
(11.1)
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As to T*, it is the lag of the minimum of

Jð0; 0; T ; xo; yoÞ ¼ 4
ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞcos ðuTÞdqdu (11.2)

The deterministic velocity potential f is given by Eqn (8.84) with Eqn (7.30)
of F:

fðxo þ X; yo þ Y; z; to þ TÞ

¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞu�1 cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðk yo cos qÞ$cos ½kðyo þ YÞcos q�

� fsin ðkX sin q� uTÞ � sin ½kX sin q� uðT � T�Þ�gdqdu=
ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ½1� cos ðuT�Þ�dqdu

(11.3)

The deterministic wave pressure Dp proceeds on differentiating f with
respect to time T, and multiplying by (�r). The result is

Dpðxo þ X; yo þ Y ; z; to þ TÞ

¼ rg
H

2

ZN
0

Z2p
0

Sðu; qÞ cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðk yo cos qÞ$cos ½kðyo þ YÞcos q�

� fcos ðkX sin q� uTÞ � cos ½kX sin q� uðT � T�Þ�gdqdu=
ZN
0

Z2p
0

Sðu; qÞcos2ðkyo cos qÞ½1� cos ðuT�Þ�dqdu

(11.4)

The horizontal particle velocity and acceleration proceed on differenti-
ating f with respect to X or Y, and with respect to T and X or Y. The
result is
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vxðxo þ X; yo þ Y; z; to þ TÞ

¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞu�1k sin q
cosh ½kðd þ zÞ�

cosh ðkdÞ cos ðk yo cos qÞ

$cos ½kðyo þ YÞcos q�fcos ðkX sin q� uTÞ � cos ½kX sin q� uðT � T�Þ�gdqdu=ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ½1� cos ðuT�Þ�dqdu

(11.5)

vyðxo þ X; yo þ Y; z; to þ TÞ

¼ �g
H

2

ZN
0

Z2p
0

Sðu; qÞu�1k cos q
cosh ½kðd þ zÞ�

cosh ðkdÞ cos ðk yo cos qÞ

$sin ½kðyo þ YÞcos q�fsin ðkX sin q� uTÞ � sin ½kX sin q� uðT � T�Þ�gdqdu=ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ½1� cos ðuT�Þ�dqdu

(11.6)

axðxo þ X; yo þ Y; z; to þ TÞ

¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk sin q
cosh ½kðd þ zÞ�

cosh ðkdÞ cos ðk yo cos qÞ$cos ½kðyo þ YÞcos q�

� fsin ðkX sin q� uTÞ � sin ½kX sin q� uðT � T�Þ�gdqdu=ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ½1� cos ðuT�Þ�dqdu

(11.7)

ayðxo þ X; yo þ Y; z; to þ TÞ

¼ g
H

2

ZN
0

Z2p
0

Sðu; qÞk cos q cosh ½kðd þ zÞ�
cosh ðkdÞ cos ðk yo cos qÞ$sin ½kðyo þ YÞcos q�

� fcos ðkX sin q� uTÞ � cos ½kX sin q� uðT � T�Þ�gdqdu=ZN
0

Z2p
0

Sðu; qÞcos2 ðk yo cos qÞ½1� cos ðuT�Þ�dqdu

(11.8)
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11.1.2 Occurrence of Exceptionally Large Waves
before an Upright Breakwater

Figure 11.1 answers the question “what happens if a wave of a given,
exceptionally large height, occurs at a point xo,yo at the breakwater?”
This point is at the center of the framed part of the breakwater. The figure
was obtained with Eqn (11.1), with the input data: deep water; spectrum:
mean JONSWAP; directional distribution: Mitsuyasu et al. with np ¼ 20.
We see a wave group that approaches the breakwater, hits it, is reflected,
and goes back seawards. It will have been noted that, while the wave group
is approaching the wall, its envelope gradually shrinks, and, on the con-
trary, while the wave group goes back seawards, the envelope stretches.
This means that the wave group is at the apex of its development stage
when it arrives at the breakwater. In short, the answer is: if you record an
exceptionally high wave at the wall, most probably, it is the central wave
of a group hitting the breakwater, at the apex of its development stage.

Let us pass to a new question: what happens if a wave of a given, excep-
tionally large height, occurs at a point xo,yo, which is 3Lp before the break-
water? The answer is given in Fig. 11.2, which shows a big novelty: two
groups! The first wave group hits the breakwater at time T ¼ �6Tp, is re-
flected, goes back seawards, and collides with the second wave group
approaching the breakwater.

The central waves of the two groups strike each other at the fixed point
xo,yo, yielding the given, exceptionally large wave height. This wave height
is very large because both wave groups reach the apex of their development
when they come into collision. Thus, we realize why the maximum expected
wave height far from the breakwater is smaller than the maximum expected
wave height at the breakwater (on applying Eqn (7.49) one finds that Hmax at
any point distant from the wall more than 2Lp is about 1=

ffiffiffi
2

p
times smaller

than Hmax at a point at the breakwater). The reason is that an exceptionally
large wave far from the breakwater calls for an event that has a probability to
occur, which is small in comparison to the probability of the event yielding
an exceptionally large wave at the breakwater.

Finally, Fig. 11.3 shows what we may expect to happen if a wave of a given,
exceptionally large height should occur at some given point of a breakwater,
if the dominant wave direction of the incident waves makes a 20� angle with
the wall-orthogonal. We see that the wave group travels in the dominant di-
rection of the spectrum, hits the wall at the apex of the development stage, is
subjected to specular reflection, and returns seawards.
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n FIGURE 11.1 If xo,yo is at an upright breakwater, deterministic wave function Eqn (8.83) represents a
wave group that strikes this point, at the apex of its development stage.
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11.1.3 Wave Loads on Structures
When an exceptionally large wave occurs at some point xo,yo of a break-
water, the segment of breakwater loaded by the wave crest will be particu-
larly short, as we may see in Figs 11.1 and 11.3. The QD theory shows
that the wave crest of an exceptionally large wave must be particularly short,

n FIGURE 11.1 Continued
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n FIGURE 11.2 If xo,yo is at a certain distance before an upright breakwater, deterministic wave function
Eqn (8.83) represents two wave groups that strike each other at this point, the first one going back
seawards after having been reflected, and the second one approaching the breakwater.

11.1 Before a Breakwater 215



n FIGURE 11.2 Continued
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given that an exceptionally large wave is yielded by a progressive focusing
of the three-dimensional envelope, as it is evident in the two aforementioned
figures. As a consequence, the effect of an exceptionally large wave on a
breakwater is somewhat like the effect of a weapon fired from offshore.

n FIGURE 11.3 If xo,yo is at an upright breakwater, and the dominant direction of the spectrum of the
incident waves is inclined with respect to the wall-orthogonal; deterministic wave function Eqn (8.83)
represents a wave group that strikes this point, and is subject to specular reflection.
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Equations (11.5)e(11.8) may be applied for estimating extreme wave loads
on various kinds of structures that may be in the sea area before a breakwater
(e.g., mooring points, conduits). As an example, let us consider the loads on
a vertical pile off a vertical breakwater. An exceptionally large wave at this
pile most probably is due to the collision of two wave groups, as we have
seen in Fig. 11.2. This exceptionally large wave is a standing wave being

n FIGURE 11.3 Continued
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yielded by the overlap of the central wave of the first group traveling sea-
wards and the central wave of the second group traveling landwards. Point
xo,yo is an isolated offshore antinode. Since the horizontal particle velocity
and acceleration is zero at an antinode, if xo,yo is at the location of the
pile, the pile is not loaded. Then we let vary xo,yo in a neighborhood of
the location of the pile. If the dominant direction of the incident waves is
orthogonal to the breakwater, the xo,yo for which we shall find the heaviest
load on the pile is

xo; yo ¼ x0o; y
0
o � Lp

�
4 (11.9)

where x0o; y0o are the coordinates of the pile. In this case, the pile will be at the
location of an isolated offshore node. The wave forces on the pile will be
calculated with the Morison equation, with the particle velocities and accel-
erations being given by Eqns (11.5)e(11.8). Of course, H in these equations
will be the maximum expected wave height in the design sea state at point
xo,yo, which is dealt with in Section 7.4.

11.2 IN THE LEE OF A BREAKWATER
11.2.1 Equations of Deterministic Waves in the

Lee of a Breakwater
With a semi-infinite breakwater the deterministic surface elevation, pro-
vided that a very large wave of given height H occurs at some given point
xo,yo, is given by Eqn (8.83) with Eqn (7.41) of J:

hðR; b; T; ro; boÞ

¼ H

2

ZN
0

Z2p
0

Sðu; qÞf½Fðro; bo;u; qÞFðR; b;u; qÞ

þGðro; bo;u; qÞGðR; b;u; qÞ�½cos ðuTÞ� cos ðuT � uT�Þ� þ ½Fðro; bo;u; qÞ
$GðR; b;u; qÞ � Gðro; bo;u; qÞFðR; b;u; qÞ�
�½sin ðuTÞ � sin ðuT � uT�Þ�gdqdu=ZN
0

Z2p
0

S
�
u; q

��
F2

�
ro; bo;u; q

�þ G2
�
ro; bo;u; q

���
1� cos

�
uT���dqdu

(11.10)

As to T*, it is the lag of the minimum of

Jðro; bo; T; ro; boÞ

¼
ZN
0

Z2p
0

Sðu; qÞ�F2ðro; bo;u; qÞ þ G2ðro; bo;u; qÞ
�
$cos ðuTÞdqdu

(11.11)
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11.2.2 Occurrence of Exceptionally Large Waves
in the Lee of a Breakwater

The Cd (and consequently the maximum expected wave height) is surpris-
ingly high in the dark area of Fig. 7.2. On the other hand, the Cd in the
more sheltered area is practically the same as the Cd of the periodic waves.
What is the reason for this? To answer this question, let us see what we may
expect to happen when the maximum expected wave height in a design sea
state occurs at a point xo,yo of the more sheltered area; and what we may
expect to happen when the maximum expected wave height occurs at a point
xo,yo of the “dark area.”

As to the point of the more sheltered area, we fix

xo ¼ 1:5Lp; yo ¼ 0þ;

where 0þ means “in contact with the lee wall.” Figure 11.4 shows what
happens when the maximum expected wave height occurs at this point: a
wave group strikes the breakwater’s tip in full; thus, one half of the wave
crest hits the wall and one half enters the sheltered area and produces the
exceptionally large wave height at the fixed point. As to the point of the
“dark area,” we fix

xo ¼ Lp; yo ¼ 4Lp:

Figure 11.5 shows what happens when the maximum expected wave height
occurs at this point. Here, we see a novelty: for the first time, the QD theory
shows a wave group that does not travel in the dominant direction of the
spectrum: the dominant direction is wall-orthogonal, whereas the group at-
tacks from the left side. This wave group only grazes the tip of the break-
water with its right wing. The conclusion is evident: some wave groups
with a direction slightly different from the dominant direction of the spec-
trum can nearly strike home the dark area. This is the reason why the
maximum expected wave height in the dark area of the geometric shadow
proves to be unexpectedly large. This possibility does not exist with the pe-
riodic waves, which are strictly unidirectional.

11.3 EXPERIMENTAL VERIFICATION
All that has been said in Section 9.4 re field verification of the QD theory
holds for every configuration of the solid boundary. In 2011, an SSFE was
performed with an array of 24 gauges along the y-axis orthogonal to a ver-
tical breakwaterdsee Fig. 11.6. Figure 11.7 compares the random waves to
the deterministic waves, in a case of H/s ¼ 9.90. It was the largest value of
this ratio in the whole experiment. As we may see, the overall agreement
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n FIGURE 11.4 If xo,yo is at the lee wall of a breakwater, deterministic wave function Eqn (8.83)
represents a wave group that strikes the tip of the breakwater; and then one half of the wave crest
penetrates the geometric shadow, by diffraction.
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n FIGURE 11.5 If xo,yo is in the dark area of the geometric shadow of a breakwater (see Fig. 7.2),
deterministic wave function Eqn (8.83) represents a wave group that can nearly strike this point, thanks
to a small deviation from the dominant direction (the dominant direction of the spectrum of the incident
waves is wall-orthogonal, whereas the direction of the wave group is slightly inclined).
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n FIGURE 11.5 Continued
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between the deterministic waves and the random waves is strong even if we
are dealing with a case of a nonhomogeneous wave field, which is more
complex than a wave field in an open sea. Figure 11.7 proves that the inter-
action of wave group and breakwater described by the QD theory occurs in
the field. Specifically, the figure shows the occurrence of an exceptionally
large wave height at the second antinode (at one-half wave length from
the breakwater). According to the QD theory, this is due to a wave group
that strikes the breakwater, when at the center of the envelope, there are
two waves of nearly the same height: the first one that has just left the center
of the group and the next one that is going to replace the first one at the center
of the group. The wave of exceptionally large height at one-half wave length
from the wall has its crest at instant to and the trough at instant toþ 1.5 s. The
two consecutive waves of nearly the same large height at the breakwater are:
that with crest at to � 1.4 s and trough at to þ 0.1 s, and that with crest at
to þ 1.6 s and trough at to þ 3.1 1s.

11.4 CONCLUSION
This part of the QD theory was disclosed by the author (1988). A first SSFE
to verify the part of the QD theory concerning interactions between wind
seas and vertical breakwaters was performed in 1991, and was described
by the author (1997). It provided a confirmation that an exceptionally large
wave off a vertical breakwater is yielded by the collision of two wave
groups. However, that early experiment enabled only to test the predictions
of the theory in the time domain at a discrete number of points. The SSFE of
2011, with its test of the theory in the space domain, was described by the
author (2013). Some nonlinearity effects on the QD theory for what concerns
interactions with vertical breakwaters have been dealt with by Romolo and
Arena (2008, 2013).

n FIGURE 11.6 The gauges of a recent small-scale field experiment (2011) aimed to verify
the QD theory. There was an array of 24 pressure transducers, each of which is being connected with
a small vertical tube with a bending section (like a small periscope). Pressure head waves were
measured 0.80 m beneath the MWL.
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n FIGURE 11.7 Small-scale field experiment of 2011. What happened when a zero up-crossing
wave of H/s ¼ 9.90 was recorded by gauge no. 16 (the location of this gauge is shown by a small
vertical segment in the picture relevant to time instant to). Dashed line: actual (random) wave.
Continuous line: deterministic wave.
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12.1 MORISON EQUATION AND DRAG AND INERTIA
COEFFICIENTS

The sectional in-line force for the cylindrical members of a jacket platform
is usually calculated by means of the Morison equation (Morison et al.,
1950). With circular cylinders, this equation may be written in the form

fðtÞ ¼ CinrpR
2asect þ CdgrRvsectvsect (12.1)

where vsect is the component of the local velocity vector, of the water, normal
to the axis of the member; and asect is the component of the local acceleration
vector, of the water, normal to the axis of the member. Here, we are inter-
ested only in the mechanics of the forces exerted by the largest waves on
a whole frame structure. For a view of the conventional way to apply the
Morison equation (for example: how is it considered the effect of a current;
or what are the prescribed values of Cin and Cdg) or for a view of the various
loads in the design of fixed space frame structures, reference is made to the
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handbook edited by Chakrabarti (2005) (see, in particular, contribution by
Karsan (2005).

The inertia coefficient Cin and the drag coefficient Cdg depend on the
KeuleganeCarpenter number (KE) and the Reynolds number (RE):

KE h
vmaxT

D
(12.2)

RE h
vmaxD

y
(12.3)

The relationship between Cin, Cdg and KE, RE is well-known thanks to the
widespread plots of the book of Sarpkaya and Isaacson (1981), which are
based on the work of Sarpkaya (1975, 1977, 1979). Cin increases with the
increasing of RE in a different manner according to KE. Cdg decreases with
the increasing of RE in a different manner according to KE, reaches a mini-
mum, and then tends to an asymptotic value. Both Cin and Cdg are close to
their asymptotes, for

RE > 104KE; that is for (12.4a)

D2

yT
> 104 (12.4b)

Given that the wave period of wind-generated waves typically is smaller
than 20 s, a sufficient condition for Cin and Cdg being close to their asymp-
totic values is that

D > 0:45 m (12.5)

Sarpkaya’s asymptotic values are 1.85 and 0.62, respectively, for Cin and
Cdg. These values of Cin and Cdg are valid for smooth pipes. For roughened
pipes (with rigid and/or soft excrescencies), the asymptotic value of Cdg

grows (even markedly), and the asymptotic value of Cin decreases. Sumer
and Fredsoe (1997), basing themselves on data of Justesen (1989), suggested
a partially different picture for the smooth pipes. Specifically, on the range
6� KE� 20 the asymptotic value of Cin is smaller than 1.85 and that of
Cdg is greater than 0.62. The largest deviations occur at KE of 10O 15,
where the asymptote of Cin falls at about 1.45 and the asymptote of Cdg rises
up to nearly 1.0.

Besides the in-line force, there is a transverse (lift) force that is related to
vortex shedding. For a vertical cylinder, the ratio between the frequency
of the transverse force and the wave frequency generally grows with KE

(e.g., Williamson, 1985). In most cases of practical interest, the amplitude
of the transverse force is markedly smaller than the amplitude of the drag
component of the in-line force, as may be inferred from the above cited plots
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in the book of Sarpkaya and Isaacson. For most range of KE, the transverse
force is irregular even if the wave is periodic (Hayashi and Takenouchi,
1985).

12.2 FIELD TESTS OF MORISON EQUATION
12.2.1 A Recent Method for Obtaining Cin and Cdg
The Morison equation gives any component of the sectional force on a
cylinder that is either fx, fy, or fz in the form

fcðtÞ ¼ Cinf̂ inðtÞ þ Cdg f̂ dgðtÞ (12.6)

Here, as said, fc stands for either fx, fy, or fz; f̂ in depends on particle accel-
eration; and f̂ dg depends on particle velocity. In a sea state, f̂ inðtÞ and f̂ dgðtÞ
are stationary random functions. The problem is: provided that one
knows f̂ inðtÞ and f̂ dgðtÞ, find a pair Cin, Cdg such that the random function
fc(t) (where the subscript c stands for “calculated”) has the same basic
statistical properties as the random function fm(t), which represents the x,
y, or z component of the measured sectional force (being known). If the
equality

�
f nc ðtÞ

� ¼ �
f nmðtÞ

�
(12.7)

was satisfied for every integer n, fc(t) would be equal to fm(t). Of course, we
can find values of Cin and Cdg that satisfy only two of the infinite Eqn (12.7),
and sometimes the solution does not exist (in particular, Cin and Cdg that
satisfy Eqn (12.7) with n¼ 2 and n¼ 4 may not exist).

An effective method is obtaining Cin and Cdg so that the two following equa-
tions are satisfied:

�
f 2c ðtÞ

� ¼ �
f 2mðtÞ

�
(12.8)�

fcðtÞf̂ dgðtÞ
�

�
fcðtÞf̂ inðtÞ

� ¼
�
fmðtÞf̂ dgðtÞ

�
�
fmðtÞf̂ inðtÞ

� (12.9)

The first equation is necessary because fc must have the same variance as fm.
The second equation, conceptually, is like Eqn (12.7): it says that the result
of a given operation must be the same either done with the fc (LHS) or with
the fm (RHS). The two equations are of the type

a1C
2
dg þ a2C

2
in ¼ a3 (12.10)

Cdg ¼ a4Cin (12.11)

where the a1, a2, a3, and a4, are all known, and a1, a2, a3 are greater than 0.
(To check the step from Eqns (12.9)e(12.11), note that hf̂ dgðtÞf̂ inðtÞi ¼ 0).
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The Cin and Cdg plotted in Fig. 12.1 have been obtained with these equations
for submerged horizontal cylinders.KE, the abscissa, represents the Keulegane
Carpenter number of the sea state as a whole (later, we shall see the tech-
nique of calculation of this KE). The plot of Fig. 12.1(a) shows that
Cdg(KE) clearly intersects the horizontal coordinate axis close to KE¼ 5:
for KE< 5, Cdg is negative. This phenomenon is confirmed essentially in
the same way by an experiment with a truncated vertical cylinder.
The domain where Cdg is negative is a domain where the drag force plays

n FIGURE 12.1 Drag and inertia coefficient for a submerged horizontal cylinder as
functions of KE for several values of RE. Obtained from an SSFE of 2009e2011.
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a negligible role. Hence, nature itself shows a clear-cut boundary for the
domain of large bodies where the drag force gets negligible. A nearly spec-
ular situation proves to occur with KE greater than about 25, where the inertia
force plays a negligible role, and Cin takes on negative values. This could be
called the domain of very small bodies.

The existence of ranges wherein Cdg and Cin take on opposite values has
been found thanks to the linear form of Eqn (12.11). However, there are
two more useful consequences of Eqn (12.11). The first is that
Eqn (12.11), together with the commonly used Eqn (12.10), yields Cin

and Cdg for every sea state. The second is that the Cin and Cdg obtained
with Eqns (12.10) and (12.11) give a random process fc(t) that has the
same basic statistical properties as the random process fm(t), as we are going
to see, and this is all that counts from an engineering point of view.

12.2.2 Distribution of the Peaks of the Measured
Wave Force and of the Force Calculated with
the Morison Equation

Two small-scale field experiments (SSFEs), one on truncated vertical cylin-
ders, and one on horizontal cylinders, were performed in 2009e2011.
Cylinders of various diameters were used for each of the two experiments.

The fm was obtained with an array of eight pressure transducers (see
Fig. 12.2). The f̂ in and f̂ dg for the fy on a horizontal cylinder are given by

f̂ in ¼ rpR2ay (12.12)

f̂ dg ¼ rR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2y þ v2z

q
vy (12.13)

where

vy ¼ g
XN
i¼ 1

aiA1iðzcÞu�1
i ki cosðqiÞ cosð�uit þ εiÞ (12.14)

vz ¼ g
XN
i¼ 1

aiA2iðzcÞu�1
i ki sinð�uit þ εiÞ (12.15)

ay ¼ g
XN
i¼ 1

aiA1iðzcÞki cosðqiÞ sinð�uit þ εiÞ (12.16)

and zc is the depth of the cylinder center and A1iðzÞ and A2iðzÞ give the atten-
uation with depth:

A1iðzÞ ¼ cosh½kiðd þ zÞ�
coshðkidÞ ; A2iðzÞ ¼ sinh½kiðd þ zÞ�

coshðkidÞ (12.17)
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The ai, ui, and εiwere obtained from the Fourier series of the random surface
elevation measured by the ultrasonic probe above the instrumented section
of the cylinder. The angles qi were obtained from the surface elevations
measured by the pair of ultrasonic probes above the cylinder (see
Fig. 12.2 for the locations of the ultrasonic probes). The method followed
for obtaining angles qi is that described in Section 6.5.

In Fig. 12.3, the probability of exceedance of the peaks of the normalized
random process

f �c ðtÞ ¼ fcðtÞ
sf

(12.18)

is compared with the probability of exceedance of the peaks of the normal-
ized random process

f �mðtÞ ¼ fmðtÞ
sf

(12.19)

n FIGURE 12.2 The equipment of a small-scale field experiment of 2009e2011 on the effectiveness of the Morison equation.
(a) The experiment on a horizontal cylinder. (b) The experiment on a truncated vertical cylinder. (The diameters of the cylinders were changed in the course of
the experiment.)

232 CHAPTER 12 Calculation of Wave Forces on Three-Dimensional Space Frames



n FIGURE 12.3 Comparison between the distribution of the peaks of a random force
process calculated with the Morison equation, and the distribution of the peaks of the
actual random force process. The vy, vz, ay needed by the Morison equation were obtained by means
of the theory of sea states (Eqns (12.14)e(12.16)) with the ai, ui, εi, and qi being obtained from the
time series data of the surface elevation recorded by a pair of ultrasonic probes (see Fig. 12.2(a)), with
the method of Section 6.5. cin and cdg were obtained by means of the Eqns (12.8) and (12.9).
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Figure 12.3 deals with the horizontal force on the horizontal cylinders.
The three panels of the figure correspond to three distinct ranges of KE

of the sea state. The continuous line represents the Rayleigh distribution,
that is,

Pðpeak > bÞ ¼ exp

�
�b2

2

�
(12.20)

where b is an arbitrary threshold value. The probability of exceedance of the
peaks of the normalized force process grows as the KE of the sea state grows.
This trend is evident both with the fc process and with the fm process. The
closeness between the probability of exceedance of the peaks of the normal-
ized fc process and the probability of exceedance of the peaks of the normal-
ized fm process is evident in each of the three panels of the figure. The same
degree of agreement is found also with the horizontal wave force on the
vertical cylinder, and with the vertical force on the horizontal cylinder. All
of this proves that the Morison equation is effective with random wind-
generated waves.

12.2.3 The KE of a Sea State as a Whole
The f̂ inðtÞ and f̂ dgðtÞ for the y-component of the force on a vertical cylinder
are

f̂ inðtÞ ¼ �rpR2vmaxu sinðutÞ cos q (12.21)

f̂ dgðtÞ ¼ rRv2max

��cosðutÞ�� cosðutÞ cos q (12.22)

where q is the angle that the direction of wave advance makes with the
y-axis. It follows that

D
f̂
2

dgðtÞ
E

D
f̂
2

inðtÞ
E ¼ 3

4
v2maxT

2

p 44R2
(12.23)

where 3/4 on the RHS is the quotient between 3/8, which is the average of
cos4, and 1/2, which is the average of cos2. On inverting the RHS with the
LHS and using the definition Eqn (12.2), we obtain

KE ¼ p2
ffiffiffiffiffiffiffiffi
4=3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
f̂
2

dgðtÞ
E

D
f̂
2

inðtÞ
E

vuuut (12.24)

With a periodic wave, this equation gives the same value of KE, which is
given by Eqn (12.2). The advantage with respect to the definition
Eqn (12.2) is that the RHS of Eqn (12.24) can be univocally evaluated
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also for a random sea state, where f̂ dg and f̂ in may be obtained by means of
Eqns (12.12)e(12.17), on replacing vz by

vx ¼ g
XN
i¼ 1

aiA1iðzcÞ u�1
i ki sinðqiÞ cosð�uit þ εiÞ (12.25)

12.3 WORKED EXAMPLE
12.3.1 Object and Input Data
Calculation of the resultant in-line force on a part of an ideal frame structure
(Fig. 12.4).

Design sea state: Hs¼ 15 m; duration¼ 5 h; spectrum: mean JONSWAP
with A¼ 0.01; dominant direction: parallel to the y-axis (qd¼ 0); directional
distribution: Mitsuyasu et al. with np¼ 20. For the aim of a preliminary
estimate, we resort to the design sea state pattern (see Section 5.6.1), accord-
ing to which we have

H ¼ 27:8 m; Hs ¼ 15:0 m

n FIGURE 12.4 Worked example of Chapter 12. Scheme of a part of an ideal frame structure.
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12.3.2 Zero Up-Crossing or Zero Down-Crossing
Wave?

Let us consider the group of a zero up-crossing wave of a given, very large
height H (group that we shall call z.u.) and the group of a zero down-
crossing wave of the same height H (group that we shall call z.d.). These
wave groups are represented, respectively, in Fig. 12.5(a) and (b).

Now let us consider the in-line force on a vertical pile being located at
point xo, yo, and piercing the surface elevation. The time axis has been sub-
divided into eight intervals, and for each of these intervals, the sign has
been marked of vy (for the drag force) and ay (for the inertia force) for
both z.u. and z.d. From the figure, it may be recognized that the largest

n FIGURE 12.5 (a) A zero up-crossing wave group (z.u.) and (b) a zero down-crossing wave group
(z.d.). The largest force on a vertical cylinder piercing the sea surface is exerted by z.d. in time interval 5.
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in-line force will occur on interval no. 5 of the z.d. To reach this conclu-
sion, one should bear in mind that

1. the sectional drag force is larger, the larger the height of the wave
crest (or the depth of the wave trough);

2. the sectional inertia force is larger, the larger the difference of level is
between the trough and the crest (or the crest and the trough);

and value

1. whether or not the drag force has the same sign as the inertia force;
2. how much is the length of the pile that is loaded (this length being

greater in a wave crest than in a wave trough).

If the wave force on a structure were inertial (no drag), the load exerted by
z.d. would be equal and opposite to the load exerted by z.u. Because of the
drag force, the largest wave load exerted by z.d. typically exceeds the
largest wave load exerted by z.u., as we have just seen for the case of
the vertical pile piercing the surface elevation. This is why in the worked
example we shall consider the case of the maximum expected zero down-
crossing wave in the design sea state (of course, the maximum expected
zero down-crossing wave and the maximum expected zero up-crossing
wave have the same height in a given sea state, that is, 27.8 m in the present
worked example).

12.3.3 Calculation of Wave Force
FORTRAN program FRAME for a preliminary calculation of the resultant
in-line force is listed here below. This program reads file BEAM, which, at
the first line, gives the water depth d, and in the following lines gives the
diameter and the coordinates of the end-points of each member of the frame
structure:

File BEAM
125.0

2.4 �18.0 �18.0 �125.0 �18.0 �18.0 50.0
2.4 18.0 �18.0 �125.0 18.0 �18.0 50.0
2.4 �18.0 18.0 �125.0 �18.0 18.0 50.0
2.4 18.0 18.0 �125.0 18.0 18.0 50.0
1.2 18.0 �18.0 �50.0 �18.0 �18.0 0.0
1.2 18.0 �18.0 �50.0 18.0 18.0 0.0
1.2 �18.0 �18.0 �50.0 18.0 �18.0 �50.0
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Loop 100 lets T range in (�1.25Tp, 1.25Tp); loop 400 goes from member no. 1 to member no. 7; loop 500 subdivides
each member into 100 segments, and computes the wave force on each of these segments; and the quasi-determinism
(QD) subroutine listed in Section 9.3 is called inside loop 500 with input time T, and the coordinates X, Y, Z of the center
of each segment. The program calculates the force on a member whether fully or partially beneath the water surface. As a
conclusion, the program writes s¼ T/Tp, and the three components of the in-line wave force on the whole structure,
being given in kN.

PROGRAM FRAME
CHARACTER*64 NOMEC
DIMENSION X1V(200),Y1V(200),Z1V(200),DV(200)
DIMENSION X2V(200),Y2V(200),Z2V(200)
COMMON D,HS,H,TP,TST,ALPHA,TETAD,RNP
COMMON IMAX,JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
PG¼3.141592
DPG¼2.*PG
WRITE(6,*)’number of members’
READ(5,*)NB
NOMEC¼’BEAM’
OPEN(UNIT¼50,STATUS¼’OLD’,FILE¼NOMEC)
NOMEC¼’FORCE1’
OPEN(UNIT¼60,FILE¼NOMEC)
READ(50,*)D
DO N¼1,NB
READ(50,*)DV(N),X1V(N),Y1V(N),Z1V(N),
X2V(N),Y2V(N),Z2V(N)
ENDDO
WRITE(6,*)’Hs,H’
READ(5,*)HS,H
WRITE(6,*)’alpha, thetad(degree),np’
READ(5,*)ALPHA,TETAD,RNP
WRITE(6,*)’zero up-crossing wave -> 1, down-crossing -> -1’
READ(5,*)UD
TETAD¼TETAD*PG/180

RO¼1.03E3
CIN¼1.85
CDG¼0.62
DTAU¼0.02
NCALL¼0
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)

c this call of QD, with NCALL¼0, serves to store the directional spectrum
NCALL¼1

DO 100 J¼1,126
c Loop 100: dimensionless time instants
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.TAU¼-1.25+FLOAT(J-1)*DTAU
T¼TAU*TP

c FXT¼ x component in-line force on the whole structure
c FYT¼ y component in-line force on the whole structure
c FZT¼ z component in-line force on the whole structure

FXT¼0
FYT¼0
FZT¼0
DO 400 N¼1,NB

c Loop 400: all the members
R¼DV(N)/2.
X1¼X1V(N)
Y1¼Y1V(N)
Z1¼Z1V(N)
X2¼X2V(N)
Y2¼Y2V(N)
Z2¼Z2V(N)
DEX¼X2-X1
DEY¼Y2-Y1
DEZ¼Z2-Z1
RL¼SQRT(DEX*DEX+DEY*DEY+DEZ*DEZ)
SX¼DEX/RL
SY¼DEY/RL
SZ¼DEZ/RL

c SX,SY,SZ are the components of a unit vector parallel
c to the member axis

DX¼DEX/100.
DY¼DEY/100.
DZ¼DEZ/100.
DS¼RL/100.
X¼X1-DX/2.
Y¼Y1-DY/2.
Z¼Z1-DZ/2.

c FXB¼ x component in-line force on the Nth member
c FYB¼ y component in-line force on the Nth member
c FZB¼ z component in-line force on the Nth member

FXB¼0
FYB¼0
FZB¼0
DO 500 I¼1100

c Loop 500: each member is subdivided into 100 segments; loop 500 covers
c these segments

X¼X+DX
Y¼Y+DY
Z¼Z+DZ

c X,Y,Z are the coordinates of the center of one of the 100 segments
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.CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
IF(Z.GT.ETA)GO TO 500
VS¼VX*SX+VY*SY+VZ*SZ
VSECTX¼VX-VS*SX
VSECTY¼VY-VS*SY
VSECTZ¼VZ-VS*SZ

c VSECTX, VSECTY, VSECTZ are the components of vector vsect
VSECT¼SQRT(VSECTX**2+VSECTY**2+VSECTZ**2)
AS¼AX*SX+AY*SY+AZ*SZ
ASECTX¼AX-AS*SX
ASECTY¼AY-AS*SY
ASECTZ¼AZ-AS*SZ

c ASECTX, ASECTY, ASECTZ are the components of vector asect
FINX¼RO*PG*R*R*ASECTX
FDGX¼RO*R*VSECT*VSECTX
FINY¼RO*PG*R*R*ASECTY
FDGY¼RO*R*VSECT*VSECTY
FINZ¼RO*PG*R*R*ASECTZ
FDGZ¼RO*R*VSECT*VSECTZ
FXB¼FXB+(CIN*FINX+CDG*FDGX)*DS
FYB¼FYB+(CIN*FINY+CDG*FDGY)*DS
FZB¼FZB+(CIN*FINZ+CDG*FDGZ)*DS

500 CONTINUE
FXT¼FXT+FXB
FYT¼FYT+FYB
FZT¼FZT+FZB

400 CONTINUE
c Conversion from N to kN

FXT¼1.E-3*FXT
FYT¼1.E-3*FYT
FZT¼1.E-3*FZT
WRITE(60,1000)TAU,FXT,FYT,FZT
WRITE(6,1000)TAU,FXT,FYT,FZT

1000 FORMAT(2X,F7.2,3(2X,E12.4))
100 CONTINUE

WRITE(6,*)
WRITE(6,*)’read results on file FORCE1’
END

Figure 12.6 shows that Fy. Fx is negligible given that the dominant direction
of the sea state is parallel to the y-axis, and hence, the wave group moves
along the y-axis. Fz is due only to the diagonals and the horizontal member,
and has a negative maximum of about �370 kN and a positive maximum of
290 kN.
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12.4 CONCLUSION
The SSFEs of 2009e2011 aiming to test the effectiveness of the Morison
equation were described by Boccotti et al. (2011) and (2013). For the first
time, the particle velocities were obtained from the database ai, ui, qi of
the directional spectrum (obtained with the technique of Section 6.5 and rele-
vant software). This is preferable to proceed from time series data of particle
velocity for two reasons: First, the new approach is consistent with engineer-
ing practice, wherein one typically starts from a given directional spectrum.
Second, there are some difficulties with time series data of particle velocity
when working in the field. This is because Morison equation calls for the
particle velocity that would be at the center of the solid cylinder if this cyl-
inder was not there, and, in the field, the time series of particle velocities are
not repeatable, and the wave motion is three-dimensional (these ideas are
explained most clearly by Wolfram and Naghipour, 1999). Also, the method
to obtain Cin and Cdg with Eqns (12.8) and (12.9) was used for the first time
in the two above cited SSFEs. Until now, a method that has often been used
is the method of moments (Pierson and Holmes, 1965), which is based on the
two equations that proceed from Eqn (12.7) with n being equal, respectively,

n FIGURE 12.6 Worked example of Chapter 12. (a) Wave group of the maximum expected zero
down-crossing wave height, in the design sea state; (b) horizontal in-line force exerted on the frame
structure.
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to 2 and 4. Another classic method is that of Borgman (1965), who suggested
obtaining Cin and Cdg so that the spectrum Efc of fc(t) is the best least square
fit of the spectrum Efm of fm(t).

Those commonly used to compute wave forces on frame structures are
statistical methods. A relatively simple method can be applied with long-
crested waves if the drag force is negligible with respect to the inertia force
(although with diffraction effects being still negligible). In that case, one
can obtain the response spectrum of fc(t) through a transfer function, from
the wave spectrum E(u) (see Naess and Moan, 2005 for the general proce-
dure). In this special case, the random process fc(t) will be stationary
Gaussian, and hence, it will have the set of statistical properties peculiar
to these random processes (see Chapter 4). If one keeps the assumption
that the waves are long-crested, removes the restriction about the weight
of the drag component, and introduces the new restriction that the cylinder
must be vertical, then the solution for the pdf of the wave force fc(t) exists,
is due to Borgman (1972), and is reproposed in an alternative way by
Hudspeth (2006). Of course, this time the pdf is generally not Gaussian.
The statistical approach can overcome the aforementioned restrictions as
to the nature of waves and/or geometry of the cylinder. For this aim, one
must resort to Montecarlo simulations, specifically to numerical simulations
of the random surface elevation (Eqn (6.8)) and particle velocities and accel-
erations that proceed from random velocity potential (Eqn (6.9)), for a given
directional spectrum. With the worked example of Section 12.3, one will
have to perform many numerical simulations of the design sea state, looking
at the Fy(t) in the largest wave of each simulation. The QD theory let us pass
from this Montecarlo approach to the hard core of mechanics. It says: “when
the largest wave in the lifetime will strike the structure, it will be (more or
less) as if the center of the structure coincides with the center of the framed
area of Fig. 9.1, and the largest wave is wave B of said figure.”
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13.1 WAVE FORCES ON A GRAVITY OFFSHORE
PLATFORM

What follows is a worked example of an estimate of the wave force on the
offshore gravity platform of Fig. 13.1. The data of the design sea state and
the estimate of the largest wave height in the lifetime are the same as in the
worked example of Chapter 12.

13.1.1 Calculation of the Diffraction Coefficient
For calculating Cdo of the base, we refer to the circular cylinder of the same
area as the base. This has a radius of R¼ 45 m. Taking F R ¼ 1.75 for the
platform base and F R ¼ 2.00 for the columns that have an average radius of
8.5 m, with the program of Section 10.7 (with Tp¼ 16.5 s), we obtain

platform base : Cdo ¼ 1:54

columns : Cdoy 2:00
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13.1.2 Calculation of the Wave Force
The FORTRAN program PLAT for a preliminary calculation of the wave
force on a gravity offshore platform is listed here below. Point xo,yo is taken
at the center of the platform. The data of the geometry of the structure are
read from the following file:

File PLATGEO
140.0 d
60.0 HTANK (height vertical cylinders)
110.0 HCOL (height columns)
20.0 DCYL (diameter vertical cylinders)
20.0 DCOL1 (greater diameter column)
14.0 DCOL2 (smaller diameter column)
19 number of vertical cylinders
coordinates centers cylinders:

0.0 �40.0
17.3 �30.0
34.6 �20.0
34.6 0.0
34.6 20.0

n FIGURE 13.1 First worked example, Chapter 13: plan and front view (essential scheme) of a hypothesis of support structure of a gravity offshore platform
(for details on this kind of structure, see Dawson, 1983).
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17.3 30.0
0.0 40.0
�17.3 30.0
�34.6 20.0
�34.6 0.0
�34.6 �20.0
�17.3 �30.0
0.0 �20.0
17.3 �10.0
17.3 10.0
0.0 20.0
�17.3 10.0
0.0 �10.0
0.0 0.0

c 3 number of columns
c coordinates centers columns:

0.0 �20.0
17.3 10.0
�17.3 10.0

Loop 100 lets T range in (�1.25Tp,1.25Tp); loop 400 and loop 410 inside
loop 100 compute, respectively, the force on the base and the columns, at
the given T. Loop 500 inside loop 400 subdivides each of the 19 cylinders
of the base into five segments of 12 m in height and computes the wave force
on these segments. Loop 510 inside loop 410 subdivides the wet piece (i.e.,
from z¼�80 m to z¼ h) of a column into 20 segments and computes the
wave force on each of these segments. Subroutine QD is called both in
the loop 500 and in the loop 510, and provides the ax; ay, which serve
for computing the FroudeeKrylov force.

A simple way to consider the effect of the 24 interstices among the 19 cyl-
inders of the base is multiplying the force on the 19 cylinders by the ratio
(¼1.065) between the volume of the base and the volume of the 19 cylin-
ders. The program writes T / Tp, and Fx, Fy in kN.

PROGRAM PLAT
CHARACTER*64 NOMEC
DIMENSION XCI(20),YCI(20)
DIMENSION XCO(10),YCO(10)
COMMON D,HS,H,TP,TST,ALPHA,TETAD,RNP
COMMON IMAX,JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
NOMEC¼’PLATGEO’
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.OPEN(UNIT¼50,STATUS¼’OLD’,FILE¼NOMEC)
READ(50,*)D
READ(50,*)HTANK
READ(50,*)HCOL
READ(50,*)DCYL
READ(50,*)DCOL1
READ(50,*)DCOL2
READ(50,*)NCYL
READ(50,*)
DO N¼1,NCYL
READ(50,*)XCI(N),YCI(N)
ENDDO
READ(50,*)NCOL
READ(50,*)
DO N¼1,NCOL
READ(50,*)XCO(N),YCO(N)
ENDDO

NOMEC¼’FORCE2’
OPEN(UNIT¼60,FILE¼NOMEC)
PG¼3.141592
DPG¼2.*PG
WRITE(6,*)’Hs,H’
READ(5,*)HS,H
WRITE(6,*)’alpha,thetad(degree),np’
READ(5,*)ALPHA,TETAD,RNP
WRITE(6,*)’zero up-crossing wave -> 1, down-crossing -> -1’
READ(5,*)UD
TETAD¼TETAD*PG/180.
WRITE(6,*)’diffraction coefficients base and columns’
READ(5,*)CDBA,CDCO
RO¼1.03E3
DTAU¼0.02
NCALL¼0
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)

c this call of QD, with NCALL¼0, serves to store the directional spectrum.
NCALL¼1

DO 100 J¼1,126
c Loop 100: time

TAU¼�1.25+FLOAT(J-1)*DTAU
T¼TAU*TP

c FX x-component Froude-Krylov force on the base of the platform
c FY y-component Froude-Krylov force on the base of the platform

FX¼0
FY¼0
DO 400 N¼1,NCYL
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c Loop 400: vertical cylinders of the base
R¼DCYL/2
X¼XCI(N)
Y¼YCI(N)
DS¼HTANK/10
DO 500 I¼1,10

c each vertical cylinder is subdivided into 10 pieces;
c loop 500 covers these 10 pieces.

Z¼-D+FLOAT(I-1)*DS+DS/2
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
COFI¼RO*PG*R*R*DS
FX¼FX+COFI*AX
FY¼FY+COFI*AY

500 CONTINUE
400 CONTINUE
c effect of the interstices among the vertical cylinders

FBX¼FX*1.065
FBY¼FY*1.065

c step from Froude-Krylov force to force on the solid body (base)
FBX¼FBX*CDBA
FBY¼FBY*CDBA

c conversion from N to kN
FBX¼FBX*1.E�3
FBY¼FBY*1.E�3

c Here the calculation of the wave force on the base has been completed.
c Now the calculation of the wave force on the columns starts

c FX x-component Froude-Krylov force on the columns
c FY y-component Froude-Krylov force on the columns

FX¼0
FY¼0
DO 410 N¼1,NCOL

c Loop 410 columns
X¼XCO(N)
Y¼YCO(N)
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
HCOLW¼d-HTANK
DS¼(HCOLW+ETA)/20
DO 510 I¼1,20

c the wet portion of a column is subdivided into 20 pieces;
c loop 510 covers these 20 pieces

ZI¼FLOAT(I-1)*DS+DS/2.
Z¼-HCOLW+ZI
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
DIAM¼DCOL1+(DCOL2-DCOL1)*ZI/HCOL
R¼DIAM/2
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.COFI¼RO*PG*R*R*DS
FX¼FX+COFI*AX
FY¼FY+COFI*AY

510 CONTINUE
410 CONTINUE
c step from Froude-Krylov force to force on the solid body (columns)

FCX¼FX*CDCO
FCY¼FY*CDCO

c conversion from N to kN
FCX¼FCX*1.E-3
FCY¼FCY*1.E-3

c Here the calculation of the wave force on the columns has been completed
c FTX is the x-component of the wave force on the whole structure
c FTY is the y-component of the wave force on the whole structure

FTX¼FBX+FCX
FTY¼FBY+FCY
WRITE(60,1000)TAU,FTX,FTY
WRITE(6,1000)TAU,FTX,FTY

1000 FORMAT(2X,F7.2,2X,E12.4,2X,E12.4)
100 CONTINUE

WRITE(6,*)
WRITE(6,*)’read results on file FORCE2’
END

Figure 13.2 shows the horizontal force Fy on the whole structure. Since the angle qd between the dominant direction
and the y-axis is zero, the wave group moves along the y-axis, so that the horizontal force proves to be parallel to the
y-axis (x-component negligible).

13.2 WAVE FORCES ON A SUBMERGED TUNNEL
What follows is a worked example of an estimate of the wave force on the submerged tunnel of Fig. 13.3, which has
a length of 1000 m and is supported by five piers.

13.2.1 Wave Height and Diffraction Coefficients
Design sea state: Hs¼ 8 m; duration¼ 7 h; spectrum: mean JONSWAP, with A¼ 0.01; dominant direction: qd¼ 0
(orthogonal to the tunnel axis); directional distribution: Mitsuyasu et al. with np¼ 20. For the aim of a preliminary
estimate, we resort to the DSSP (see Section 5.6.1). The maximum bending moment in the tunnel occurs if the center
of a wave group (like that of Fig. 9.1) strikes a pier. Hence, we must calculate the maximum expected wave height at
the five locations of the piers, in the design sea state. Following Section 6.2, this maximum expected wave height at
five points (roughly aligned with the wave crests, and with a distance from each other, greater than Lp0/2) may be
estimated as the maximum expected wave height at one point in a duration of time five times greater than the actual
duration of the sea state. The conclusion turns out to be

H ¼ 16:8 m; Hs ¼ 8:0 m
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The suggested value of F R for a submerged tunnel is 2.0, and with this
value of F R and Tp of 12.1s, the FORTRAN program of Section 10.7
gives

Cdo ¼ 1:91

Conservatively, Cdv will be assumed equal to Cdo :

n FIGURE 13.2 First worked example, Chapter 13: (a) wave group of the maximum
expected wave height in the design sea state, (b) horizontal force exerted on the structure
(baseþ columns).

n FIGURE 13.3 Second worked example, Chapter 13: a hypothesis of submerged tunnel.
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13.2.2 Calculation of Wave Force
FORTRAN program TUNN for a preliminary calculation of the wave
load on the tunnel is listed below. Loop 100 lets T range in (�1.3Tp,
1.8Tp); loop 400 computes the sectional wave force on a length of tunnel
of 600 m that is, more or less, the length of the crest of a wave group at
the apex of its development stage, in the design sea state.

Subroutine QD is called in the loop 400, and provides the ay; az, which
serve for computing the FroudeeKrylov force. The sectional force fy and
the sectional force fz are stored, respectively, on FPVY(J,N) and FPVZ(J,N),
where J is associated with T, and N is associated with X. Loop 600 writes
fy(X) or fz(X) in kN/m at the time instants s¼ T / Tp in which these forces
get a local maximum.

PROGRAM TUNN
CHARACTER*64 NOMEC
DIMENSION FYV(300),FZV(300),TAUV(300)
DIMENSION FPYV(300,200),FPZV(300,200)
COMMON D,HS,H,TP,TST,ALPHA,TETAD,RNP
COMMON IMAX, JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
NOMEC¼’LOAD1’
OPEN(UNIT¼60,FILE¼NOMEC)
PG¼3.141592
DPG¼2.*PG
WRITE(6,*)’Hs,H’
READ(5,*)HS,H
WRITE(6,*)’alpha,thetad(degree),np’
READ(5,*)ALPHA,TETAD,RNP
WRITE(6,*)’zero up-crossing wave -> 1, down-crossing -> -1’
READ(5,*)UD
TETAD¼TETAD*PG/180
WRITE(6,*)’horizontal and vertical diffraction
coefficients’
READ(5,*)CDO,CDV
RO¼1.03E3
D¼125.

c DIAM diameter tunnel
c ZCE z tunnel center
c RLT length of tunnel being considered

DIAM¼25
R¼DIAM/2.
ZCE¼�42.5
RLT¼600.
DX¼RLT/60.
DTAU¼0.02
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.NCALL¼0
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)

c this call of QD, with NCALL¼0, serves to store the directional spectrum
NCALL¼1

DO 100 J¼1,156
c Loop 100:time

TAU¼-1.30+FLOAT(J-1)*DTAU
WRITE(6,5010)TAU

5010 FORMAT(2X,F7.2)
TAUV(J)¼TAU
T¼TAU*TP

c FYV(J) resultant wave force (y-component) on the piece
c of tunnel being considered
c FZV(J) resultant wave force (z-component) on the piece
c of tunnel being considered

FYV(J)¼0
FZV(J)¼0
DO 400 N¼1,61

c Loop 400:X (axis tunnel)
X¼-RLT/2.+FLOAT(N-1)*DX
Y¼0
Z¼ZCE
CALL QD(NCALL,UD,X,Y,Z,T,VX,VY,VZ,AX,AY,AZ,ETA)
COFI¼RO*PG*R*R

c FPYV(J,N) wave force per unit length (y-component)
c FPZV(J,N) wave force per unit length (z-component)

FPYV(J,N)¼CDO*RO*PG*R*R*AY
FPZV(J,N)¼CDV*RO*PG*R*R*AZ

c conversion from N to kN
FPYV(J,N)¼1.E-3*FPYV(J,N)
FPZV(J,N)¼1.E-3*FPZV(J,N)
FYV(J)¼FYV(J)+FPYV(J,N)*DX
FZV(J)¼FZV(J)+FPZV(J,N)*DX

400 CONTINUE
100 CONTINUE

DO 600 J¼2,154
c Loop 600: time
c tau¼TAUV(J)
c jFy(tau-dtau)j¼AFY1
c jFy(tau)j¼AFY2
c jFy(tau+dtau)j¼AFY3

AFY1¼ABS(FYV(J-1))
AFY2¼ABS(FYV(J))
AFY3¼ABS(FYV(J+1))
IF(AFY2.GT.AFY1.AND.AFY2.GT.AFY3)THEN
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c a local maximum (or minimum) of Fy has been found
WRITE(60,1000)TAUV(J)

1000 FORMAT(//,6X,’TAU ¼ ’,F7.2,4X,’(fy)’,/)
DO 490 N¼1,61

c Loop 490:X (axis tunnel)
X¼-RLT/2.+FLOAT(N-1)*DX
WRITE(60,1001)X,FPYV(J,N)

1001 FORMAT(2X,F6.0,2X,F6.1)
490 CONTINUE

ENDIF
c jFz(tau-dtau)j¼AFZ1
c jFz(tau)j¼AFZ2
c jFz(tau+dtau)j¼AFZ3

AFZ1¼ABS(FZV(J-1))
AFZ2¼ABS(FZV(J))
AFZ3¼ABS(FZV(J+1))
IF(AFZ2.GT.AFZ1.AND.AFZ2.GT.AFZ3)THEN

c a local maximum (or minimum) of Fz has been found
WRITE(60,1002)TAUV(J)

1002 FORMAT(//,6X,’TAU ¼ ’,F7.2,4X,’(fz)’,/)
DO 491 N¼1,61

c Loop 491:X (axis tunnel)
X¼-RLT/2.+FLOAT(N-1)*DX
WRITE(60,1001)X,FPZV(J,N)

491 CONTINUE
ENDIF

600 CONTINUE
WRITE(6,*)
WRITE(6,*)’read results on file LOAD1’
END

Figure 13.4 shows the local maxima of fy and fz. A local maximum of fy takes
place when a zero of the wave group transits over the axis of the tunnel. A
local maximum of fz takes place when a crest or a trough of the wave group
transits over the axis of the tunnel.

The SSFE of 1993 at the NOEL on submerged tunnels (Boccotti, 1996)
showed a slight asymmetry between positive and negative peaks of the ver-
tical wave force. This is a nonlinearity effect being due to the kinetic term of
the wave pressure. This term reduces both the wave pressure on the upper
half cylinder and on the lower half. However, the reduction on the upper
half is greater than the reduction on the lower half that somewhat enhances
the upward (positive) wave force and reduces the downward (negative) force.
The kinetic term of the wave pressure can be evaluated from the vx, vy, and vz
obtained from the subroutine QD, on the cylinder surface. However, for the
sake of simplicity in this example program, this term has been neglected.
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n FIGURE 13.4 Second worked example, Chapter 13: peaks of the wave load on the tunnel, under the
wave group of the maximum expected wave height in the design sea state.
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n FIGURE 13.4 Continued
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13.3 CONCLUSION
Wave forces on large bodies under regime of wave diffraction are calculated
with the use of Green’s functions (John, 1949, 1950; Mei, 1989). The geom-
etry of the structures is described with a large number of panels, which
makes the program slower and requires a large PC memory (Chakrabarti,
2005). This is for a single periodic wave. If we would pass to a random
sea state, that is, to a summation of harmonic wave components with
different frequencies, with the need to cover some large time interval (for
getting a satisfactory statistical confidence), the computational problems
would become really very great. Chapter 10 eliminates these computational
problems, so that the calculation of the wave force on large bodies is reduced
to something simple as programs PLAT and TUNN of the present chapter.
The gist of Chapter 10 is that there is a simple relationship between the deter-
ministic force exerted by a wave group on a large body and the deterministic
force that this wave group exerts on a water mass equivalent to the solid
body. In the author’s opinion, the progress of the models for calculation
of wave load has the following sequence:

step 1 periodic, unidirectional wave,

step 2 long-crested random waves,

step 3 short-crested random waves,

step 4 deterministic mechanics of wave groups.

With “small bodies” (Chapter 12), the QD theory has enabled us to advance
from step 3 to step 4; with “large bodies” (present chapter), the QD theory
has enabled us to jump from step 1 to step 4.
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14.1 OVERALL STABILITY OF AN UPRIGHT SECTION
14.1.1 The Equilibrium Problem
The wave pressures on an upright section (caissonþ concrete crown), under
a wave crest and a wave trough, are shown in Fig. 14.1.

Figure 14.2 shows the forces on the upright section: weight P* in still water,
wave forces F and Sw, and horizontal and vertical reactions Ro and Rv of the
rubble mound. For the equilibrium, we have

jRoj ¼ jFj (14.1)

Rv ¼ P� � Sw (14.2)

where the uplift force Sw is positive under the wave crest and negative under
the wave trough. The position of Rv is such that the free body is in
equilibrium:

M þ RveR ¼ P�eP (14.3)
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with M being the overturning moment due to wave forces F and Sw (under a
wave trough, Sw gives a negative contribution toM). Under a wave crest, the
topple axis is O1 so that eP¼ eP1 and eR¼ eR1; and under a wave trough, the
topple axis is O2 so that eP¼ eP2 and eR¼ eR2.

A static analysis of the upright section with the extreme wave load is usu-
ally done, at least for preliminary design purposes. The stability of the up-
right section is examined for three modes of failure.

Against sliding. We must verify that the safety factor

C1 h
mRv

jRoj ¼
mðP� � SwÞ

jFj (14.4)

n FIGURE 14.1 Wave pressure on the wall and on the base of an upright breakwater.

n FIGURE 14.2 Reference scheme for the stability analysis.
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is greater than some dictated value C1 min >1. mRv (friction coefficient�
vertical reaction) is the limit shear force that can be developed at the base
of the caisson. Thus, we check that the limit horizontal reaction (that the
rubble mound can exert) is suitably greater than the actual horizontal reac-
tion the rubble mound is expected to exert.

Against overturning. We must verify that the safety factor

C2 h
P�eP
M

(14.5)

is greater than some dictated value C2 min >1. Indeed, were P*eP equal toM,
then eR would be zero (cf. Eqn (14.3)), and hence the overturning would
occur. Then, C2 min should be greater than C1 min, given that C1 can approach
1 without breakwater sliding, while a failure will occur certainly before than
C2 approaches 1. This will be the collapse of foundation, given that as C2

approaches 1, eR approaches zero, and hence the bearing pressure atO1 tends
to infinity.

Against collapse of foundation. A common procedure is to check that the
largest toe pressure is within 4$105O 5$105 N/m2. An alternative way
may be verifying that the safety factor

C3 h
BC

Rv=2eR
(14.6)

is greater than some dictated value C3 min >1. The denominator on the RHS
of this formula gives the bearing pressure, and the numerator (BC) represents
the bearing capacity, which depends on the characteristics of the soil, on the
ratio Ro/Rv, and on eR.

The verifications of the stability against overturning and against collapse of
foundation really aim to check the stability against one mode of failure:
under the wave force, eR is reduced so that the bearing pressure at the
heel of upright section becomes too large, the soil collapses and the structure
tilts and sinks into the ground.

14.2 WAVE PRESSURES
14.2.1 Goda’s Model
Following Goda (2000), the Hs and H for the design of a breakwater are

Hs ¼ CsHs0 if dn=L0 > 0:2 (14.7)

Hs ¼ Min ðb0Hso þ b1dn; bmaxHso ;CsHsoÞ if dn=L0 < 0:2 (14.8)
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H ¼ 1:8CsHs0 if dn=L0 > 0:2 (14.9)

H ¼ Min
�bb0Hs0 þ bb1dn; bbmaxHs0 ; 1:8CsHs0

�
if dn=L0 < 0:2 (14.10)

where Cs is the shoaling coefficient: the terms b are due to dissipation of
wave energy, with b0, b1, bmax, and bb0; bb1; bbmax; depending on sea bottom
slope l, and b0, bmax, bb0; bbmax; also depending on the wave steepness Hs0/
L0. If there is refraction and/or diffraction from deep water to water depth dn,
Hs0 must be intended as the actual deep water significant wave height multi-
plied by the diffraction coefficient (Cd) and the refraction coefficient (Cr). Cd

is estimated by means of Eqn (7.50), and Cr by means of a similar equation
based on the deep water directional spectrum.

The distribution of wave pressure on the wall and on the base is given by
the following equations, wherein reference is made to Fig. 14.3:

hmax ¼ 3
4
ð1þ cos qÞH (14.11)

pw1 ¼ 1
2
ð1þ cos qÞ �a0 þ a00cos2 q

�
gH (14.12)

pw ¼ a000pw1 (14.13)

pw2 ¼ 1
2
ð1þ cos qÞa0a000gH (14.14)

where

a0 ¼ 0:6þ 1
2

�
2kdn

sinh ð2kdnÞ
�2

(14.15)

a00 ¼ Min

"�
d0n � d

3d0n

	�
H

d

	2

; 2
d

H

#
(14.16)

a000 ¼ 1� d0

dn

�
1� 1

cosh ðkdnÞ
�

(14.17)

n FIGURE 14.3 Reference scheme for Goda’s model (GM).
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where d0n denotes the water depth at a distance of 5Hs seawards of the break-
water. Cautiously, it is suggested that the wave direction is rotated by an
amount of up to 15� toward the line normal to the breakwater from the prin-
cipal wave direction.

As to the wave period, Goda uses T1/3, that is, the average period of the
largest 1/3 waves of the sea state. This period proves to be very close to
Thdthe wave period of very large waves, which proceeds from the autoco-
variance (see Section 4.5.1). In an SSFE on 750 sea states consisting of wind
seas, the average T1/3/Th was equal to 0.994 (cf. Boccotti et al., 2012). As for
the negative wave pressures, under wave troughs, Goda (2000) supplies a
diagram (see his Fig. 4.9) that enables one to estimate the resultant force
for given wave height and period and water depth.

14.2.2 The Virtual-Height Model
Nonlinearity effects yield some characteristic deformation of wave pressure
at a breakwater (without changing the overall configuration of wave
groups). Roughly, it is as if the positive pressures were those of a linear
wave, and the negative pressures were those of a linear wave with a larger
height. This is what emerged from the SSFE described in Chapter 13 of a
previous book. As a consequence, the following model was suggested for
the largest positive pressures and the largest negative pressures, respec-
tively, of a given sea state

wave crest Dp ¼

8><>:
gHþ cosh ½kðd þ zÞ�

cosh ðkdÞ if z � 0

gðHþ � z
�

if z > 0

(14.18)

wave trough Dp ¼

8><>:�g H� cosh ½kðd þ zÞ�
cosh ðkdÞ if Dp > �pid

�pid otherwise

(14.19)

Equation (14.18) gives the average pressure distribution of a given share of
the largest positive peaks of the horizontal force on the breakwater. Equation
(14.19) gives the average pressure distribution of a given share of the largest
negative peaks of the horizontal force on the breakwater. In these equations,
Hþ and H� are virtual wave heights that depend on whether the given share
is, for example, 1/1000 or 1/100. In particular,

Hþ ¼ 1:40Hs; H� ¼ 2:31Hs (14.20)

with the 1/1000 largest waves of a sea state.
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14.3 EVIDENCES FROM SSFEs
The SSFE of Boccotti (2000) covered only the range 0.15< d/Lp0< 0.20.
An SSFE covering a wider range of d/Lp0 was performed in 2009dsee
Fig. 14.4. For the aims of the following synthesis:

Fþ will be the average of the 1/1000 share of the largest positive force
peaks measured in a sea state;
Fþ
GM , the largest positive wave force in a sea state, calculated accord-

ing to the GM;

3.0 m

1.88 m

3.1 m

1.14 m

25 m

16.2 m

16 Pressure transducers

16 Pressure transducers

Ultrasonic probes

n FIGURE 14.4 The vertical breakwater used for the SSFE of 2009 on a wide range of d/Lp0. Water depth d was equal to 1.88 mþ tide level.
The tide amplitude was within 0.16 m.
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Fþ
VHM , the average of the 1/1000 share of the largest positive force peaks

in a sea state calculated according to the virtual-height model (VHM);
F�, F�

GM ; and F
�
VHM ; will have the same meaning as Fþ,

Fþ
GM ; and F

þ
VHM ; with the only difference to represent the absolute

values of the force exerted by a wave trough instead of the force
exerted by a wave crest. F�

GM is based on the abacus of Fig. 4.9 of the
book of Goda (2000), with H given by Eqn (14.10).
Fþ
GM ;F

þ
VHM ;F

�
GM ; and F

�
VHM were obtained from the Hs, Th or T1/3 of

the measured incident waves.

The following emerges from the SSFE of 2009:

Fþ
GM is a 3% smaller than Fþ on the range (0.10< d/Lp0< 0.15),

Fþ
GM is greater than Fþ, of 7e9%, on the range (0.15< d/Lp0< 0.25),

Fþ
VHM with the virtual wave height Hþ of 1.4 Hs underestimates Fþ

from the 5% to the 10%,
F� is smaller than Fþ for d/Lp0< 0.15,
F� is equivalent to Fþ for 0.15< d/Lp0< 0.20,
F� is greater than Fþ for d/Lp0> 0.20

which implies that the verification of the stability under wave trough usually
becomes important only for d/Lp0> 0.20. Hence, we focus negative wave
forces only on this range, where the picture is the following:

F�
GM is about the 20% smaller than F�, on 0.20< d/Lp0< 0.30,

whereas F�
VHM with

H� ¼ 3:0Hs on the range 0:20 < d


Lp0 < 0:30 (14.21)

gives a nearly perfect agreement with the measured pressure distributions.

The wide (though not exhaustive) test of the 2009 SSFE suggests that the GM
is being widely used and yielding forces that are close to, or somewhat greater
than, F1/1000, and continue to be used for estimating positive pressure on
vertical breakwaters. On the other hand, the VHM, with some appropriate
values of the virtual wave height H�, is effective for estimating negative
pressures.

14.4 THE RISK OF IMPULSIVE BREAKING
WAVE PRESSURES

If the breaking point of a progressive wave (in the absence of a structure) is
located only slightly in front of the breakwater, or the combined sloping
section and top berm of the rubble mound is rather broad, there may be
danger of impulsive breaking wave pressure. Following Goda (2000), if
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the rubble mound is sufficiently small enough to be considered negligible,
then there is little danger of impulsive breaking wave pressure if at least
one of the following conditions occur:

1. the sea bottom slope being smaller than 0.02,
2. Hs0CrCd=L0 being greater than 0.03 (L0 being the deep water wave

length corresponding to Th),
3. the crest elevation of the wall allowing much overtopping.

A recent (May 2013) SSFE performed in the NOEL under my direction (re-
sults still unpublished) has evidenced that impulsive breaking wave pressures
may occur even if both conditions (2) and (3) are fulfilled. However, the
experiment has also shown that caisson breakwaters may resist unexpectedly
well to these impulsive forces, whereas breakwaters consisting of solid con-
crete blocks collapse in line with the expectation. The high resistance of cais-
sons should be due to the effect of mound foundation and ground, which are
elastically deformed under the application of an impulsive wave breaking
pressure (see Goda, 1992). This research is in due course: the configuration
of the lee side of the rubble mound could prove to be important.

14.5 WORKED EXAMPLES
14.5.1 First Worked Example
Vertical breakwater with d¼ 14 m, W¼ 7 m, d’¼ 15.5 m, dn¼ 18 m,
l¼ 0.02, straight contour lines; design sea state: Hs0 ¼ 8:0 m; spectrum:
mean JONSWAP with A¼ 0.01; directional distribution: Mitsuyasu et al.
with np¼ 20 and qd¼ 0.

Results of calculations (GM applied): Tp¼ 12.1 s, Th¼ 11.1 s,Hs¼ 7.18 m,
H¼ 12.9 m, hmax¼ 19.3 m, pw1 ¼ 114 kN=m2, pw¼ 87 kN/m2, Fþ¼
2210 kN/m.

This is a case in which impulsive pressure could occur, and their intensity
should be sensitive to the berm width (for a deeper insight into this item, see
the questionnaire, Table 4.1 of Goda, 2000; prepared by referring to Tani-
moto’s examination).

The ratio d/Lp0 (¼0.06) is smaller than 0.20, hence the negative wave force
is expected to be smaller than the positive wave force.

14.5.2 Second Worked Example
Vertical breakwater with d¼ 50 m, W¼ 7 m, d’¼ 51 m, dn¼ 54 m,
l¼ 0.02, straight contour lines; design sea state: same deep water character-
istics as for the first worked example.
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Results of calculations (GM applied): Tp¼ 12.1 s, Th¼ 11.1 s,Hs¼ 7.36 m,
H¼ 13.2 m, hmax¼ 19.8 m, pw1 ¼ 82 kN=m2, pw¼ 28.4 kN/m2, Fþ¼
3300 kN/m.

In this case, because of the large water depth (d/Lp0¼ 0.22), it is also neces-
sary to evaluate the effect of the wave trough. Result of calculations (VHM
applied): H�¼ 22.1 m, Dp is represented in Fig. 14.5, F�¼ 4570 kN/m,
which is definitely greater than Fþ (¼3300 kN/m).

Notwithstanding the uplift force plays against stability under a wave crest,
and pros stability under a wave trough, probably, the overall stability of this
breakwater on 50-m water depth will prove to be more critical under the
wave trough than under the wave crest.

14.6 CONCLUSION
Wave loads on vertical breakwaters are estimated with empirical formulae
based essentially on waveflume data, and in part on examination of full-
scale failures or nonfailures (Goda, 1974; Oumeraci, 1994). This approach
is effective, and especially the great experience accumulated by the Japanese
School must be exploited. A fresh contribution may come from SSFEs.
The results of the SSFEs of 1994 and 2009 were disclosed, respectively,
in Chapter 13 of my book (2000) and in the paper by Boccotti et al. (2012).
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n FIGURE 14.5 Second worked example,
Chapter 14: negative wave pressure on a
50-m-deep breakwater. The resultant force on
(�d¼�50 m< z< 0) is about 4500 kN/m.
Then there is an additional small force on
(�d0 ¼ �51 m< z<�d), which is
estimated to be 76 kN/m.
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15.1 AN OVERVIEW OF WORK DONE TO EXPLOIT
WAVE ENERGY SOURCE

Many immersed oscillating systems have been disclosed for the aim of wave
energy conversion. One of the first was a navigation buoy due to the pioneer-
ing research of Commander Yoshio Masuda in Japan. It consisted of a
battery-charging generator driven by an oscillating water column (OWC)
contained in a vertical pipe through a floating buoy. Masuda’s
developmental work of this device was in the mid-1960s (see ECOR,
2003; Falcao, 2010, for more details). The research of the 1970s concen-
trated mainly on resonant point absorbers (McCormick, 1974; Mei, 1976;
Budal and Falnes, 1975, 1977). Two well-known devices of those years
were the “Salter duck” (Salter, 1974) and the “Bristol cylinder” (Evans,
1976). According to the classification of Hagerman (1995), these belong,
respectively, to the class of “pitching floats with mutual force reaction”
and “submerged buoyant absorbers with sea-floor reaction point.” Starting
from the 1980s, most international attention was focused on fixed OWCs,
whose prototypes were built in Australia, China, India, Japan, Norway,
Portugal, and the United Kingdom. A conventional fixed OWC is essentially
a box with a large opening on the wave-beaten wall. This opening usually
goes from the seabed to nearly the mean water level (see the scheme of

Wave Mechanics and Wave Loads on Marine Structures. http://dx.doi.org/10.1016/B978-0-12-800343-5.00015-9
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Fig. 15.1(a)). An air pocket remains between the roof and sea surface and is
connected to the atmosphere by an exhaust tube with a turbine. Typically,
this is a Wells turbine that rotates in the same direction even if the direction
of the air flow is reversed (Raghunathan, 1995). Calculation of the perfor-
mances of these kind of plants (Evans, 1982; Sarmento and Falcao, 1985)
is founded on one pillar, that is, Stoker’s solution (1957) for the waves
generated by an oscillating pressure applied uniformly over a segment of
the water surface (Fig. 15.1(b)). A first criticality of conventional OWCs
is that their eigenperiod is smaller than the wave period. To overcome this
problem, some devices were developed to create a sort of artificial reso-
nance. This is known as “latching control” (Korde, 1991, 2002; Falcao
and Justino, 1999). However, artificial resonance cannot compare with nat-
ural resonance. A second criticality of conventional OWCs deals with the
stability of the structure. The geometry of conventional OWCs is different
from the geometry of well-established structural types, such as, for example,
offshore gravity platforms or caisson breakwaters. Hence, in designing a
conventional OWC, we cannot exploit a consolidated experience, and this
enhances the risk of failure; indeed, some failures must be registered among

n FIGURE 15.1 (a) Cross-section of an oscillating water column. (b) Scheme of Stoker’s type problem.
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the prototypes (see ECOR, 2003). To overcome these criticalities, the author
(2007a) introduced the U-OWC (see Fig. 15.2). Not only eigenperiods of
U-OWCs are greater than eigenperiods of conventional OWCs, but the
designer may tune the eigenperiod at his choice, on playing on the ratios
s=b0y and s/l. As to the overall stability, the design of U-OWCs can exploit
the great experience accumulated with the design of caisson breakwaters
(see Chapter 14). These are two evident pros for passing from conventional
OWCs to U-OWCs. The cons should reduce themselves to the fact that
Stoker’s solution can no longer be exploited. Indeed, here there are not

n FIGURE 15.2 (a) Cross-section and (b) horizontal section of an U-oscillating water column.
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two adjacent segments, one with a pulsating pressure and one with the atmo-
spheric pressure, like in Fig. 15.1(a) and (b). This is because of the presence
of the vertical duct connecting the sea with the chamber. This implies the
need of leaving the territory explored initially by Lamb (1905), disclosed
by Stoker (1957), further enlightened by Wehausen and Laitone (1960),
and entering an unknown territory. Finding a solution for the interaction
between wave and U-OWC took the author 2 years of work. The results
were published in the paper (2007b) and are reproposed here below in a
revised form.

15.2 THE PROPAGATION SPEED OF WAVE ENERGY
This section expands the reasoning of Section 1.10 so as to allow the
solution for conversion of wave energy dealt with in the next section.
The connection between the following analysis and wavemaker theories
is discussed in the Conclusion to the chapter.

15.2.1 Re-analysis of the Problem of a Wavemaker
The wavemaker of Fig. 15.3 moves, alternately, rightwards and leftwards
at section y¼ 0 of a waveflume, and yields a given oscillating water
discharge

QðtÞ ¼ Qmax cosðut þ εÞ (15.1)

In Section 1.10, we assumed, as a matter of fact, that a wavemaker gener-
ates a progressive wave field. A more correct approach would have been
assuming that the wavemaker generates a periodic waveform with the
most general expression, given that a priori we do not know which is the
waveform yielded by the wavemaker. The periodic wave function with
the most general form is

hðy; tÞ ¼ ða1 cos ky cos ut þ a2 sin ky cos ut þ a3 cos ky sin ut

þ a4 sin ky sin utÞH (15.2)

n FIGURE 15.3 A wavemaker.
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where parameters a1, a2, a3, a4, and height H are to be determined. The
distribution of velocity potential associated with this wave function proves
to be

fðy; z; tÞ ¼ g

u
ð�a1 cos ky sin ut � a2 sin ky sin ut þ a3 cos ky cos ut

þ a4 sin ky cos utÞH cosh½kðd þ zÞ�
coshðkdÞ

(15.3)

which implies that the water discharge at y¼ 0, the mean energy flux per
unit length, and the mean energy per unit surface are

QðtÞ ¼ ð�a2 sin ut þ a4 cos utÞuk H (15.4)

F ¼ 0:50ða1a4 � a2a3ÞrgH2cG (15.5)

E ¼ 0:25
�
a2
1 þ a2

2 þ a2
3 þ a2

4

�
rgH2 (15.6)

where cG is the group velocity defined by Eqn (1.102). Equating the RHS of
Eqn (15.4) to the RHS of Eqn (15.1), we get

H ¼ Qmaxk

uK
(15.7)

a2 ¼ K sinðεÞ; a4 ¼ K cosðεÞ (15.8)

where K is an arbitrary constant. Now let us assume that nature chooses the
waveform that yields the largest value of the ratio

C ¼ F

E cG
(15.9)

(later, we shall discuss the base of this assumption). The expression of C
proceeds from Eqns (15.5) and (15.6):

C ¼ 2ða1a4 � a2a3Þ
a2
1 þ a2

2 þ a2
3 þ a2

4

(15.10)

C proves to vary between 0 and 1, and the maximum (C¼ 1) occurs for

a1 ¼ a4; a3 ¼ �a2 (15.11)

With Eqn (15.7) of H and Eqns (15.8) and (15.11) of the a1, a2, a3, and a4,
Eqn (15.2) of h(y, t) becomes

hðy; tÞ ¼ Qmax
k

u
ðcos ε cos ky cos ut þ sin ε sin ky cos ut � sin ε cos ky sin ut

þ cos ε sin ky sin utÞ
(15.12)
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where the unknown constant K cancels. Equation (15.12) can be reduced to

hðy; tÞ ¼ Qmax
k

u
cosðky� ut � εÞ (15.13)

which represents a progressive wave.

Let us summarize: we have two conclusions.

First conclusion: A wavemaker could generate an infinity of alternative
waveforms. We knew that the wavemaker generates a progressive wave.
Now we have realized that the progressive wave is the waveform giving
the largest value of the dimensionless number C. Maximizing C is as if na-
ture likes reaching the largest energy flux with the lowest storage of energy
along the path of this energy flux, and indeed, we may call C the “energy-
flux/energy factor.”

Second conclusion: In the problem of the wavemaker that we have re-dealt
with, C represents also the ratio between the speed with which the wave mo-
tion expands on the waveflume and cG. Hence, in the infinite set of alternative
waveforms that may be generated by the wavemaker, the aforementioned ra-
tio ranges in (0, 1). In other words, the speed with which the wave motion
expands on the waveflume can be smaller than or equal to cG.

We shall assume that both the first conclusion and the second conclusion
are valid in general, and in particular that they hold before a U-OWC.
Note that, in the case of the U-OWC, the first conclusion will deal with
the ratio between the mean energy flux reaching the plant, and the mean
energy per unit surface before the plant. Whereas the second conclusion
will concern the speed with which the reflected wave energy advances to-
ward the open sea.

15.2.2 The Propagation Speed of Wave Energy
Now let us imagine to place an upright breakwater in the waveflume of
Fig. 1.12. The new configuration is shown in Fig. 15.4. After the wave train
strikes the breakwater, the wave field before the breakwater is changed

from 0:5 H cosðky� utÞ to H cosðkyÞ cosðutÞ
that is, from the progressive waves to the standing waves. The standing
wave field gradually expands seawards with a propagation speed cR. With
the energy equation applied to the control volume of Fig. 15.4, we have

Fin ¼ ðE � E inÞcR (15.14)

where E in and Fin are, respectively, the mean wave energy per unit surface
and the mean energy flux per unit length of the incident waves, and E is the
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mean wave energy per unit surface of the standing wave field. The LHS of
Eqn (15.14) represents the average energy entering the control volume per
unit time. The RHS represents the average increment of wave energy inside
the control volume per unit time. Given that

E in ¼ 1
8
rgH2 (15.15)

Fin ¼ E incG (15.16)

E ¼ 2E in (15.17)

it follows that

cR ¼ cG (15.18)

Finally, let the conventional breakwater be substituted by a breakwater
embodying an energy converter (Fig. 15.5). We shall see in the next section
that, after the wave train strikes the breakwater, the wave field before

n FIGURE 15.4 After a wave train strikes a wall, a standing wave field expands toward the origin of the channel, with a propagation
speed equal to group velocity cG.

n FIGURE 15.5 After a wave train strikes a converter, a wave field given by Eqn (15.28) expands toward the origin of the channel, with a
propagation speed cR. The ratio c¼ cR/cG plays the central role in the wave-converter problem.
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the breakwater is changed from 0:5H cosðky� utÞ to a form given by
Eqn (15.28), that is, from the progressive waves to a complex wave field,
which in general will be different both from the progressive waves and
from the standing waves. The complex wave field gradually expands
seaward with a propagation speed cR. With the energy equation applied to
the control volume of Fig. 15.5, we have

ðFin � FÞ ¼ ðE � E inÞcR (15.19)

where E and F are, respectively, the mean energy per unit surface and the
mean energy flux per unit length of the complex wave field before the break-
water-converter.

Here, we have three inequalities:

Fin � F > 0 (15.20)

E � E in > 0 (15.21)

cR � cG (15.22)

The third inequality is based on the assumption made at the end of Section
15.2.1. Indeed, cR is the propagation speed with which the complex wave
motion expands seawards. Inequalities (Eqns (15.20)e(15.22)) are equiva-
lent to

0 < c � 1 (15.23)

A < 1 (15.24)

where c is the ratio between cR and cG, and A is the absorption coefficient:

c ¼ cR
cG

(15.25)

A ¼ F

Fin
(15.26)

15.3 INTERACTION BETWEEN WAVE AND U-OWC
15.3.1 The Logic Followed: Three Levels of Solution
The problem of the interaction between a wave of given height and period
and a U-OWC aims to predict how much of the incident wave energy is
absorbed by the plant, and which is the share of the absorbed energy that
may be converted into electric power. There are three levels to deal with
this problem: First level: it is assumed that the wave field before a break-
water embodying a U-OWC is the same as there would be before a vertical
breakwater. Second level: the assumption that the wave field is equal to the
wave field before a vertical breakwater is removed; however, the assump-
tion remains that the wave field is periodic in space. Third level: the residual
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assumption that the wave field be periodic in space is removed. With the
second level, the wave height at the breakwater will no longer be 2H,
and the wave field will be that of the standing wave we saw in Section
1.7. This is because of the interaction with the U-OWC. Of course, it is
possible that the third level will be approached; however, the author
believes that the second level is valuable (for the aim of estimating the
mean absorbed power) in that the solution obtained is exact under the
assumption made. To say it better: were the waves periodic in space, that
obtained here below would be the exact linear solution. Specifically, Section
15.3.2 gives the exact linear solution, if cR (the propagation speed of the
reflected wave energy) is equal to the group velocity cG. Section 15.3.3
gives the exact linear solution, if nature maximizes the energy-flux/energy
factor C, as it was suggested in Section 15.2.1.

15.3.2 Second Level: Basic Solution
Let us assume that the wave field before the breakwater-converter is peri-
odic in time and space. Like in Section 15.1, we express this unknown
wave field in the more general form for a periodic wave in time and space.
This is given by Eqn (15.2), which may be rewritten in the form

hðy; tÞ ¼ ðb cos ky cosðut þ ε
0Þ þ a sin ky cosðut þ ε

00ÞÞH (15.27)

where b, a, ε0, and ε
00 are related to parameters a1, a2, a3, a4 of Eqn (15.2),

and H here will be the height of the incident waves. Since the choice of the
time origin is arbitrary, this origin may be shifted so as to rewrite Eqn (15.27)
in the form

hðy; tÞ ¼ ðb cos ky cosðutÞ þ a sin ky cosðut þ εÞÞH (15.28)

where ε is equal to the difference ε
00 � ε

0. Associated to surface elevation
Eqn (15.28) is a distribution of velocity potential in the water that is given by

fðy; z; tÞ ¼ �gbHu�1f ðzÞcosðkyÞsinðutÞ � gaHu�1f ðzÞsinðkyÞsinðut þ εÞ
(15.29)

where

f ðzÞ ¼ cosh½kðd þ zÞ�
coshðkdÞ (15.30)

From the velocity potential, we obtain particle velocities vy, vz, and wave
pressure Dp in the water. The wave pressure at (y¼ 0, z¼�a) coincides
with the Dp(t) on the outer opening of the plant (see Fig. 15.2). From
vy(z, t) at y¼ 0, we obtain the water discharge Q(t) of the wave at the con-
verter. From vy(y, z, t) andDp(y, z, t), we obtain the average wave energy flux
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F. From h(y, t), vy(y, z, t), and vz(y, z, t), we obtain the average wave energy
E (average with respect to time and space) before the converter. The result is

DpðtÞ ¼ rgbH cosðutÞ cosh½kðd � aÞ�
coshðkdÞ (15.31)

QðtÞ ¼ �gaHu�1 tanhðkdÞsinðut þ εÞ (15.32)

F ¼ �4ab sinðεÞFin (15.33)

E ¼ 2
�
a2 þ b2

�
E in (15.34)

For a given plant and given incident waves, let us fix a tentative value of b,
and let us take Dp(t) as input for the calculation of the flow inside the plant,
with the sequence described in Section 16.1 (next chapter). The knowledge
of the flow inside the plant enables us to obtain Qp(t) and Fp, which are,
respectively, the water discharge entering the plant, and the mean energy
flux absorbed by the plant (per unit length). As a particular consequence
of the knowledge of Qp(t), we can obtain the time shift T � between Dp(t)
and Qp(t) (see Fig. 15.6). At this point, we can get the three basic equations.
The first one says that the phase angle between Dp(t) andQp(t) must be equal
to the phase angle between Dp(t) and Q(t). The second one says that F must
be equal toFp. The third one gives the ratio c between the propagation speed
cR of the reflected wave energy and cG. These equations are

ε ¼ �uT� � p

2
(15.35)

a ¼ � Fp

4b sinðεÞFin
(15.36)

c ¼ 1þ 4ab sinðεÞ
2
�
a2 þ b2

�� 1
(15.37)

n FIGURE 15.6 T� is the time shift between the water discharge entering the plant and
the pressure fluctuation at the outer opening of the vertical duct.
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As to Eqn (15.35), the phase angle between Dp(t) and Q(t) is equal to
eε� p/2, and the phase angle between Dp(t) and Qp(t) is the known value
uT �. Equation (15.35) proceeds on equating these phase angles to each
other. As to Eqn (15.36), it proceeds straightforwardly from Eqn (15.33).
As to Eqn (15.37) of c, it proceeds from Eqn (15.19) of cR, with Eqns
(15.33) and (15.34) of F and E .

Let us summarize: For a given b, Eqn (15.31) gives Dp(t). Once Dp(t) is
known, it is possible to integrate the equations of watereair flow inside
the plant (see the next chapter, Section 16.1) and to obtain, in particular,
Fp and T �. Then, Eqn (15.35) yields ε. With ε being known, Eqn (15.36)
yields a. With ε and a being known, Eqn (15.37) yields c. Hence, one
can obtain the functions ε(b), a(b), and c(b). If we assume that cR must
be equal to cG (like with an upright breakwater), this assumption closes
the problem: the solution will be represented by the b for which c is equal
to 1 (which generally proves to exist and to be unique), and this is the basic
solution. Otherwise, if we follow assumption Eqn (15.23) that c may be
between 0 and 1, we may reason as in the next section, which gives
the advanced solution.

15.3.3 Second Level: Advanced Solution
With Eqns (15.33) and (15.34) of F and E , factor C defined by Eqn (15.9)
takes on the form

C ¼ �2ab sinðεÞ
�
a2 þ b2

� (15.38)

Besides C, there is a pair of numbers useful for an analysis of the wave field
before a breakwater-converter. Of course, one is the absorption coefficient
defined either as F/Fin or Fp/Fin (given that F and Fp are equal to each
other). Hence, from Eqn (15.36), we have

A ¼ �4ab sinðεÞ (15.39)

Then there is the resonance coefficient

R ¼ 4
T�

T
(15.40)

where the time shift T � between Qp(t) and Dp(t) may range in (�T/4, T/4)
(with T � in this range, the plant works as an absorber, else it would be a
wavemaker). As a consequence, R ranges in (�1, 1): R negative means
that the wave period is greater than the eigenperiod; R positive means that
the wave period is smaller than the eigenperiod.
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If R approaches zero (resonance), inequality Eqn (15.23) is satisfied only on
a small neighborhood Db of some special value b smaller than 1. On this
small range of b, c(b) decreases from 1 to 0, and A approaches 1; C
approaches 1.

The range of b wherein inequality Eqn (15.23) is satisfied widens as jRj
grows, as we may see by comparing Fig. 15.7(a) and (b) to each other.
Fig. 15.7(a) shows a case in which R¼�0.40 and the inequality Eqn
(15.23) prove to be satisfied on the range (0.74< b< 0.89).
Figure 15.7(b) shows a case in which R¼�0.70 and the range wherein
the inequality Eqn (15.23) is satisfied becomes (0.95< b< 2.33). Over
this range: c decreases from 1 to 0, and A grows from 0.19 to 1. As to C,
it remains essentially constant over the whole range. Therefore, from the
reasoning of Section 15.1, nature should choose the solution at random,
given that there is not a solution with a value of C greater than that of the
other solutions. In this case, there should be the same probability to have
any value of b between 0.95 and 2.33. Hence, in a case like that of
Fig. 15.7(b), we should expect to find, most probably, a b definitely greater
than 1. This expectancy has obtained many confirmations from a small-scale
field experiment (SSFE) of 2005. An example is shown in Fig. 15.8
comparing the spectrum of waves at the breakwater-converter to the

n FIGURE 15.7 Functions c(b), A(b), C(b) for: (a) a case in which jRj takes on a relatively small
value, and (b) a case of a relatively large jRj.
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spectrum of the incident waves. The peak on the first mode, which has an
estimated R of about �0.95, is amplified 23 times (!) on passing from the
spectrum of the incident waves to the spectrum of the waves at the wall.
This superamplification corresponds to a b of about 2.4. (b is equal to the
ratio between the RMS surface elevation at the breakwater-converter and
the RMS surface elevation that there would be at a conventional upright
breakwater.)

The linear theory foresees superamplifications (possibility of very large b)
both with large negative R and with large positive R. However, superampli-
fications require that waves have a very low steepness, otherwise there
would be energy losses or wave breaking, and this, practically, limits super-
amplifications to some long swell with large negative R. In the next chapter
we shall see how to address this face of the problem, on a technical-
engineering ground.

n FIGURE 15.8 A small-scale field experiment of 2005 on a U-oscillating water column: the
peak of the first mode, which has an estimated R of about �0.95, is amplified 23 times!
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Here we conclude with the following overall picture: If c¼ 1, b is smaller
than 1. If b is greater than 1, c is smaller than 1. If b takes on the total largest
value (e.g., b¼ 2.33 in Fig. 15.7(b)) c is equal to 0. This means that at the
breakwater-converter there is a large wave amplification, which remains
locked to the breakwater and cannot expand seawards. The fact that there
is no energy advancing seaward implies that the whole incident wave energy
is absorbed by the plant, and indeed, we see that the absorption coefficient
gets equal to 1.

15.4 CONCLUSION
The wavemaker boundary value problem for planar wavemakers was given
a complete solution thanks, in particular, to Havelock (1929), Hyun (1976),
Hudspeth and Chen (1981). This problem aims to obtain the velocity poten-
tial yielded by a wavemaker with a given configuration. The area of wave-
flume close to the wavemaker is focused, wherein waves are not periodic in
space because of the presence of evanescent eigenmodes. It is assumed that,
far from the wavemaker, the wave is a progressive one. We (Section 15.2.1)
wonder whether this last sentence “far from the wavemaker, the wave is a
progressive one” must be accepted as a matter of fact or may be explained
as a consequence of a general principle (that nature tends to maximize the
ratio between F and E ). Of course, in this context, there is no interest in
the evanescent eigenmodes, nor in the configuration of the wavemaker.
(Formally, one may shift the origin y¼ 0 far from the wavemaker; or, at
his choice, may think of the configuration of the wavemaker as a curve in
such a way that the wave motion can be periodic in space even close to
the wavemaker.) Please don’t believe that the question at the base of Section
15.2.1 is abstract philosophy. If nature tends to maximize the ratio F=E
(which is a velocity), this explains the huge amplification of Fig. 15.8,
and let us look with greater optimism at the possibility of industrial exploi-
tation of wave energy. A series of amplifications like that of Fig. 15.8 were
found in the SSFE of 2005, illustrated by Boccotti et al. (2007).
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This chapter aims to suggest some ideas that could be useful for a
preliminary design of a U-oscillating water column (OWC), in the present
pioneering stage. Rationally approaching the design of wave energy
converters, in general, is also a scope.

16.1 THE WATER AND AIR FLOW INSIDE A U-OWC
With reference to the scheme of Fig. 16.1, the equation of the water flow
inside one cell may be expressed in the form

l0

g

b0y
s

d2x
dt2

þ ðl00 � xÞ
g

d2x
dt2

¼ h0 � h00 � Dhw (16.1)

where

Dhw ¼ Kw
u2

2g
u

juj (16.2)
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n FIGURE 16.1 (a) Reference scheme for Eqn (16.1). (b) Reference scheme for Eqn (16.7).

u ¼ b0y
s

dx
dt

(16.3)

with Kw being the head loss factor in the vertical duct. The energy per unit
weight at the water level in the chamber is

h0 ¼ ðx0 � xÞ þ 1
2g

�
dx
dt

�2

þ ðpa � patmÞ
rg

(16.4)

The energy per unit weight at the outer opening of the vertical duct is
estimated by means of

h00 ¼ Dp

rg
if h > �a (16.5)

h00 ¼ z0 þ u2

2g
if h < �a (16.6)

where Dp is the wave pressure on the outer opening of the vertical duct, and
z0 is the level of the water in the vertical duct:

z0 ¼ �a if h � �a; otherwise :
dz0

dt
¼ 0 if u > 0 and

z0 ¼ �a; otherwise
dz0

dt
¼ u (16.7)
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Equation (16.5) holds with the linear wave theory. In order to smooth the
step of h00ðtÞ at the time instant when h¼�a, the RHS of Eqn (16.5) may
be replaced by

Max

�
Dp

rg
;�aþ u2

2g

�

The density in the air pocket is

ra ¼ Ma

b0yb
0
xx

(16.8)

andas such, it varieswith timebecauseof variationsof airmassMa and height x.
The pressure in the air pocket is related to the air density by the gas law

pa
rka

¼ patm
rkatm

(16.9)

The air velocity ua through the turbine (we are thinking of a Wells turbine) is
related to pressure pa of the air pocket by

ðKtube þ KturbineÞ u
2
a

2
ua
juaj ¼

patm
ratm

k

k � 1

"�
pa
patm

�ð1�1=kÞ
� 1

#
(16.10)

where Ktube depends on the so-called minor losses in the air tube, and Kturbine

is a head loss factor in the turbine, which depends on parameter

u� ¼ juaj
uDe=2

(16.11)

where u andDe are, respectively, the angular speed and diameter of the tip of
the turbine.

The rate of change of the air mass in the air pocket may be approximately
estimated by means of

dMa

dt
¼ �1

2
ðra þ ratmÞ

p
�
D2

e � D2
i

�
4

ua (16.12)

where Di is the diameter of the bulk of the turbine.

Equations (16.1), (16.7), and (16.12) are integrated numerically, from the
knowledge of Dp(t) and of conditions at time t¼ 0, which are

dx
dt

¼ 0; x ¼ x0; Ma ¼ ratmb
0
yb

0
xx0 (16.13)

The flow chart is shown in Fig. 16.2. The average electrical power produced
may be related to the head loss in the turbine by

P ¼
�
eff Kturbine

1
2

����dMa

dt

����u2a
�

(16.14)
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where eff depends on u* and on the characteristics of the generator. For an
in-depth analysis of this subject, see Gato and Falcao (1990, 1991), Curran
and Gato (1997).

16.2 PRODUCTION OF ELECTRICAL ENERGY FROM
A GIVEN SEA STATE

We may apply Eqns (15.35e15.37) to a sea state of a given narrow-band
spectrum. The surface elevation and the mean energy flux of the incident
waves are given by

hðy; tÞ ¼
XN
i¼ 1

ai cosðkiy� uit þ diÞ (16.15)

Fin ¼
XN
i¼ 1

rg
a2i
2
cGi (16.16)

where ai and ui are such as to form a given spectrum, and phase angles di are
distributed uniformly on (0, 2p) and are stochastically independent of one
another, and number N is very large, and cGi is the group velocity relevant
to angular frequency ui. The Dp on the outer opening of the plant is numer-
ically simulated by means of

DpðtÞ ¼ brg
XN
i¼ 1

ai
cosh½kiðd � aÞ�

coshðkidÞ cosðuit þ diÞ (16.17)

n FIGURE 16.2 Flow chart for integration of Eqns (16.1) and (16.12).
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with a tentative value of b. The calculation of the flow inside the plant
is executed from this Dp(t) with the sequence of Section 16.1, and
yields Qp(t) and Fp. For estimating the time lag T � between Qp(t) and
Dp(t) (which now are random functions) we may resort to the cross-
covariance

jpðsÞ ¼ 	
DpðtÞQpðt þ sÞ
 (16.18)

Figure 16.3 shows how to obtain T � and T from jp(s). After that, ε is obtained
by means of Eqn (15.35), a proceeds straightforwardly from Eqn (15.36)
since b, ε, Fp, Fin are known. The range (bmin, bmax) wherein inequality
Eqn (15.23) is satisfied is found. The ratio c decreases from 1 to 0 on this
range.

If the incident waves are long swell with a Hs/Lp0 smaller than 10�2, which
typically have some large negative R, we may take the value of b corre-
sponding to c¼ 0.25. Otherwise, we may take the value of b corresponding
to c¼ 1. These suggestions are based on the results of an SSFE of 2005
(Boccotti et al., 2007). Passing from c¼ 1 to c¼ 0.25, the estimate of
wave energy absorption with long swells may grow of the very 50%. Resort-
ing always to the solution c¼ 1 would be conservative in the oceans
wherein the weight of long swells is great; it would be slightly conservative
in the Mediterranean Sea where the share of wave energy carried by long
swells is smaller than in the oceans.

The following is the flow chart of a numerical program aimed to calculate
the wave energy conversion for a given sea state and configuration of the
plant:

1. fix a frequency spectrum;
2. obtain N pairs ai, ui so as to fit this frequency spectrum;

n FIGURE 16.3 Cross-covariance of pressure fluctuation at the outer opening and discharge
in the plant.
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3. by means of Eqn (16.16) compute the mean energy flux Fin of the
incident waves;

4. obtain N phase angles di uniformly distributed in 0, 2p and stochasti-
cally independent from one another;

5. let b increase from a given binf to a given bsup with a given step Db

(suggested values: binf¼ 0.5, bsup¼ 3, Db¼ 0.02);
6. simulate numerically Dp(t) by means of Eqn (16.17) for an interval

ð0;T Þ;
7. from Dp(t) calculate the water flow and the air flow inside the plant

through numerical integration of the differential flow equations given
in Section 16.1;

8. as particular outputs of item 7, obtain Qp(t) (the water discharge in
the plant), Fp the mean energy flux absorbed by the plant, EP the
mean electrical power produced by the plant;

9. from Dp(t) and Qp(t) obtain the cross-covariance jp(s) (def.
Eqn (16.18));

10. from jp(s) obtain T � and T as it is shown in Fig. 16.3;
11. calculate ε by means of Eqn (15.35);
12. calculate a by means of Eqn (15.36);
13. calculate c by means of Eqn (15.37);
14. calculate R by means of Eqn (15.40);
15. calculate

A ¼ Fp

Fin
(16.19)

16. calculate

Ap ¼ EP

Fin
(16.20)

17. store c(b), R(b), A(b), Ap(b);
18. GO TO 5.

This program gives c, A, Ap, R as functions of b for given sea state and plant.
If Hs/Lp0 is greater than 10�2, we shall take the values corresponding to
c¼ 1; otherwise, we shall take the values corresponding to c¼ 0.25. These
values are exhaustive in that: b represents the ratio between the RMS surface
elevation at the breakwater-converter and the RMS surface elevation that
there would be at a conventional upright breakwater; A represents the ratio
between the mean energy flux absorbed by the plant and the mean energy
flux of the incident waves; Ap represents the ratio between the mean
electrical power generated by the plant and the mean energy flux of the
incident waves; R quantifies the difference between the wave period and
the eigenperiod of the plant.
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16.3 HYDRAULIC VERIFICATIONS
16.3.1 Method and Objectives
The factor b of the design sea state typically proves to be close to 1, which
implies that the design sea state is close to that before a conventional upright
breakwater. For the aim of estimating the conditions inside the vertical duct
and the chamber in the extreme waves, we may integrate the equations of
Section 16.1, taking as input the deterministic surface elevation h (Eqn
(11.1)) at the breakwater, and the deterministic pressure fluctuation Dp
(Eqn (11.4)) at the depth z¼�a of the outer opening of the vertical duct.
The same h and Dp serve also for estimating the wave load on the outer
face of wall B, above the elevation of the outer opening. The wave height
H in Eqns 11.1 and 11.4 will be the maximum expected wave height in
the design sea state either at the breakwater (yo¼ 0) or at some point off
the breakwater (yo< 0).

The calculation aims to obtain

1. the safety margin between water level and roof of the chamber;
2. the largest positive and the largest negative pressure in the air

pocket;
3. the largest loads on the walls of the chamber and of the vertical duct;
4. the vertical force DRv due to the water flow inside the breakwater

(so as to allow the verification of the overall stability);
5. the lowest level reached by the water surface in the vertical duct;
6. the lowest level reached by the water surface in the chamber.

In general, there should be no problems with the last two items in the
sense that the lowest levels in both the chamber and the duct generally
should remain well above the opening connecting the vertical duct with
the chamber. Here below we consider in some details the items from
(1) to (4).

16.3.2 Safety Margin between Water Level and Roof
of the Chamber and Pressure in Air Pocket

Figure 16.4 shows the surface elevation, the water level in the chamber, and
the pressure in the air pocket for a cell struck home by a wave group like that
of Fig. 11.1 or 11.3. The water level in the chamber grows with the surface
elevation. At time instant to the surface elevation starts decreasing; whereas
the water level in the chamber greatly reduces its rate of growth. The pres-
sure in the air pocket grows up to a maximum at time instant to and then is
reduced reaching zero (atmospheric pressure) at a time instant t1. Starting on
t1 the pressure in the air pocket falls below the atmospheric pressure, so that
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the plant starts sucking air from the atmosphere, and this occurs jointly with
a decreasing of the water level in the chamber.

It may occur that the water level in the chamber exceeds the elevation of the
exhaust tube (Fig. 16.5), so that the air between the water surface and roof
can no longer flow toward the atmosphere. In this case, the air pressure in the
chamber grows rapidly (the growth is quasi-impulsive) up to a maximum at
instant t2 when the water level in the chamber reaches its maximum eleva-
tion. After t2, the water level in the chamber decreases; the air pocket is
stretched with the consequence of decreasing the air pressure. If the water
level exceeds the elevation of the exhaust tube, two peaks of pressure occur
in the air pocket: the pressure peak at time instant to of the wave crest, which
will be called “primary pressure peak,” and the pressure peak at time instant
t2, which will be called “shock pressure peak” because of its very short dura-
tion. The shock pressure peak may be very high. Therefore, it is advisable to
take at least the following precautions in calculations. First, assume that the
turbine has stopped: a stoppage of the turbine implies smaller head losses in
the exhaust tube, so the rise of water in the chamber is greater. Second, as-
sume that the maximum expected wave height occurs with the high tide.
Third, repeat the calculation twice: first assume that the flow is isothermal,
then a second time assuming that the flow is adiabatic. Take the larger value

n FIGURE 16.4 Effect of the largest expected wave in the design sea state. First example:
no shock pressure.
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of the two calculations for the rise of water in the chamber (there is usually
only a small difference between the results of these two calculations).

16.3.3 Extreme Loads on Walls A, B, D
With the method of Section 16.3.1, the largest loads on walls A, B, and D
(see Fig. 15.2) under the action of the maximum expected wave prove to
be those with the air pocket under pressure. These loads act from the inside
toward the outside of the chamber. If the shock pressure peak does not occur,
wall B proves to be less loaded than walls A and D. Indeed, at instant towhen
inside the chamber there is the primary pressure peak, outside there is the
wave crest, which means that the load on the external face partially counter-
balances the load on the internal face of wall B.

The largest load acts on the roof and on the upper part of wall D. The
pressure of the air pocket acts on the internal face, and the atmospheric
pressure acts on the external face. We may assume that the load on wall
A varies linearly from the load on wall B to the load on wall D.

The largest inward loads may occur either at the top of walls A, B, and D or
beneath the mean water level. On the top of walls A, B, and D, the largest
inward load coincides with the lowest (negative) pressure of the air pocket.
The inward load on wall D at a given elevation beneath the mean water level
is equal to the difference between the pressure of the fillet (sand) of the cells
behind the chamber and the pressure of the chamber at the given elevation.

n FIGURE 16.5 Effect of the largest expected wave in the design sea state. Second
example: primary pressure peakD shock pressure peak.
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16.3.4 Extreme Loads on Wall C
If waves were long-crested, the wave attack was orthogonal to the break-
water, and the configuration of the hydraulic plant was the same for all cells,
wall C would not be loaded; in other words, it would have the same pressure
on the left and right faces. The shorter the wave crest, the greater the angle
between the wave crest and breakwater; the greater the difference in the
configuration of the hydraulic plant from one cell to the next, the larger
the load on wall C. The length of the wave crest of a wave group decreases
as the directional spread of the sea state grows. For the angle between the
wave crest and breakwater, the quasi-determinism (QD) theory shows that
the direction of a wave group advance has a high probability of coinciding
with the dominant direction of the directional spectrum. Hence, it is advis-
able, cautiously, assuming some increment of the angle between the domi-
nant direction and the orthogonal to the breakwater. For the configuration of
the hydraulic plant, we may assume that the turbine in a cell is running at
maximum speed while the turbine in the neighboring cell has stopped. We
denote the cells before and after wall C under examination as cells 1 and 2,
respectively. We must cover the following situations:

do i¼1,2
the turbine of cell i is stopped
do j¼1,2
the center of the wave crest strikes the center of cell j
enddo
enddo

As an example, let us deal with the case of i¼ 1, j¼ 2: the turbine of cell 1
is stopped, and the center of the wave crest strikes the center of cell 2. This
implies that point xo, yo coincides with the center of cell 2, and the local
coordinates of the center of cell 1 are

X ¼ �DX; Y ¼ 0 (16.21)

where DX is the length of a cell. The wave pressure Dpðto þ T ; cell 1Þ on the
outer opening of cell 1 is obtained by means of Eqn (11.4) with X¼�DX.
The wave pressure Dpðto þ T ; cell 2Þ on the outer opening of cell 2 is ob-
tained by means of Eqn (11.4) with X¼ 0. The water flow inside cell 1 is
calculated from Dpðto þ T ; cell 1Þ by means of the flow equations of Section
16.1 with the turbine stopped. The water flow inside cell 2 is calculated from
Dpðto þ T ; cell 2Þ by means of the flow equations of Section 16.1 with the
turbine running at maximum speed. The pressures at various elevations in
cells 1 and 2 at many time instants during the impact of the wave group
are calculated, and the largest load on wall C (difference between the pres-
sures on the two faces of said wall) are estimated.
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16.3.5 Overall Stability
The vertical force DRv due to the water flow inside the breakwater depends
on: the variation of the weight of the water mass in the chamber; the inertia
of the water mass in the chamber and vertical duct; the flux of momentum
through the upper opening of the vertical duct; and on the wave pressure
on the upper opening of the vertical duct and on the top of wall E. The force
DRv proves to be positive (that is, downwards oriented) at the time instant to
of the crest of the maximum expected wave at the wall, when the maximum
horizontal wave load and the maximum overturning moment is expected. As
such DRv plays a role favorable for stability. It is a non-negligible role: DRv

may reach the 10% of the weight P* in still water. For the rest, the
verification of the overall stability under the wave crest may be done as it
is shown in Section 14.1. The connection between the conventional caisson
breakwater and the chamber represents a novelty. Here, a critical situation
might arise under the largest wave trough, given that under a wave trough,
the chamber and duct is subject to a seaward force, and resistance to this force
could be given only by the part in reinforced concrete of Section A-A of
Fig. 16.6, if the concrete crown is simply in contact with wall D of the

n FIGURE 16.6 In some plants the verification of Section A-A to the action of the wave
trough could be not negligible.
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chamber. The chamber exerts a tensile force, shear force, and bending
moment. The largest horizontal force F and uplift force Sw under a wave
trough in the design sea state may be estimated as for a conventional caisson
breakwater (see Chapter 14). The pressure exerted by the soil is obtained by
applying the equilibrium equations to the whole caisson breakwater. Once all
the forces acting on the chamber and duct are known (including the force
exerted on wall D by the ballast in the cells behind this wall), the equilibrium
equations applied to the chamber and duct yield the forces and bending
moment acting on the vertical section. The vertical force due to the water
flow inside the caisson at the time instant of the largest wave trough usually
plays a role smaller than at the time instant of the largest wave crest.

16.4 FORTRAN PROGRAMS
16.4.1 QD Software for Hydraulic Verifications
Program UOWC1 computes h and Dp by means of QD Eqns (11.1) and
(11.4). This program calls subroutine QD2, which has the four following
differences with respect to subroutine QD introduced in Chapter 9:

1. it calculates wave pressure (not particle velocities and accelerations);
2. it is relevant to the wind-generated wave field before a long break-

water (not in the open sea);
3. it applies the directional distribution on finite water depth (not on deep

water);
4. it applies the TMA spectrum (not the JONSWAP spectrum).

As to item (3) QD2 calls subroutine TRASDIR that requires as input the
values of the parameters nðuÞ and qd of the directional distribution (Eqn
(6.17)) on deep water, and returns as output the values of nðuÞ and qd(u)
of the directional distribution on the given water depth d, under the assump-
tion of straight contour lines. This is essentially the same as Goda (2000)
calls the refraction effect on the spreading parameter. Program UOWC1
provides the time series of h and Dp, which serve as input for the numerical
integration of Eqns (16.1), (16.7), and (16.12). This integration requires a
small step: typically Ds¼ 2$10�4 (s being the ratio T/Tp). In order to reduce
the computation time, UOWC1 writes the time series of h and Dp=g with
step Ds¼ 0.05. Then a new program will read these time series and
compute h and Dp=g with the Ds of 2$10�4, by means of a Fourier series.
Lastly, a glance to the values of the space variables X and Y. X will be 0 for
the estimate of the extreme air pressure in a cell; that is, it will be assumed
that the largest wave group strikes this cell. X may be different
from 0 (specifically X¼�DX) for the estimate of the maximum load on
walls C, as it has been shown in Section 16.3.4. As to Y, given that we
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are interested in pressure and surface elevation at the wall, that is, at y¼ 0, we shall have

Y ¼ y� yo ¼ �yo (16.22)

Note: in the following program UOWC1, the geometry (d¼ 20 m, a¼ 2 m) and the T*/Tp¼ 0.38 of the local spec-
trum have been specified for the case of the worked example of the next section. The value of T */Tp has been
obtained by running program SUMM1 (see Section 4.8.2).

PROGRAM UOWC1
CHARACTER*64 NOMEC
COMMON D,HS,H,Tp,TST,ALPHA, TETAD0,RNP
COMMON IMAX, JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
NOMEC¼’OUTP’
OPEN(UNIT¼60,FILE¼NOMEC)
PG¼3.141592
DPG¼2.*PG

c geometry (to be changed): d and a - see Fig. 15.2 -
D¼20.
A¼2.

Z¼-A
WRITE(6,*)’deep water: Hs,alpha,thetad(degree),np’
READ(5,*)HS,ALPHA,TETAD0,RNP
WRITE(6,*)’yo and Hmax at yo’
READ(5,*)YO,H
WRITE(6,*)’zero up-crossing wave -> 1, down-crossing -> -1’
READ(5,*)UD
TETAD0¼TETAD0*PG/180.
WRITE(6,*)’X’
READ(5,*)X
Y¼-YO
NCALL¼0
CALL QD2(NCALL,UD,X,Y,Z,T,YO,ETA,DP)

c this call of QD2, with NCALL¼0, serves to store the directional spectrum
NCALL¼1
TAUIN¼-3.
NMAX¼121
N¼0
DTAU¼0.05
TAU¼TAUIN-DTAU

90 TAU¼TAUþDTAU
N¼Nþ1
IF(N.GT.NMAX)GO TO 91
T¼TAU*TP
CALL QD2(NCALL,UD,X,Y,Z,T,YO,ETA,DP)
WRITE(60,1000)TAU,ETA,DP
WRITE(6,1000)TAU,ETA,DP
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1000 FORMAT(2X,F7.2,2X,f7.3,2X,f7.3)
GO TO 90

91 CONTINUE
WRITE(6,*)
WRITE(6,*)’read results on file OUTP’
END

SUBROUTINE QD2(NCALL,UD,X,Y,Z,T,YO,ETA,DP)
COMMON D,HS,H,Tp,TST,ALPHA,TETAD0,RNP
COMMON IMAX,JMAX,OMV(300),TETV(150),RKV(300)
COMMON SOT(300,150)
DIMENSION EO(300),DTE(150)
G¼9.8
G2¼G*G
PG¼3.141592
DPG¼2.*PG
IF(NCALL.EQ.1)GO TO 500

c*******************************************
c parameters deep water spectrum

C0¼1.345
CHI1¼3.3
CHI2¼0.08

c*******************************************
c T*/Tp local spectrum

CST¼0.38
c*******************************************

COST¼C0/ALPHA**0.25
TP¼COST*PG*SQRT(HS/G)
TST¼CST*TP
ALCHI1¼ALOG(CHI1)
CHI2Q¼CHI2*CHI2
OP¼DPG/TP
DOMEGA¼OP/50
O1¼0.5*OP
O2¼3.*OP
OPQ¼OP*OP
DTETA¼PG/100.
TE1¼-PG/2.
TE2¼PG/2.
OM¼O1-DOMEGA/2.
I¼0

c Loop 90: the grid of values of the directional spectrum, being necessary
c for the execution of the double integrals, is loaded on memory
90 OM¼OMþDOMEGA

IF(OM.GT.O2)GO TO 91
I¼Iþ1
OMV(I)¼OM
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c values of omega stored on OMV(I) (I¼1,IMAX)
PE¼DPG/OM
RL0¼(G/DPG)*PE*PE
DL0¼D/RL0
IF(DL0.GT.0.5)THEN
RKV(I)¼DPG/RL0
ELSE
RLP¼RL0

300 RL¼RL0*TANH(DPG*D/RLP)
TES¼ABS(RL-RLP)/RL
RLP¼RL
IF(TES.GT.1.E-4)GO TO 300
RKV(I)¼DPG/RL
ENDIF

c k(omega) stored on RKV(I)
OMM5¼1./OM**5
ARG¼(OM-OP)**2/(2.*CHI2Q*OPQ)
E3¼EXP(-ARG)
ARG¼ALCHI1*E3
E2¼EXP(ARG)
ARG¼1.25*(OP/OM)**4
E1¼EXP(-ARG)
EJON¼ALPHA*G2*OMM5*E1*E2

c transformation function : from JONSWAP to TMA
ARG¼RKV(I)*D
TA¼TANH(ARG)
DARG¼2.*ARG
SI2¼SINH(DARG)
TFUN¼SI2*TA*TA/(SI2þDARG)
EO(I)¼EJON*TFUN

c EO(I)¼E(omega)
c*******************************************

W¼OM/OP
IF(W.LE.1)THEN
RN¼RNP*W**5
ELSE
RN¼RNP/W**2.5
ENDIF

c*********************************************
CALL TRASDIR(D,OP,TETAD0,W,RN,TETAD)
DN¼2.*RN
TE¼TE1-DTETA/2
J¼0

80 TE¼TEþDTETA
IF(TE.GT.TE2)GO TO 81
J¼Jþ1
TETV(J)¼TEþTETAD
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c values of theta stored on TETV(J) (J¼1,JMAX)
ACO¼ABS(COS(TE/2))
DTE(J)¼ACO**DN
GO TO 80

81 CONTINUE
JMAX¼J
J¼0
SOMT¼0
DO J¼1,JMAX
SOMT¼SOMTþDTE(J)*DTETA
ENDDO
RKN¼1./SOMT

c RKN¼K(n) (Eqn (6.18))
DO J¼1,JMAX
DTE(J)¼RKN*DTE(J)

c DTE(J)¼D(teta;omega)
ENDDO
DO J¼1,JMAX
SOT(I,J)¼EO(I)*DTE(J)

c directional spectrum stored on SOT(I,J)
ENDDO
GO TO 90

91 CONTINUE
IMAX¼I
IF(NCALL.EQ.0)GO TO 501

500 CONTINUE

c ETAINT ¼ double integral numerator RHS of Eqn (11.1)
c DPINT ¼ double integral numerator RHS of Eqn (11.4)
c DENOINT ¼ double integral denominator RHS of Eqns (11.1) or (11.4)

ETAINT¼0
DPINT¼0
DENOINT¼0
DO I¼1,IMAX
DO J¼1,JMAX
OM¼OMV(I)
OM1¼1./OM
RK¼RKV(I)
IF(RK*D.GT.20)THEN
A1¼EXP(RK*Z)
ELSE
A1¼COSH(RK*(DþZ))/COSH(RK*D)
ENDIF
TE¼TETV(J)
S¼SOT(I,J)
ST¼SIN(TE)
CT¼COS(TE)
ARG1¼RK*X*ST-OM*T
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.ARG2¼RK*X*ST-OM*(T-TST)
ARG3¼RK*YO*CT
ARG4¼RK*(YOþY)*CT
CO1¼COS(ARG1)
CO2¼COS(ARG2)
CO3¼COS(ARG3)
CO4¼COS(ARG4)
ETAINT¼ETAINTþS*CO3*CO4*(CO1-CO2)
DPINT¼DPINTþS*A1*CO3*CO4*(CO1-CO2)
DENOINT¼DENOINTþS*CO3*CO3*(1.-COS(OM*TST))
ENDDO
ENDDO
ETA¼UD*0.5*H*ETAINT/DENOINT
DP¼UD*0.5*H*DPINT/DENOINT

501 CONTINUE
RETURN
END

SUBROUTINE TRASDIR(D,OP,TETAD0,W,RN,TETAD)
c for the angular frequency omega¼w omegap (W*OP)
c input: n(RN) of D(theta;omega) on deep water
c output: n(RN) of D(theta;omega) on water depth d
c input: thetad(TETAD0) for every frequency on deep water
c output: thetad(TETAD0) for the given frequency omega on water depth d

DIMENSION DV(1000),TEV(1000),TE0V(1000)
PG¼3.141592
DPG¼2.*PG
DN¼2.*RN
OM¼W*OP
T¼DPG/OM
RL0¼1.56*T*T
RLP¼RL0

60 RL¼RL0*TANH(DPG*D/RLP)
TEST¼ABS(RL-RLP)/RL
RLP¼RL
IF(TEST.GT.1.E-4)GO TO 60

c RL wavelength on water depth d
RKD¼DPG*D/RL
SINTE¼SIN(TETAD0)*TANH(RKD)
TETAD¼ASIN(SINTE)

c TETAD0: dominant wave direction on deep water
c TETAD: dominant wave direction on water depth d

DTE0¼PG/200.
TE0¼-PG/2.-DTE0
I¼0
SOMT¼0

80 TE0¼TE0þDTE0
IF(TE0.GT.PG/2.)GO TO 81
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.I¼Iþ1
TE0V(I)¼TE0
COSA¼COS(0.5*TE0)
ACOSA¼ABS(COSA)
COSADN¼ACOSA**DN
DV(I)¼COSADN
SOMT¼SOMTþDV(I)*DTE0
GO TO 80

81 CONTINUE
IMAX¼I
RKN¼1./SOMT
DO 90 I¼1,IMAX
SINTE¼SIN(TE0V(I))*TANH(RKD)
TEV(I)¼ASIN(SINTE)
DV(I)¼RKN*DV(I)

c TE0V(I) ith value into which the theta domain on deep water is partitioned
c TEV(I) corresponding ith value of theta domain on water depth d
c DV(I) directional distribution
90 CONTINUE

VARD¼0
I¼0
DO 100 I¼1,IMAX-1

c Loop 100 calculates the variance (VARD) of the directional distribution
c on water depth d

AA¼0.5*(DV(I)þDV(Iþ1))*DTE0
CC¼0.5*(TEV(I)þTEV(Iþ1))
VARD¼VARDþAA*CC*CC

100 CONTINUE

c Now the subroutine looks for the directional distribution cos**2n
c with the n such that the variance is equal to the known value VARD
c For this scope the function ’variance vs n’ (VART vs RNT) is calculated
c for increasing values of n (RNT), with step DRN.

DRN¼1
RNT¼RN-DRN

200 RNT¼RNTþDRN
DNT¼2.*RNT
DTE¼PG/200.
TE¼-PG/2.-DTE
I¼0
SOMT¼0

c Loop 88 calculates the directional distribution DV(I) for a given n (RNT)
88 TE¼TEþDTE

IF(TE.GT.PG/2.)GO TO 89
I¼Iþ1
COSA¼COS(0.5*TE)
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.ACOSA¼ABS(COSA)
COSADN¼ACOSA**DNT
DV(I)¼COSADN
SOMT¼SOMTþDV(I)*DTE
GO TO 88

89 CONTINUE
IMAX¼I
RKN¼1./SOMT
DO I¼1,IMAX
DV(I)¼RKN*DV(I)
ENDDO
TE¼-PG/2.-DTE
VART¼0
DO 95 I¼1,IMAX

c Loop 95 calculates the variance (VART) of the given directional
c distribution DV(I)

TE¼TEþDTE
VART¼VARTþTE*TE*DV(I)*DTE

95 CONTINUE
IF(VART.GT.VARD)GO TO 200
RNT¼RNT-DRN
DRN¼DRN/10.
IF(DRN.GT.0.05)GO TO 200
RN¼RNT
RETURN
END

16.5 WORKED EXAMPLE
For the aim of a preliminary prototype design, estimate water level and air
pressure in the chamber of the U-OWC of Fig. 15.2 with the following
size: depth of the seabed: d¼ 20 m (in Chapter 14 this is denoted by
dn); depth of the outer opening: a¼ 2 m; vertical duct: s¼ 1.6 m; inner
opening: e¼ 2.0 m; chamber: b0x ¼ 3:8 m; b0y ¼ 4:0 m; h1¼ 7.0 m;
h2¼ 8.0 m; interaxis: DX¼ 4.25 m. The details of the exhaust tube and
turbine are given in Fig. 16.7(c). Sea bottom slope¼ 3%, straight contour
lines.

Design sea state (deep water): Hs0¼ 8 m, mean JONSWAP spectrum with
A¼ 0.01, directional distribution of Mitsuyasu et al. with np¼ 20, qd¼ 0
(dominant direction orthogonal to the contour lines), duration: 6 h.

The Tp proves to be 12.06 s, so that d/Lp0¼ 0.088. With Goda’s model (Eqn
(14.8)) we obtain Hs¼ 7.20 m on the local depth of 20 m.

16.5 Worked Example 303



With program SUMM1 and the use of the transformation function TFU (see
Section 4.8.2) we obtain

T��Tp ¼ 0:38; Tm

�
Tp ¼ 0:67; K1 ¼ 1:31; K2 ¼ 6:40

for the TMA spectrum shape on the given water depth. From the Tm and the
duration of the design sea state, it follows that the number of waves is

N ¼ 2673:

With this number of waves, and the value of Hs (7.20 m) and the values of
K1 (¼1.31) and K2 (¼6.40) program HMAX of Section 4.8.3 gives

Hmax ¼ 13:45 m

This is the maximum expected height of the incident waves at any fixed point.
At a point of thebreakwater themaximumexpectedwaveheightwill be twice as
great, that is, 26.9 m (bear in mind Eqn (7.49), and the fact thatCd¼ 2 at a long
breakwater). Letting program UOWC1 run with input yo¼ 0 and H¼ 26.9 m
we obtain the time series of h and Dp, which serve for the numerical integra-
tion of Eqns (16.1), (16.7), and (16.12). The result (T/Tp, h; Dp=g) is given in
file OUTP. The time series of h represents a wave group whose kernel consists
of the following sequence of wave heights (in meters):

6:4; 11:5; 26:9; 11:5; 6:4:

With the butterfly valve fully open, and turbine running at the maximum
speed xmin (the safety margin between water level and roof of the chamber),
and pramin and pramax (the minimum and maximum relative air pressure) are
estimated to be

xmin ¼ 1:02 m; pramin ¼ �36 kN=m2; pramax ¼ 134 kN=m2

Complements of the worked example: estimate of some performances of the
plant. These estimates are done with the flow chart given in Section 16.2:

wind sea: Hs¼ 2.0 m, Tp¼ 6.0 s/ A¼ 81%, EP¼ 3.2 kW/m
wind sea: Hs¼ 2.5 m, Tp¼ 6.7 s/ A¼ 71%, EP¼ 4.7 kW/m (�)
swell: Hs¼ 1.25 m, Tp¼ 10 s/ A¼ 67%, EP¼ 2.0 kW/m (��)
(�) bounded by the power of the turbine-generator system (20 kW)
(��) the turbine does not rotate at the maximum speed, in order to get
the maximum efficiency.

16.6 OVERALL DESIGN
Two main faces of the design of a converter concern loads from extreme
waves and (of course) production. I stated a holistic overview of these
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two faces in the paper (2012). This has been reproposed in this chapter in an
expanded form. A summary of this holistic overview may be the following
(the reader should bear in mind that U-OWCs are in a pioneering stage).

The plant may be built either in place of a caisson breakwater with a
scope of port defense (alternative (a)), or only for production of electrical
power (alternative (b)). With alternative (a) the plant might even be
turbineless, and the scope of the vertical duct and the chamber should
be that of absorbing wave energy so as to reduce overtoppings. With
alternative (b) it is convenient to build the plant on the smallest water
depth that is possible. This should be a depth of about 10 m. Here
note that

1. typically the average flux of the most valuable energy for conversion
(that of swell) on 10 m water depth is not significantly smaller than on
deep water;

2. the strongest wind seas are subject to great dissipation before reaching
10 m water depth; however, the production of electrical power by
these seas is bounded by the power of the turbine-generator system, so
that, typically there is no significant reduction due to wave energy
dissipation.

The conclusion is that on 10 m water depth we should produce almost the
same electrical energy as on some greater water depth. On the contrary, the
largest wave height in the lifetime on 10 m water depth, especially off
ocean coasts, may be much smaller than on deep water, with some much
smaller extreme wave loads. On these small depths the waves of the design
sea state will be breaking, and this will imply a rougher computation of the
wave pressure on the outer opening (to a first approximation, the hypoth-
eses of plants of Figs 16.7 and 16.8 were calculated, essentially, as in
the worked example of Section 16.5 with the Hmax of the incident waves
being limited by the water depth induced wave breaking, with the breaker
index of Battjes and Stive, 1985). Moreover, on these small depths, the
risks and the effects of impulsive breaking wave pressures (see Section
14.4) must be considered.

The overall design of the system ductþ chamberþ exhaust tube calls for a
complex synthesis between performances and safety. To enhance the perfor-
mances of the plant, the resonance coefficient R of the sea states conveying
the largest share of wave energy in a year must be close to zero. For tuning R
the designer may play on the ratio b0y=s between the width of the chamber
and the width of the duct. Letting b0y=s grow, R grows. Sometimes with alter-
native (a) (plant built in place of an upright breakwater) the designer may
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exploit the ratio l/s to tune R. This occurs whenever the water depth pre-
scribed for the breakwater is large enough (see Fig. 15.2). Letting l/s
grow, R grows. Under the same R the absorption of wave energy increases
with the width s of the intake.

There are three ways to increase safety margin (xmin), and hence to lower the
risk of a shock pressure peak inside the chamber, or attenuate the entity of
this peak. These ways are the following:

First way: reducing the diameter of the exhaust tube and/or increasing
the head losses in the butterfly valve.
Second way: increasing the height of the chamber.
Third way: increasing the width b0y of the chamber and reducing the
width s of the duct.

n FIGURE 16.7 A hypothesis of U-oscillating water column for the Mediterranean Sea. (a) Cross-section. (b) Horizontal section chambers
and exhaust tubes. (c) Details of the cross-section.
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The second and the third of these three ways lead also to a reduction of the
primary peak of pressure in the air pocket. On the contrary, the first way
leads to an increase of the primary peak of pressure. Given that s and b0y
are the main parameters concerning performances there is not a great degree
of freedom to be exploited with the third way. The second way (increasing
the height of the chamber) is the more straight forward, and to some extent it
must be run. However, this way has cost and environmental impact greater
than the first way. It’s true that the first way increases the primary pressure
peak, but with an increase of the order of 10% of the primary pressure peak,
the designer may increase the safety margin xmin of the order of 100%. One
may decide to partially close the butterfly valve whenever the Hs exceeds
some risk threshold. Doing so one increases safety against the shock pressure
peak, without loss of production of electrical power. This is because the pro-
duction of electrical power in strong seas is already bounded by the power of
the turbine-generator system. A simpler solution may be to keep the valve

n FIGURE 16.8 An hypothesis of U-oscillating water column for oceans. (a) Cross-section. (b) Horizontal section chambers and exhaust
tubes. (c) Details of the cross-section.
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always partially closed. Doing so, safety does not depend on control soft-
ware but on a certain physical phenomenon, and the reduction in the annual
estimate production of electrical energy usually proves to be smaller than the
10%. An improved solution of this kind should be that shown in Figs 16.7
and 16.8: an exhaust tube consisting of two piecesdone with the diameter of
the turbine and one with a smaller diameterdwith a gradual expansion be-
tween the two pieces. Here the head losses take place in the piece with the
smaller diameter rather than in the valve, and the re-entrant opening allows
to reduce the length of the tube out of the chamber.

As to the quantity of electrical energy, a hypothesis of breakwater
conceived for the Mediterranean Sea like that of Fig. 16.7 is expected to
give about 4.5 kW/m with wind seas of 2.5 m Hs and Tp of about 7 s. A
hypothesis of breakwater conceived for oceanic coasts like that of
Fig. 16.8 is expected to give about 9 kW/m with wind seas of 4.0 m Hs

and 8.5 s Tp, or 6.5e7.0 kW/m with swells of 2.5 m Hs and 12 s Tp. Should
these figures be confirmed by a full-scale test, a realistic target should be
exceeding the threshold of 50,000 MWh/km/year off some oceanic coast.
This means that a 100 km breakwater would yield 500 million MWh in a
lifetime of 100 years.

16.7 CONCLUSION
A new breakwater of the Civitavecchia port near Rome of about 500 m
length is being built with U-OWC caissons. The breakwater is turbineless,
that is, the U-OWC, has been preferred to a conventional caisson breakwater
only for its capacity of absorbing wave energy. Of course, the plant may be
transformed into a converter simply by insertion of turbines and generators.
With a potential array of 136 Wells turbines, that of Civitavecchia could be
the first big plant for industrial exploitation of wave energy.
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Note: Page numbers followed by “f” indicate figures.

A
Absorption coefficient, 276, 279, 282
Acceleration, 11, 229, 242
Euler equation, 1e2
in wave groups, 177e181

Adiabatic flow, 292e293
Air pocket, 291e293
Air pressure in the chamber, 291e293
Angular harmonics, 122, 138, 140f
Antinode, 16, 218e224
Autocorrelation, 52, 56e58
relevant to given spectrum and DWR, 56f
relevant to JONSWAP spectrum, 52f

Autocovariance, 43e46
relevant to JONSWAP spectrum, 51e52
and spectrum, 45

Average time, 95, 98
Average ensemble, 64, 67
Average wave period. See Mean wave period

B
Bandwidth, 48e50
analysis, spectrum used for, 49f
effect, 71e74

BEAM, 237
Bernoulli equation, 2, 7, 32
Breakwatereconverter interaction, 275f, 277, 279e282
Bristol cylinder, 269e272
Buoy response, 122
Butterfly valve, 304, 306e308

C
Caisson breakwater, 266, 269e272, 295e296, 305, 308
Cartwright equation, 141
Cell, 285e286, 291e297
Chamber, safety margin between water level and roof of, 291e293
Coast
waves approaching, 25f
waves transformation near, 25e42

Coefficients of the Fourier series, 54e56, 121
Columns of a gravity platform, 207
Concept of sea state, 43e44
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Concrete crown, 259, 295e296
Conditional average, 159, 162, 167, 170
Conditional probability, 158, 160, 166
Conditional standard deviation, 159, 162, 167, 170
Conduits, 218e219
Contour lines
arbitrary contour lines, 27e31
straight contour lines, 25e27, 26f, 232, 296e297, 303, 266

Control software, 307e308
Covariance matrix (CM), 66e67
Crest height
maximum expected, 78
probability of, 69e70

Cross-correlation of surface elevation, 153
Cross-covariance surface elevation, 145
Cross-covariance surface elevationevelocity potential, 146
Cross-covariances
homogeneous random wave field, 145e146
nonhomogeneous random wave fields, 151e153
in polar coordinates, 152f
of pressure fluctuation, 289f, 290

Current, 10e11, 31e35

D
Dark area in the lee of a breakwater, 151
Design sea state, 235
maximum expected wave height at, 117e119

Design sea state pattern (DSSP), 110
advanced approach and, 111

Design wave, 89e114
Deterministic surface elevation before breakwater
equations of deterministic waves, 209e211, 213f
occurrence of exceptionally large waves, 212
wave loads on structures, 214e219

Deterministic surface elevation in lee of breakwater
equations of deterministic waves, 219
occurrence of exceptionally large waves, 220

Deterministic wave function, 173e194
three-dimensional wave group, 173e176
from time series data, 186e187

Development stage of a wave group, 174e175
Diffraction coefficients, 20f, 250e251
calculation of, 245
in lee of upright breakwater, 149e151
before long upright breakwater, 148e149
of wind seas, 150f
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Directional distribution
classic approach, 120e122
directional distribution, first wave family of, 140f

Directional spectrum
definition and characteristic shape, 119e120
function WLENGTH, 137
obtaining, reference scheme, 123f
program TESTDS, 131e136
subroutine FOUR, 126e128
subroutine SDI, 128e129
subroutine SDIR, 129e131
worked example, 137e141, 139f

Discharge, 31, 272e273, 277e278, 290
oscillating water discharge, 272
and pressure fluctuation, 278f, 289f

Dispersion relationship, 6, 53
Dissipation of wave energy, 261e262, 305
Distribution of Hs. See also Equivalent triangular storm (ETS)

definition and characteristic form of, 90e91
quotient between summation and total time, 90fe91f
time duration of, 96f

Dominant direction, 174e175, 212, 217f, 218e220, 222f, 235, 240, 294, 303
Dominant frequency of the spectrum, 44
Drag coefficients, 227e229, 230f
Duct of a U-OWC, 269e272, 303, 305
Duration of wave record (DWR), 55e57, 126

E
Eigenperiod, 269e272, 279, 290
Electrical energy produced by a converter, 288e290
Electrical power generated by a converter, 287e288, 290, 305, 307e308
Encounter probability
design sea state for given lifetime and, 100e102, 101f
general inequality for, 100

Energy flux, 21e22
Energy-flux/energy factor, 274, 276e277
Energy per unit weight, 285e286
Ensemble, at a fixed time instant, 65e66
Equations of a wave motion, 1e2
Equilibrium problem, 259e261
Equivalent triangular storm (ETS)
definition and property of, 92e93
maximum expected wave height in, 91e92
regression base height of, 93e95
sea storm by NDBC buoy, 94f

Euler equation, 1e2
Exploitation of wave energy, 282, 308
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Evanescent eigenmodes, 282
Exhaust tube, 269e272, 292e293, 306e308, 306f

F
Failures, 260e261
Fetch, 51, 58, 115e116
Field verification
experiment on wave periods, 75
random variable b, 75e77

Fixed OWC, 269e272
Fluctuating pressure head. See Pressure head waves
FORTRAN programs, 78e86
for basic parameters on deep water, 79e83
for basic parameters on finite water depth, 83e84
for basic parameters on maximum expected wave, 84e85
PLAT, 246, 257
QD software for hydraulic verifications, 296e303
TUNN, 252, 257

Fourier series, 124e126, 232
Fourier transform, 126
Fourth order cumulants, 86e87
Frequency resolution, 54e55, 121, 126
Frequency spectrum
definition, 44
duration of wave record, 55e57
Fourier series, 54e55

Froude dynamic similarity, 59e60
FroudeeKrylov force, 35e36, 36f, 181
FORTRAN program, 35e41
wave force on solid body and, 200e204

G
Gauge array (GA), 190
Gaussian (normal) probability density function (pdf), 66
graphic aid to understand, 68f
joint Gaussian pdf, 68e69

Gaussian random process, 170, 172
of time, 44

Gaussian sea state, 170
Gaussian wave fields, nonhomogeneous, 171
Goda’s model, 261e263
GrameCharlier series expansions, 86e87
Green’s functions, 257
Group velocity, 22e23

H
Harmonic wave component, 55, 116e117, 119, 257
Head loss factor, 285e287
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Head losses, 287e288, 292e293, 306e308
Heave buoys, 58
Hilbert transform, 86e87
Homogeneity, 141e142
Homogeneous random wave field, 145e146
Homogeneous wave fields, 115e116, 171
Horizontal reaction, 260e261

I
Immersed oscillating system, 269e272
Impulsive breaking wave pressure, 265e266
Individual angles qi

algorithm, 123e126
base of new approach, 126

Inertia coefficients, 227e229, 230f
In-line force, 227e229, 236e240
Isolated body (large), 207
Isothermal flow, 292e293

J
Jacket platform, 227e228
Joint Gaussian probability density function, 68e69
JONSWAP spectrum, 50e51, 50f, 110, 162
autocorrelation relevant to, 52f
autocovariance relevant to, 51e52
function obtained from, 72f
relationship Tp(Hs) based on, 52e53
and TMA spectrum, 53e54

K
KeuleganeCarpenter number (KE), 228, 230e231
Kinetic term of wave pressure, 10, 254

L
Large bodies, 230e231, 257. See also Solid body
isolated bodies, 181, 198, 207

Large waves, 171
Largest expected wave, 292fe293f
Largest wave height in lifetime
advanced approach, 103e109
design sea state pattern, 102e103
probability functions, 103

Latching control, 269e272
Lifetime
design sea state, 100e102
estimate of the largest wave height, 102e111

Linear theory, 281
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Loads of sea storms, on vertical
breakwaters, 259e268

first worked example, 266e267
overall stability of upright section, 259e261

Long vertical breakwater, 218e224
diffraction coefficients, 148e149
gauges of recent small scale field experiment, 224f
nonhomogeneous random wave field, 151
zero up-crossing wave, 225f

M
Maximum expected wave height. See also Wave height
at a given array of points in the design sea state, 117e119
in a given sea state, 77e78
in a nonhomogeneous sea state, 154
program for, 84e85
in a storm of given Hs(t), 91e92

Mean wave period, 70
Measured wave force, 231e234
Minor losses, 287
Mitsuyasu et al.’s directional

distribution, 174e175, 182, 212, 235, 250, 266, 303
Moments
method of, 241e242
of the spectrum, 48

Montecarlo simulations, 242
Morison equation, 181, 227e229
field tests of, 229e235. See also Morison equation; field tests of
force calculated with, 231e234
random force process calculated with, 233f

Morison equation, field tests of
force calculated with, 231e234
KE of sea state as whole, 234e235
method for obtaining Cin and Cdg, 229e231

Multivariate Gaussian probability
density function. See Joint Gaussian probability density function

N
Narrow-bandedness parameters, 48e50
Navigation buoy, 269e272
NDBC (National Data Buoy Centre), 94f
Node, 16, 218e219
NOEL (Natural Ocean Engineering Laboratory), 60
Nonhomogeneous random wave field, 151e153
cross-correlation of surface elevation, 153
in lee of upright breakwater, 152e153
before long upright breakwater, 151
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Nonhomogeneous sea state, maximum expected wave height, 154
Nonhomogeneous wave fields, 220e224, 171e172
Nonlinear theory, 9e10
Nonlinearity effect, 189e190, 192, 224, 254, 263

O
Offshore gravity platform, 245, 269e272
Omnidirectional spectrum. See

Frequency spectrum
Oscillating water column (OWC), 269e272
cross section of, 270f

Overtopping, 305

P
Particle accelerations, 177e181. See also Acceleration
Particle velocities, 229, 241e242, 277e278

horizontal, 210e211, 218e219
in wave groups, 177e181

Peak period (Tp), 44, 207
Peak-over-threshold (POT) approach, 111e112
Peaks distribution, 231e234
Performances of a converter, 304e306
Period largest waves. See Very large wave
Period of a very large wave, 71
Persistence, 95e99
Phase speed, 4, 21, 23, 175
Phase speed reduction factor, 206
Pierson and Moskowitz spectrum, 55, 162
Pitch-and-roll buoy, 58
Point absorbers, 269e272
Poisson process, 99e100
Power of the turbine-generator system, 304e305, 307e308
Pressure air pocket, 287, 291e293, 307e308
Pressure fluctuation
deterministic, 196e197
in discharge plant, cross-covariance of, 289f
effect of the amplitude of, 202, 206
time shift between water discharge and, 278f

Pressure head waves, 190f, 224f
resorting to time series data of, 187

Pressure transducers, 190f
Primary pressure peak, 292e293, 293f, 307e308
Probability
of a peak of a sectional wave force on a cylinder, 231e234
of a wave height in a sea state, 69e74
of exceedance, 74f, 77, 90, 92, 111e112, 232, 234
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Probability (Continued)
of the Hs of the sea state wherein the maximum wave height in the

lifetime will occur, 103e111
of the maximum wave height in a sea state of given duration, 86f
of the maximum wave height in the lifetime, 103e111

Propagation speed, 22e23, 272e276
Program HMAX, 84e85, 110, 304
Program SUMM1, 83, 297, 304
Program TESTDS, 131e136, 138
Program UOWC1, 296e297, 304

Q
QD theory, experimental verification
deterministic wave function from time series data, 186e187
experiment for verification, 187e188
resorting to time series data of pressure head waves, 187

Quasi-determinism (QD) theory, 257, 294
arbitrary configurations of solid boundary, 195e196, 196f
core of, 176e177
cross-covariances, use of, 145e146
experimental verification of, 186e188, 220e224. See also QD theory, experimental verification
mechanics of diffracted wave groups, 209e226
mechanics of reflected wave groups, 209e226
mechanics of wave forces on large

isolated bodies, 181, 198, 207
mechanics of wave groups, 173e194
in Montecarlo simulations, 242
overall synthesis, 207e208
sea states nonhomogeneous in space, 146e151
onto wave statistics, 71e74

Quasi-determinism (QD), 172
subroutine, 182e186

R
Radiation stress, 26
Random point process, 99
Random wave field
homogeneous, 145e146
nonhomogeneous, 151e153

Random wind-generated waves, 43e62
Rayleigh distribution, 234
Realization of a random process, 64
Reflected wave energy, propagation speed of, 272e276
Refraction
with arbitrary contour lines, 27e31
with straight contour lines, 25e27, 26f
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Resonance coefficient, 279, 305e306
Reynolds number (RE), 228
Resonant point absorber, 269e272
Response spectrum, 242
Return period, 95e99
formal solution for, 95e98

Rice’s problem, 67e69, 67f
corollaries of, 69e70
mean wave period, 70

Rubble mound, 259e261, 265e266

S
Safety factor, 259e261
Safety margin, 291
between water level and roof of the chamber and pressure in air pocket, 291e293

Salter duck, 269e272
Sarpkaya’s asymptotic values, 228
Sea bottom slope, 261e262, 266
Sea states, 43e46, 55f
concept. See Concept of sea state
definition, 44
nonhomogeneous in space, near breakwaters, 146e147
numerical simulation of, 55e56, 131e132, 138, 242
space-time theory of, 115e144
wave statistics, 63e88

Sea storm. See also Equivalent triangular storm (ETS)
in the Atlantic Ocean, 94f
average persistence, 95e99
encounter probability of, 99e100
Poisson process, 99e100, 99f
return period, 95e99

Semi-infinite breakwater, 219
interaction between waves and, 18f
wavefronts behind, 19f

Shoaling coefficient, 27, 261e262
Shock pressure peak, 292e293
Shore of Reggio Calabria, 59e60
Significant wave height
definition, 44
distribution at a location, 90, 93

Sinusoidal wave, 5, 47, 70
Small body, 257
Small scale field experiment (SSFE), 58e60, 76f, 118e119, 187, 254, 280e281, 289
actual and deterministic waves, of 1990, 189f
deterministic force on floating tunnel, of 1993, 205f
equipment of on effectiveness of Morison equation, 232f
model of piece of floating tunnel, of 1993, 199f
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Small scale field experiment (SSFE) (Continued)
plan of wave gauges in, 188f
polar diagram, of 1993, 202f
results of, 188e190
supporting structure of gravity offshore platform, of 1992, 198f
on U-oscillating water column, of 2005, 281f
to verify QD theory, 190f, 224f
vertical breakwater used for, 264f
wave pressure at various points, of 1992 and 1993, 200f, 201f
zero down-crossing wave, of 2010, 191f
zero up-crossing wave, 225f

Solid body
comparing wave force to FroudeeKrylov force, 200e203, 203e204
comparing wave pressures, 198e199
deterministic pressure fluctuations on, 196e197

Solid boundary, 170, 195e196
arbitrary solid boundary, 196f

Space-time theory, 146e151
for QD theory. See Quasi-determinism (QD) theory

Spectrum, 43e46
and autovariance, 45

Stability analysis, 260f
evidences from SSFEs, 264e265
modes of failure, 260e261

Stationarity, 64e66
Stationary Gaussian process, 166
Stoker’s type problem, 270f
Stokes expansion, 116e117, 168
Stokes’ theory
to first order, 5e7, 10e11, 17e18
to second order, 7e10, 9f

Straits
reference scheme. See FroudeeKrylov force
wave height, 33
waveecurrent interaction in, 31e35

Straits of Messina, 31, 59, 199
Submerged tunnel, 207. See also FroudeeKrylov force; Straits of Messina
wave forces calculation on, 245e258

Surface elevation, 7, 12, 116e117, 120, 123, 141e142
joint probability of, 66e67
probability of, 64
proof relevant to ensemble at fixed time instant, 65e66
proof relevant to realization, 64e65
variance of, 46, 148f

Swell, 59e60, 281, 289, 304e305, 308
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T
Theory of probability, and deterministic mechanics, 170
Theory of quasi-determinism, 157e172
Three dimensional waves, 12
Tide, 59, 292e293
TMA spectrum, 53e54
for finite water depth, 83e84

TRASDIR, 296e297
Transverse force, 228e229
Tucker equations, 122
Turbine, 287e288, 292e294, 304
Tunnel (submerged), 35, 118e119, 245e258. See also

FroudeeKrylov force; Straits of Messina
work forces on, 250e254

U
Ultrasonic probe, 232, 264f
U-oscillating water column (U-OWC), 269e272
cross section of, 271f
interaction between wave and, 276e282
for the Mediterranean Sea, 306f
for ocean, 307f
water and air flow inside, 285e288, 286f, 288f

Uplift force, 259e260, 267

V
Variance of the wave elevation (sea state), 46
Velocity potential, 2, 7, 12
Vertical breakwater, loads of sea storms, 259e268
first worked example, 266e267
overall stability of upright section, 259e261
pressure exerted by wave crest, 17f
wave field before, 15f

Vertical reaction, 259e260, 295e296
Very large wave
height, 159e160, 166, 169, 209, 219, 263
period Th of, 71

Very narrow spectrum, 46f
concept of, 46e48

Virtual-height model (VHM), 263
wave crest, 263
wave trough, 263

W
Wave and U-OWC. See also U-oscillating water column

(U-OWC)
advanced solution, 279e282
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Wave and U-OWC (Continued)
basic solution, 277e279
logic followed, 276e277

Wave crest of very large height, necessary and sufficient condition, 157e159
Wave diffraction, 17e20
diffraction coefficient, 19e20, 20f
interaction with semi-infinite breakwater, 17e19, 18f
wave forces calculation, 257

Wave energy, 21e22
Wave energy conversion, 269e284
Wave energy converter, 285e310
extreme loads, 293e294
hydraulic verifications, 291e296
overall design, 304e308
overall stability, 295e296
production of electrical energy, 288e290

Wave energy flux. See Energy flux
Wave energy source, 269e272
Wave field in open sea, 115e117
concept of homogeneous wave field, 115e116
random surface elevation, 116e117
velocity potential, 116e117

Wave force
calculation of, 237e240
calculation on gravity platforms, 245e258
calculation on submerged tunnels, 245e258
calculation, three-dimensional space frames, 227e244
on gravity offshore platform, 245e250
hypothesis of submerged tunnel, 251f
model for calculating diffraction coefficient of, 205e207
on solid body and FroudeeKrylov force, 202e204
on submerged tunnel, 250e254
worked example, 246f

Wave function in space and time
first deterministic wave function, 166e168
second deterministic wave function, 169
velocity potential associated with, 168e169

Wave group
G1, 178e179
G2, 179e181
of maximum expected zero down-crossing wave height, 241f
mechanics of diffracted wave groups, 209e226
mechanics of reflected wave groups, 209e226
particle velocity and acceleration in, 177e181
in time domain, 176f

Wave height, 250e251, 251f
dimensionless versus dimensionless wave period, 75f
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distribution, 75e77
effects of, 29e31
under general bandwidth assumptions, 71e74
maximum expected, 77e78
probability of, 69e70
refraction, 29f
of sea state (Hs), 90e91
on wave depth, 27, 28f

Wave load, 260, 267, 291, 295e296, 305
peaks on tunnel, 255f
on tunnel, 252e254

Wave mechanics, 3e4
angular frequency, 4
on space domain, 3f
on time domain, 3f
wave amplitude, 4
wave motion, 4, 4f
wave number, 4
wave steepness, 3e4

Wave of very large height
necessary condition for, 163e166. See also Wave of very large height; necessary condition for
sufficient condition for, 159e163

Wave of very large height, necessary condition for, 163e166
analysis of function f(T, x), 165
general necessary condition, 163
necessary condition, 165e166
probability P(H, T, x), 164e165

Wave orthogonals, 27e29
control volume from, 31f
two sets of, 30f

Wave pressures
Goda’s model, 261e263, 262f
of isolated solid body with equivalent water body, 198e199
risk of impulsive breaking, 265e266
at various points, 200f
virtual-height model, 263
on wall and on base of upright breakwater, 260f

Wave record analysis, 57e58
Wave reflection, 13e17
general solution for h and ɸ, 13e14
orthogonal attack, 14e16
pressure distribution on breakwater, 16e17
reference scheme, 13f
vertical breakwater. See Vertical breakwater

Wave refraction. See Refraction
Wave statistics
QD theory consequences onto, 71e74
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Wave statistics (Continued)
in sea states, 63e88

Wave tank, 58
Wave transformation
near coasts, 25e42

Wave trough, 295f
Waveecurrent interaction, 10e11
current only, 31e32
on various depths, 32f
wave height, 33e35
wavelength, 32e33

Waveflume, 22e23, 22f, 58e59
Wavelength, 3e4, 32e33
on water depth, 34f

Wavemaker, 272f
re-analysis of problem, 272e274
wave train striking a converter, 275f
wave train striking wall, 275f

Waves, with fixed height, 72f
Weibull distribution, 91
Weight in still water, 259e260, 295e296
Wells turbine, 269e272, 287, 308
Whitecap, 175e176
Wind seas, 50
JONSWAP spectrum, 50e51

Wind speed, 51, 58, 115e116

Z
Zero down-crossing wave, 181, 236e237, 236f
Zero up-crossing wave, 236e237, 236f
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