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PREFACE

The material in this book has been continuously developed since the
author started to teach hydrodynamics of ships and offshore structures at
the Norwegian Institute of Technology (NTH) in 1974. During this
period offshore oil activity has played an important role in Norwegian
society. Interest in ships for transportation has changed during these
years. At the moment there is an increasing interest in developing
high-speed marine vehicles for transportation of goods and passengers.
In the future it is expected that oil and gas exploration will move into
areas of deeper water. Examples on future new areas where ocean
engineers and naval architects can be of help is fish farming in open sea,
recovery of deep-sea minerals, and development of marine energy
resources from temperature gradients and waves. In all these areas there
is a need to know about sea loads. This is what this book is all about.
The book covers applications in a broad area. This includes conventional
ships, high-speed marine vehicles, fixed and floating offshore structures.
Many of the applications come through exercises.

Part of the material in the book has been taught for the last year siv.ing
(MSc) students at the Department of Marine Technology, NTH. It has
also been used in graduate courses at the Department of Ocean Engineering,
MIT, when the author was a visiting professor there in two periods from
1980 to 1981 and from 1987 to 1988.

A book on wave-induced motions and loads can easily be very
mathematical. The author has tried to avoid this. The hope is that
engineers with a non-mathematical background can get a good insight into
sea loads on ships and offshore structures by reading the book. However,
knowledge in calculus including vector analysis and differential equations
is necessary to read the book in detail. The reader should also be familiar
with basic hydrodynamics of potential and viscous flow.

I was encouraged by Professor J. N. Newman, MIT, to write the
book. Being an editor for the book he has also given me much valuable
advice. Dr. Svein Skjgrdal has spent a lot of time giving detailed
comments on different versions of the manuscript. He has also been
helpful in seeing the topics from a practical point of view. Many other
people should be thanked for their critical review and contributions.
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These include: Dr J. M. R. Graham of Imperial College, London; Dr
Martin Greenhow of Brunel University, London; Professor Makoto
Ohkusu of Kyushu University; Professor Paul Sclavounos of MIT;
Professor Finn Gunnar Nielsen of Norsk Hydro; Professor Enok Palm of
University of Oslo; Dr John Grue of University of Oslo, Dr Bjern
Sortland of Marintek; Siv.ing. Terje Nedrelid of Marintek, Professor
Bjernar Pettersen of NTH and Professor Dag Myrhaug of NTH.
Graduate students who have been particularly helpful have been Seung Il
Ahn, Rong Zhao, Geir Leoland, Jan Kvélsvold, Knut Streitlien and Jens
Bloch Helmers. Rong Zhao has done the calculations presented in
several of the figures and Vigdis O. Dahl is responsible for the skilful
drawing of many of the figures. Marianne Kjelaas has typed the many
versions of the manuscript in an accurate and efficient way.

1 INTRODUCTION

Knowledge about wave induced loads and motions of ships and offshore
structures is important both in design and operational studies. The
significant wave height (the mean of the highest one-third of the waves)
can be larger than 2 m for 60% of the time in hostile areas like the North
Sea. Wave heights higher than 30 m can occur. The mean wave period
can .be from 15 to 20s in extreme weather situations and it is seldom
below 4s. Environmental loads due to current and wind are also
important. Extreme wind velocities of 40 to 45 m s™! have to be used in
the design of offshore structures in the North Sea.

Fig. 1.1 shows five examples of offshore structures. Two of them, the
jacket type and the gravity platform, penetrate the sea floor. At present,
fixed structures have been built for water depths up to about 300 m. Two
of the structures, the semi-submersible and the floating production ship,
are free-floating. The tension leg platform (TLP) is restrained from
oscillating vertically by tethers, which are vertical anchorlines that are
tensioned by the platform buoyancy being larger than the platform
weight. Both the ship and the semi-submersible are kept in position by a
spread mooring system. An alternative would be to use thrusters and a
dynamic positioning system. Pipes (risers) are used as connections
between equipment on the sea floor and the platform.

Ships serve a large variety of purposes. Examples are transportation of
goods and passengers, naval operations, drilling, marine operations,
fishing, sport and leisure activities. Fig. 1.2 shows three types of ships: a
monohull, a SWATH and a SES. The monohull is exemplified by a
LNG (liquid natural gas) carrier with spherical tanks. SWATH stands
for small-waterplane-area, twin-hull ship and consists of two fully-
submerged hulls that are connected to the above water structure by one
or several thin struts. Between the hulls there may be fitted fins or foils
as in Fig. 1.2. SES (surface effect ship) is an air-cushion supported

" high-speed vehicle where the air-cushion is enclosed on the sides by

rigid sidewalls.and on the bow and stern by compliant seals. By high
speed we mean high Froude number (Fn). This is defined as Fn=
U/(Lg)*(U = ship speed, L = ship length, g = acceleration of gravity). A
ship is considered a high-speed marine vehicle when Fn > =0.5. From a
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Fig. 1.1. Five types of offshore structures. From left to right we have, jacket,
gravity platform, semi-submersible, floating production ship,
. tension leg platform (TLP). (Partly based on a figure provided by
Veritec A/S.)
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Fig. 1.2. Three types of ships. SWATH (small-waterplane area, twin-hull
ship), LNG (liquid natural gas) carrier, SES (surface effect ship).
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hydrodynamical view point one can distinguish between ships at zero,
normal and high speed. SWATH concepts have been designed for both
normal and high-speed applications.

Most of the applications presented in the main text will deal with ships
at zero or normal speed and with offshore structures. Applications to
high-speed marine vehicles will be given by exercises. We will discuss
both wave-induced loads and motions, -with motions being the result of
integrated hydrodynamic loads on the structure. In the introduction we
will give a survey of important wave load and seakeeping problems for
ships and offshore structures. Before doing that we need to define the
motions. :

DEFINITIONS OF MOTIONS

Motions of floating structures can be divided into. wave-frequency
motion, high-frequency motion, slow-drift motion and mean drift. The
oscillatory rigid-body translatory motions are referred to as surge, sway
and heave, with heave being the vertical motion (see Fig. 1.3). The
oscillatory angular motions are referred to as roll, pitch and yaw, with
yaw being rotation about a vertical axis. For a ship, surge is the
longitudinal motion and roll is the angular motion about the longitudinal
axis.

The wave-frequency ‘motion is mainly linearly-excited motion in the
wave-frequency range of significant wave energy. High-frequency mo-

Fig. 1.3. Definition of rigid-body motion modes. Exemplified for a deep
concrete floater.
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tion is significant for TLPs and is often referred to as ‘rins
‘springing’ and is due to resonance oscillations in heave, pitch an.

the platform. The restoring forces for the TLP are due to tethers ana
mass forces due to the platform. The natural periods of these motion
modes are typically 2—4 s which are less than most wave periods. They
are excited by non-linear wave effects. ‘Ringing’ is associated with
transient effects and ‘springing’ is steady-state oscillations.

Similar non-linear effects cause slow drift and mean motions in waves
and current. Wind will also induce slow drift and mean motion. Slow
drift motion arises from resonance oscillations. For a moored structure it
occurs in surge, sway and yaw. The restoring forces are due to the
mooring system and the mass forces due to the structure. Typical
resonance periods are of the order of 1 to 2 minutes for conventionally
moored systems. '

Heave is an important response variable for many structures. Table
1.1 illustrates the range of the natural heave periods of different types of
marine structures. These include SES, TLPs, monohull ships, catamar-
ans, SWATH ships and semi-submersibles. The table indicates how the
natural heave oscillations can be excited. For instance for the SES-hull it
occurs due to high encounter frequency between the ship and the waves,
while for the SWATH it occurs due to low encounter frequency between
the ship and the waves. The table also shows what types of restoring
forces can cause heave resonance. For the SES it is the compressibility
effect of the air in the cushion. For the monohull ship, catamaran,
SWATH and semi-submersible it is due to change in buoyancy forces.
This is related directly to the waterplane area of the vessels. Finally we
see in Table 1.1 either the most important physical source of natural
heave damping or how one artificially increases the damping by control
systems. -

For the SES it is the heave accelerations and not the heave motions
that are important. If no ‘ride control’ is used, acceleration values of 1.5¢
can occur in relatively calm sea. If the natural heave period is 0.5, it
means the heave amplitude is =0.1 m.

A semi-submersible is designed to avoid resonance heave motion and
the maximum heave motion in severe sea states will be less than half the

maximum wave amplitude.

frequency between
ship and waves

to low encounter

hull ship)

>20s
Linear wave forces due

waterplane area twin
Waterplane area

SWATH (small

Foil control

e | N

Semi-submersible
>20s

Waterplane area
Swell (long waves)
Viscous effects

Monohull ship
Catamaran
4-16s%
Waterplane area
Linear wave forces
Wave radiation

frequency wave

platform)
forces

2-4s
Elasticity of tethers

TLP (tension leg
Non-linear sum
Viscous effects

frequency between
ship and waves

‘Ride Control’

due to high
encounter

ship)

<ls
Air compressibility
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Linear wave forces

TRADITIONAL SHIP PROBLEMS
Examples of important seakeeping and wave load problems for ships are
illustrated in Fig. 1.4. In particular, vertical accelerations and relative
vertical motions between the ship and the waves are important responses.
Accelerations determine loads on cargo and equipment and are an
important reason for seasickness. The relative vertical motions can be
used to evaluate the possibility and damage due to slamming and water

natural heave period:

mechanism around the

Table 1.1. Resonant heave oscillations of ships, offshore structures and high speed vehicles

¢ Rough estimate: V(L/1.5), where L is ship length in metres.

Natural heave period:
Dominating excitation

Restoring force:
Important damping:

Vessel:
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on deck. (Slamming means impact between the ship and the water.) For
a ship it is important to avoid slamming as well as water on deck because
of the resulting local damage of the structures.

Rolling may be a problem from an operational point of view of fishing
vessels, crane vessels, passenger ships and naval vessels. Means to reduce

Local motions

Effect of breaking waves

Liquid sloshing in tanks

4

Wave bending moments and shear forces

Fig. 1.4. Examples of important seakeeping and wave load problems for
ships.
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the rolling of a ship are therefore of interest. Examples are bilge keels,
anti-roll tanks and active fins. For smaller ships, rolling in combination
with either wind, water on deck or motion of the cargo can cause the ship
to capsize. Another important reason for capsizing of smaller ships is
breaking waves. Several accidents off the Norwegian coast have been
explained by breaking waves. Following sea can cause different critical
capsizing situations. If the wave profile is stationary relative to the ship,
the ship may be statically unstable in roll relative to the waterline defined
by the wave profile. The ship may also lose its directional stability in
following waves. This can happen when the frequency of encounter
between the ship and the waves is small. The result is an altered course
relative to the waves. This situation is called ‘broaching’ and is most
critical with respect to capsizing of ships with small static stability.

Liquid sloshing in tanks may be a problem for bulkships, combination
ships oil-bulk—ore (OBQ), liquid natural gas (LNG) carriers and tankers
loading at offshore terminals. There are two reasons why the fluid motion
in a tank can be violent. One is that a natural period for the fluid motion
in the tank is in a period domain where there is significant ship motion.
The other reason is that there is often little damping connected with fluid
motion in a tank. If the excitation period is close to a natural period for
the tank motion, a strong amplification of the fluid motion in a tank will
occur. Liquid sloshing can cause high local pressures as well as large
total forces. Both effects may be important in design.

For larger ships, wave-induced bending moments, shear forces and
torsional moments are important. More specific problems are whipping
and springing. Whipping is transient elastic vibration of the ship hull
girder caused for instance by slamming. Springing is steady-state elastic
vibration caused by the waves and is of special importantce for larger
oceangoing ships and Great Lake carriers. Springing is due to both linear
and non-linear excitation mechanisms. The linear exciting forces are
associated with waves of small wavelengths relative to the ship length.

Ship motions and sea loads can influence the ship speed significantly
due to voluntary and involuntary speed reduction. Voluntary speed
reduction means that the ship master reduces the speed due to heavy
slamming, water on deck or large accelerations. Involuntary speed
reduction is the result of added resistance of the ship due to waves and
wind and changes in the propeller efficiency due to waves. The
importance of involuntary speed reduction is exemplified in Fig. 1.5. It
shows the results of computer calculations for a container ship at a given
sea state. The significant wave height Hy is 8.25m. The waves are
assumed longcrested with different propagation directions relative to the
ship. The ship has a length of 185 m. The actual speed at constant engine
power is given for different wave headings together with the design speed
in still water at the same engine power. For instance in head seas the ship
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speed is 8 knots (4.1 ms~') compared to 16.2 knots (8.3 ms™') in still
water. Depending on the wave direction, the actual ship speed may be
lower than that shown in Fig. 1.5. This is due to voluntary speed
reduction. Information like this may be used to choose optimum ship
routes based on relevant criteria like the lowest fuel consumption or the
shortest time of voyage.

Criteria for acceptable levels of ship motions have been discussed in the
- Nordic co-operative project ‘Seakeeping performance of ships’
(NORDFORSK, 1987). Considerations have been given to hull safety,
operation of equipment, cargo safety, personnel safety and efficiency.
General operability limiting criteria for ships are given in Table 1.2.
Criteria with regard to accelerations and roll for special types of work and
for passenger comfort are given in Table 1.3. The limiting criteria for fast
small craft are only indicative of trends. A fast small craft is defined as a
vessel under about 35 metres in length with speed in excess of 30 knots.
A reason why the vertical acceleration level for fast small craft is set
higher than for merchant ships and naval vessels, is that personnel can
tolerate higher vertical acceleration when the frequency of oscillation is
high.

OFFSHORE STRUCTURE PROBLEMS
For drilling operations heave motion is a limiting factor. The reason is
that the vertical motion of the risers has to be compensated and there are
limits to how much the motion can be compensated. An example of a

Head sea

Desi%n
© 16 spee Hy/328.25m
© 14 {Sea state 7}
[
v 12
2 10
z 8 Actual
3 6 speed
a .

Beam sea
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=2
E
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=l
® 6
= 8 ,
5 10 /
=} i
@ 12 7
— 7
14 >
16 |le==""

Following sea

Fig. 1.5. Effect of added ship resistance due to waves and wind (involuntary
speed reduction). Ship length = 185 m. (i = significant wave
height).

OFFSHORE STRUCTURE PROBLEMS

Table 1.2. General operability limiting criteria for ships (NORDFORSK, 190

Merchant Naval Fast small
ships vessels craft

Vertical acceleration at forward  0.275g (L < 100 m)

perpendicular (RMS-value) 0.05¢ (L = 330 m)° 0.275¢ 0.65¢
Ve(r;{i;zlsfls:ﬁ::;ation at bridge 0.15¢ 0.2¢ 0.275¢
La(tgr:il Sa-c‘::;l:;;nion at bridge 0.12¢ 0.1¢ 0.1g
Roll (RMS-value) 6.0 deg 40deg  4.0deg
Slamming criteria (Probability) gg’;’ Eﬁ ; ;gg 2;,, 0.03 0.03
Deg)l: ov;/)(;tl;litleistsy ;rlterla 0.05 0.05 0.05

“The limiting criterion for lengths between 100 and 330 m varies almost linearly
between the values L = 100 m and 330 m, where L is the length of the ship.
®The limiting criterion for lengths between 100 and 300 m varies linearly
between the values L = 100 m and 300 m.

Table 1.3. Criteria with regard to accelerations and roll
(NORDFORSK, 1987)

Root mean square criterion

Vertical Lateral

acceleration acceleration Roll  Description

0.20g 0.10¢ 6.0°  Light manual work
0.15¢ 0.07g 4.0° Heavy manual work
0.10g 0.05¢ 3.0° Intellectual work
0.05¢ 0.04¢g 2.5°  Transit passengers
0.02¢ 0.03¢ 2.0°  Cruise liner

heave motion criterion is that the heave amplitude should be less than
4 m. It is therefore important to design structures with low heave motion
so that it is possible to drill in as high a percentage of the time as
possible. Semi-submersibles are examples of structures with very low
heave motion in the actual frequency domain. Rolling may also be an
important motion mode to evaluate, for example for operation of crane
vessels or for transportation of jackets and semi-submersibles on ships
and barges. Rolling, pitching and accelerations may represent limiting
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factors for the operation of process equipment on board a floating
production platform.

In the design of mooring systems for offshore structures loads due to
current, wind, wave-drift forces and wind- and wave-induced motion
are generally of equal importance. There are two important design
parameters. One is the breaking strength of the mooring lines. The other
is the flexibility of the riser system which means, in practice, for a rigid
riser system that the extreme horizontal offsets of the platform relative to
the connection point of the riser to the sea floor should be less than say
10% of the water depth.

Wind, current, mean wave drift forces and slowly varying wave drift
forces are also important in the design of thrusters and in station keeping
of crane vessels, diving vessels, supply ships, offshore loading tankers
and pipelaying vessels. Interaction of thrusters with other thrusters, the
free-surface and structures may also be important for dynamic position-
ing systems, towing and marine operations in waves.

Examples of the main objectives of the hydrodynamic analysis of a
tension leg platform are, to calculate the vertical dynamic loads on the
platform with the purpose of estimating axial forces in the tethers and to
calculate the wave elevation in order to evaluate the air gap between the
waves and the underside of the platform. The minimum air gap is also an
important consideration for other types of platforms.

HYDRODYNAMIC CLASSIFICATION OF

STRUCTURES
Both viscous effects and potential flow effects may be important in
determining the wave-induced motions and loads on marine structures.
Included in the potential flow is the wave diffraction and radiation
around the structure. In order to judge when viscous effects or different
types of potential flow effects are important, it is useful to refer to a
simple picture like Fig. 1.6. This drawing is based on results for
horizontal wave forces on a vertical circular cylinder standing on the sea
floor and penetrating the free surface. The incident waves are regular. H
is the wave height and A is the wavelength of the incident waves. D
is the cylinder diameter. The results are based on the use of
Morison’s equation (see chapter 7) with a mass coefficient of 2 and a drag
coefficient of 1. The linear McCamy & Fuchs (1954) theory has been
used in the wave diffraction regime.

Let us try to use the figure for offshore structures. We will consider a
regular wave of wave height 30 m and wavelength 300 m. This cor-
responds to an extreme wave condition. Let us consider wave loads on
the caisson of a gravity platform where typical cross-sectional dimensions
are 100 m. This implies equivalent H/D- and A/D-values of 0.3 and 3,
respectively. This means that wave diffraction is most important. If we

ENGINEERING TOOLS 11

consider the columns of a semi-submersible, a relevant diameter would
be approximately 10 m. This implies A/D = 30, H/D = 3, which means
that the hydrodynamic forces are mainly potential flow forces in phase
with the undisturbed local fluid acceleration. Wave diffraction and
viscous forces are of less significance.

For the legs of a jacket a relevant diameter is approximately 1 m. This
implies that viscous forces are most important. By viscous forces we do
not mean shear forces, but pressure forces due to separated flow. The
examples above are for an extreme wave condition. In an operational
wave condition the relative importance of viscous and potential flow
effects are different. We should bear in mind that Fig. 1.6 only provides
a very rough classification. For instance, resulting forces may be small
due to the cancelling out of effects of loads from different parts of the
structure. '

ENGINEERING TOOLS
Both numerical calculations, model tests and full-scale trials are used to

assess wave-induced motions and loads. From an ideal point of view
full-scale tests are desirable but expensive and difficult to perform under
controlled conditions. It may also be unrealistic to wait for the extreme
weather situations to occur. Model tests are therefore needed. A
drawback with model tests is the difficulty of scaling test results to full
scale results when viscous hydrodynamic forces matter. The geometrical
dimensions and equipment of the model test facilities may also limit the
experimental possibilities.

Due -to the rapid development of computers with large memory
capacity and high computational speed, numerical calculations have

H
D
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-
)
VISCOUS
FORCES
0l  WAVE BREAKING . .
= LIMIT
MASS
| FORCES
WAVE | o
DIFFRACTION N
=5 A/D

Fig. 1.6. Relative importance of mass, viscous drag and diffraction forces on
marine structures.
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played an increasingly important role in calculating wave-induced
motions and loads on ships and offshore structures. A significant step in
the development started about 1970. For offshore structures it was partly
connected with the beginning of offshore oil and gas production and
exploration in the North Sea. However, it is important to stress that
numerical computer programs are also dependent on the development of
hydrodynamic theories. More theoretical research is still needed, in
particular to increase the knowledge on separated viscous flow and
extreme wave effects on ships and offshore structures.

It is unrealistic to expect that computer programs will totally replace
model tests in the foreseeable furure. The ideal way is to combine model
tests and numerical calculations. In some cases computer programs are
not reliable. Model tests often give more confidence than computer
programs when totally new concepts are tested out.

When computer programs have been validated and the theoretical
basis of the computer program has been satisfactorily compared with
experimental results, computer programs offer an advantage relative to
model tests. Computer programs can often be used in a more efficient
way than model tests to evaluate different designs in a large variety of sea
conditions. However, sound judgement of results is always important. A
basis for this is physical understanding and practical feeling.

One aim of the book is to provide physical understanding to the reader
and try to simplify the problems mathematically. In this way one can
develop simple tools to evaluate results from model tests, full-scale trials
or computer programs.

2 SEA ENVIRONMENT

The intention of this chapter is to provide the basic information on
waves, wind and current that is needed to evaluate sea loads and motions
acting on ships and offshore structures. It is assumed that the reader has
a basic knowledge of fluid mechanics and is familiar with the concepts of
velocity potential and Bernoulli’s equation. A brief survey of the general
aspects of free-surface fluid flow problems based on potential theory is
given below.

BASIC ASSUMPTIONS
The sea water is assumed incompressible and inviscid. The fluid motion

is irrotational. A velocity potential ¢ can be used to describe the fluid
velocity vector V(x, ¥, 2, t) = (4, v, w) at time ¢ at the point x = (x, y, 2)
in a Cartesian coordinate system fixed in space. This means that
.0 .0 o
V=V¢El—¢+1—¢+k-2
ox oy Oz
where i, j and k are unit vectors along the x-, y- and z-axes, respectively.
A velocity potential has no physical meaning itself, but is introduced
because it is convenient in the mathematical analysis of irrotational fluid
motion. The fluid is irrotational when the vorticity vector

0=VXV 2.2)

2.1

is zero everywhere in the fluid. Also, since water is incompressible, i.e.
V.V =0, it follows that the velocity potential has to satisfy the Laplace
equation
2 82 82
70,99, 2¢_p 2.3)

% oy 8zk
The complete mathematical problem of finding a velocity potential of
irrotational, incompressible fluid motion consists of the solution of the
Laplace equation with relevant boundary conditions on the fluid. We will

show examples of boundary conditions later.
The pressure p follows from Bernoulli’s equation. If we assume the
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z-axis to be vertical and positive upwards we can write

prpgz+piPy.v=c 2.4)
a2

where C is an arbitrary function of time. We will include the time
dependence of C in the velocity potential and let C be a constant,
Equation (2.4) is true for unsteady, irrotational and inviscid fluid motion.
It is assumed that the only external force field is gravity. We will let 2 =0
correspond to the mean free-surface level. The constant C can be related
to the atmospheric pressure or the ambient pressure, as in equation
2.11).

;’_’i‘/' [/
Kinematic boundary conditions
For a fixed body in a moving fluid we have the body boundary condition
3
8_(: =0 on the body surface 2.5
Fyie o e
: > ;’n/.\
Here 3/3n denotes diﬁ"erentiati(én along the normal to the body surface.
We will define the positive normal direction to be into the fluid domain.
Equation (2.5) expresses 1mpermjeqb111ty, i.e. that no fluid enters or
leaves the body surface. The tangentlal velocity component on a body
surface in a potential flow problem is unspecified. If the body is moving
with velocity U, equation (2.5) can be generalized to

9¢

3 =U-n on the body surface 2.6)

Here U can be any type of body velocity. For a rigid body it includes
translatory and rotary motion effects in general. This means U may be
different for different points on the body surface.

Before we formulate the kinematic free-surface condition we recall the
meaning of the substantial derivative DF /Dt of a function F(x, y, 2, t).
This expresses the rate of change with time of the function F if we follow
a fluid particle in space. Mathematically we can express it as

DF OF
=—+V.V K
Dt o * F 2.7)

where V is the fluid velocity at the point (x, y, 2) at time ¢.
As an example let us define the free-surface by the equation

z = §(x, ) t) 2.8
where { is the wave elevation. We then define the function
F(ny; 2, l)=Z"‘ C(x:y: [)=0 (29)
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A fluid particle on the free-surface is assumed to stay on the free-
surface. This means it always satisfies equation (2.9) and that DF /Dt = 0.
The following kinematic boundary condition then applies on the
free-surface

—aa-t<z £y, 0) + Ve - V(z = (%3, D) =0
i.e.

——=——-=0 on z=((x,y,1¢ 2.10)
5t axm yay o by,
We have expressed here the fluid velocity V in equation (2.7) by the
velocity potential ¢ (see equation (2.1)).

Dynamic free-surface condition
The dynamic free-surface condition is simply that the water pressure is
equal to the constant atmospheric pressure po on the free- surface. If we
choose the constant C in equation (2.4) as po/p so that the equation holds
with no fluid motion, then

(5 (3D +(3)-0
on z=¢§(x,y,1) (2.11)

The free-surface conditions (2.10) and (2.11) are non-linear. We do not
know where the free-surface is before we have solved the problem.
However, by linearizing the free-surface conditions we are able to
simplify the problem and still get sufficient information in most cases. In
the study of interactions_between linear waves and linear wave- -induced
motions and muctures, the Linear free-

Jladenivg

surface condition will depend on the forward speed or the presence of a
current. We assume here that the structure has no forward speed and
that the current is zero. Linear theory means that the velocity potential is
proportional to the wave amplitude. It is valid if the wave amplitude is
small relative to a characteristic wavelength and body dimension. By a
Taylor expansion we can transfer the free- surface conditions from the
free-surface position z = {(x,y, t) to the mean free-surface at z = 0. By
keeping linear terms in the wave amplitude we find from equations (2.10)

and (2.11) that

9t _2¢

on z=0 (kinematic condition) (2.12)
ot 9z

gt + %(_P =0 on z=0 (dynamic condition) (2.13)
t
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tanh

cosh k(z + k)
sinh kh

cosh k(z + h)

sinh k(z + k)

2

ZCZ

T
Wavelength, £,

g€, cosh k(z + h)
k tanh kh

wl,

w
wt,

g
(]

2

2

A= —w

¢
w
a,

Finite water depth
g
p b= pPg Ca
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direction of wave propagation, z = vertical coordinate, z positive upwards, 2

2n/d, T

&

2x/T, k
t = Time variable, x

)
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Table 2.1. Velocity potential, dispersion relation, wave profile, pressure, velocity and acceleration for regular sinusoidal

propagating waves on finite and infinite water depth according to linear theory
waterlevel, & = average waterdepth. Total pressure in the fluid: pp — pgz + po (po = atmospheric pressure).

Velocity potential

Connection between wave number
k and circular frequency w
Connection between wavelength
A and wave period T

Wave profile

Dynamic pressure

x-component of velocity
z-component of velocity
x-component of acceleration
z-component of acceleration

w
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We should note that the free-surface elevation { can be found from
equation (2.13) when the velocity potential ¢ is known.
Equations (2.12) and (2.13) can be combined to give

¢ 3¢
Ez—+g§=0 on z=0 2.14)
When the velocity potential ¢ is oscillating harmonically in time with
circular frequency @ we can write equation (2.14) as

d¢

- +g§=0 on z2=0 (2.15)

REGULAR WAVE THEORY
By assuming a horizontal sea bottom and a free-surface of infinite

horizontal extent we can derive linear wave theory (sometimes called
Airy theory) for propagating waves. The free-surface condition (2.15) is
then used together with the Laplace equation (2.3) and the sea bottom
condition

2
-i)=0 on z=-—h (2.16)
oz

where % is the mean water depth.

The derivation of linear wave theory for propagating waves can be
found in many textbooks in fluid mechanics (for instance Newman, 1977,
chapter 6). Table 2.1 presents the results for both finite and infinite water
depths. .

We will show how we can derive the results for infinite water depth.
The derivation for finite water depth is similar. We assume that the
velocity potential can be represented as a product of functions each of
which depend on just one independent variable. This means we use the
method of ‘separation of variables’ to solve the Laplace equation. The
following solution will satisfy the Laplace equation:

¢ = €**(A cos kx + B sin kx) cos(wt + @) 2.17)

solutions that are proportional to e~* cos kz and sin kz. However, we
must disregard them since there should not be any fluid disturbance far
down in the fluid, i.e. when z— —. From the free-surface condition
(2.15) we can find that there exists a connection between the wave
number & and the circular frequency w used in equation (2.17). We find
the dispersion relation:

2

© (2.18)
p .
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In general, equation (2.17) does not represent travelling (propagating)
waves. We must then combine solutions like (2.17) so that the x- and
t-dependence is like cos(wt + kx + y) where y is a constant phase angle.
The plus sign corresponds to waves propagating along the negative
x-axis and the minus sign corresponds to waves propagating along the
positive x-axis. The velocity of the wave form, i.e. the phase velocity c,
is w/k. This is different from the fluid velocity, which can be found from

equation (2.1). The group velacity Gy or the energy propagation velocity

is a third type of velocity used in describing wave features. It can be
found by '

C,=dw/dk (2.19)

(see e.g. Newman, 1977: pp. 257-66). If we use equation (2.18) we find
that G is 0.5g/w for deep water waves, which is half the phase velocity.
The group velocity is important when we want to know the propagation
velocity of the front of a harmonically oscillating wavetrain. As an
example we can consider a wave maker in a model basin that generates
harmonically oscillating waves. If we want to know the time it takes for
the wave front to reach the ‘beach’ at the end of the model basin, we
should use the group veloctiy (or energy propagation velocity) in the
analysis.

We have only discussed waves propagating along the positive or
negative x-axis. We can obtain expressions for waves propagating in an
arbitrary direction f relative to the x-axis by simply writing the x-, y-
and t-dependence of the velocity potential as cos(wt — kx cos § —
ky sin B + y). The z-dependence is e**. We can check this by substitut-
ing the expression into the Laplace equation. Another way to see the x-,
y-dependence is to first introduce a coordinate system (x’,y’, z) where
there is an angle 8 between the x-axis and the x’-axis. This means
x =x"cos B+’ sin B. By substituting this into the expressions for waves
propagating ‘along the positive x-axis, and afterwards renaming the
(x',¥")-coordinates (x,y), we have obtained expressions for waves
propagating in an arbitrary direction 8. We should note that the waves
we are considering have infinitely long: crest lengths and that the wave
amplitude does not depend on. the position along the mean free-surface.
We later discuss other type of propagating water waves where this is not
true.

We will now discuss the results given in Table 2.1. From the
expressions in the table we note that the maximum values of the different
physical variables do not happen at the same time. To get a better idea of
this we have drawn a picture of the wave elevation at one time instant
(see Fig. 2.1). Beneath we have drawn a picture of how the dynamic
pressure due to the wave will look. With dynamic pressure we mean the
pressure part —p 3¢/3t (see equation (2.4)). We have not stated the

REGULAR WAVE THEORY . 19
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E W ALENET
magnitude of the pressure, which{{s depth dependent. However, we note
that under a wave trough we V\;i’l get a negative dynamic pressure an.d _
under the wave crest there will be a positive dynamic pressure. This is
what we might expect from quasi-static considerations. We note further
that under the wave crest the fluid velocity is in the wave propagation
direction. Beneath a wave trough the fluid velocity is opposite to the
wave propagation direction. We should note that the maximum absolute
value of the horizontal component of the fluid acceleration is beneath a
wave node. The maximum absolute value of the horizontal component of
the velocity is beneath either a wave crest or a wave trough.
It should be noted that the linear theory assumes the velocity potential

and fluid velocity to be constant from the mean free-surface to the

WAVE PROFILE GIVEN TIME INSTANT

DYNAMIC

~_ _~
~__—

Z- COMPONENT \_/
VELOCITY f\ /
X- COMPONENT \/
ACCELERATION

Z- COMPONENT
ACCELERATION

Fig. 2.1. Wave elevation, pressure, velocity and acceleration ip long-crested
sinusoidal waves propagating along the positive x-axis (see Table
2.1).
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free-surface level. This was assumed when the free-surface conditions
were formulated. The horizontal velocity distribution shown in Fig. 2.2
for the flow under a wave crest is consistent with linear theory. Fig. 2.2
also shows the velocity under a wave trough, where we have used the
analytical velocity distribution up to the free-surface level. It is then
implicitly assumed that the difference betw ‘gpﬂ.)t‘l)e horizontal velocity at
the wave trough and the analytical fictitiolls velocity at z=0 is small
compared with the velocity itself. Fig. 2.3 shows how the pressure varies
with depth both under a wave crest and a wave trough. It should be
noted that the ‘hydrostatic’ pressure ‘—pgz’ should cancel the dynamic

Wave propagation direction
—_—

Horizontal velocity
distribution under
a wave crest

Horizontal velocity
distribution under

a wave trough.

Fig. 2.2. Horizontal velocity distribution under a wave crest and a wave
trough according to linear wave theory. (The x- and z-axis have
different scales).

“Hydrostatic’ pressure o

"Hydrostatic pressure ]
90

\
otal pressure —{"|
0

9%a |
{
Linear
Unear dynamic N\ dynamic
pressure pressure
-pQ¥/8t -pov/ot
P3%a [T

|
!
1
|
|
|
I
!

Fig. 2.3. Pressure variation under a wave crest and a wave trough according
to linear wave theory.
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pressure —p d¢/dt|,-, at the free-surface (see equation (2.13)). This is
exactly satisfied at the wave crest in Fig. 2.3 whereas there is a
lli/gﬁhw_rhgmgg_grymg wave trough. By ‘higher-order error’ we

mean that the error is approximately proportional to £.", where the order
n=2. We should note that the dynamic pressure —p 3¢/3¢ half a
wavelength down in the fluid is only 4% of its value at z: =0. The
analytical form of the velocity and pressure distribution that we have
used is not the only one that would )t%; _ agpnsistent with linear theory. For
instance, if we assume that the eX ég_lf_é__g;igl__ variation of the velocity
distribution continues above the mean free-surface, this will also cause
an error of O(¢,2) and be consistent with linear theory.

Linear theory represents a first order approximation in satisfying the
free surface conditions. It can be improved by introducing higher order
terms in a consistent manner —a Stokes’ expansion. The next ap-
proximation would solve the problem to second order in the parameter
t./A characterizing the wave amplitude/wavelength ratio of the linear
(first-order) solution. Second-order theory means that we keep in a
consistent way all terms proportional to (§,/4)* and ,/A. For sinusoidal
uni-directional progressive deep water waves where the solution in Table
2.1 represents the first-order (linear) solution, it is possible to show that
the second-order velocity potential is zero, and that the second-order
wave elevation §, is

2= 38"k cos[2(wt — kx)] (2.20)

By combining this with the first-order solution &, sin(wt — kx) we see
that the second-order solution sharpens the wave crests and makes the
troughs more shallow.

The average fluid velocity at one fixed point in the fluid is zero
according to the second-order theory. However, if we follow fluid
particles in time based on linear theory, its average velocity (transport
velocity or Stokes drift velocity) over one period will be horizontal and
equal to

Caz wk eZkzo

for deep water. Here z, is the z-coordinate of the fluid particle in its
equilibrium position (i.e. when there are no waves). As an example a
wave of 100 m wavelength and amplitude §, of 3 m implies a transport

2.21)

velocity at 2o = 0 that is approximately 20% of the orbital velocity at the .

same place. This has, for instance, consequences for what we mean by
current and how current velocities are estimated. In our later discussion
on current loads on ships and offshore structures we talk about an
ambient constant velocity at fixed points. That means we should not
include the transport velocity (equation (2.21)) as a current velocity when
there are waves present. However, this does not mean that mass

DRl

a3



22 SEA ENVIRONMENT

transport does not influence the motion of floating marine structures. For
a freely floating vessel, especially one moving with the first-order orbital
motion, mass transport has an effect on the motions. Ogilvie (1983) has
illustrated (see Fig. 2.4) how the transport velocity (equation (2.21)) can
be simulated by using the first-order (linear) solution for the fluid
velocity. As the fluid particle moves, the local linear velocity will change
because the time and the fluid particle position change. The effect over
one period is that the fluid particle has moved a horizontal distance equal
to the Stokes drift velocity times the period.

Schwartz (1974) has provided a solution in terms of a series expansion
that satisfies the exact non-linear free-surface condition within potential
theory. This theory can be used to illustrate the limitation of linear
theory for regular deep water waves. For waves of steepness H/A=0.1
the exact theory predicts 20% higher maximum wave elevation than the
linear approximation. For a wave period 125, i.e. a wavelength
A =225 m, this steepness corresponds to a wave height & of 22.5 m. This
is not an unrealistic combination of wave height and period and
illustrates, for instance, that linear theory can significantly overpredict
the air gap between the waves and a platform deck.

The analytical solution that Schwartz provides assumes periodicity in
space. It also assumes that the wave form is symmetric about a vertical
axis through the wave crest. This means it cannot be used for studying
plunging breakers and irregular steep waves. By plunging breakers we
mean waves whose tops are turning over, similar to waves breaking on a
beach. Dommermuth et al. (1988) have presented numerical studies of

2-20 o =2m
la A=100m
1 z, =-641m

—

™/ %a

Fig. 2.4. Trajectory of a fluid particle in sinusoidal waves computed from
first-order (linear) velocity potential (£, = wave amplitude, A =
wavelength, z, = z-coordinate of fluid particle at rest.) (Ogilvie,
1983.)
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plunging breakers. Good agreement was shown between theory and
experiments for a ‘two-dimensional’ plunging breaker produced by a
wave maker, up to the point where the overturning jet re-entered the
water surface.

STATISTICAL DESCRIPTION OF WAVES

The present status of computer faciliies prevents us from using
techniques like that of Dommermuth et al. (1988) to obtain statistical
estimates for ocean waves, since the estimated CPU-time makes direct
calculations unrealistic. In addition there are unsolved physical problems
associated with modelling of breaking waves. In practice, linear theory is
used to simulate irregular sea and to obtain statistical estimates. The
wave elevation of a long-crested irregular sea propagating along the
positive x-axis can be written as the sum of a large number of wave
components, i.e.

N
E=2 Ajsin(wjt — kx + €) 2.22)

j=1
Here A;, w;, k; and €; mean respectively the wave amplitude, circular
frequency, wave number and random phase angle of wave component
number j. The random phase angles ¢; are uniformly distributed between
0 and 27 and constant with time. For deep water waves w; and &; are
related by the dispersion relationship (equation (2.18)). The wave
amplitude A; can be expressed by a wave spectrum S(w). We can write

$47=5(0) 0 o s?; e

mstanté\n/&fu\s/ﬁave elevation is Gau331an dlstrlbuted with zero mean and
variance a* equal to fo S(w)dw, which can be shown by using the
definition of mean value and variance applied to the s1gnal’ represented
by equation (2.22). We find for instance that o’ = A?/2. By usmg
equation (2.23) and letting N— and Aw—0, we ﬁnd that ¢?

J5 S(w)dw. The relationship between a time domain solution of the

waves (i.e. equatlon (2.22)) and the frequency domain representation of

the waves by a wave spectrum S(w) is illustrated in Fig. 2.5.

The wave spectrum can be estimated from wave measurements
(Kinsman, 1965). It assumes that we can describe the sea as a stationary
random process. This means in practice that we are talking about a
limited time period in the range from 1 hour to maybe 10 hours. In the
literature this is often referred to as a short-term description of the sea.

Recommended sea spectra from ISSC (International Ship and Offshore
Structures Congress) andAj’_’I‘:E _(Internatlonal Towing Tank Conference)
are often used to calculate S(w). For instance, for open sea conditions
the 15th ITTC recommended the use of ISSC spectral formulation for



24 SEA ENVIRONMENT

fully developed sea

;fa})=oz:<a§i) 0] - 044(“;;) ] (2.29

where Hy is the significant wave “height defined as the_mean of the one

thlrd highest waves and 7', is a mean wave perlod deﬁned as
T, = 2mmy/m,

where

= 4Vm, (2.26)

which gives a value which is usually close to the H y defined above.

Equation (2.24) satisfies equation (2.26). Strietly speaking this relation
is only true for a narrow-banded spectrum and when the instantaneous
value of the wave elevation is Gaussian distributed.

The spectrum given by equation (2.24) is the same as the modified

S(w)

EREQUENCY DOMAN
”‘\//\V’\”\ JAWAN - TIME

"WAVE SPECTRUM

REGULAR WAVE
COMPONENTS WITH
RANDOM PHASE
ANGLES

TIME DOMAIN
RANOOM WAVE ELEVATION

Fig. 2.5. Figure illustrating the connection between a frequency domain and
time domain representation of waves in a long-crested short term sea
state.
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Pierson—Moskowitz spectrum, where it is more usual to use the mean
wave period T, defined as
T,= 2n(mo/m2)¥ (2.27)

The followmg relation exists between T, and T, for the spectrum given
by equation (2.24) '
T,= 1. .086T, (2.28)

for the same spectrum be written as *

To=1.408T, (2.29)

T, is also referred to as the modal period.

The spectrum formulation given by equation (2.24) is shown in Fig.
2.6. We note that there is little energy density when w7 ,/(27x) <0.5. For
large frequencies the wave spectrum decays like w™>.

The 17th ITTC recommended the following JONSWAP (Joint North

Sea Wave Prolect) type spectrum for limited fetch:
_,g L‘i

2 944
S(w) =155 T 5exp<T 2 4)(3 3)Y  (m? s) (2.30)
where
_ _ 0.191wT, - 1)2>
v =e( (=5,
and

0=0.07 for w=5.24/T,
=0.09 for w>5.24/T,

This formulation can be used with the other characteristic periods by the
substitution

T,=0.834T, = 1.073T, (2.3

The JONSWAP spectrum is shown in Fig. 2.6. We note that the peak
value of the modified Pierson—Moskowitz (ISSC) spectrum occurs at a
different (wT,/2m)-value than the JONSWAP spectrum. This can be
seen from equations (2.29) and (2.31).

A good approximation to the probability densny function_ for the
maxima (peak values) A of the _wave elevation can be obtained from the

Raylelgh distribution given by

P(A) = — e A%@mo (2.32)
0
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where my is related to Hy by equation (2.26). Strictly speaking the
Rayleigh distribution depends on the wave spectrum being narrow-
banded, which is an approximation for the spectra we have discussed. In
deriving the Rayleigh distribution, it is also assumed that the instan-
taneous value of the wave elevation is Gaussian distributed.

We can simulate a seaway by using equation (2.22), but this expression
repeats itself after a time 27/Aw. A large number N of wave components
are therefore needed. A practical way to avoid this is to choose a random
frequency in each frequency interval (w;—Aw/2, w;+ Aw/2) and
calculate the wave spectrum with those frequencies. The number of wave
components ought to be about 1000. This depends partly on the selection
of the minimum and maximum frequency component. The minimum

0040 -
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|
Sw) N ’
Hus T, |
0025 | ’I
0020
0015 | l - , i
0010 F / \ -

0.005% | ) ’ .
/ N

0 /Y ] ] wT,
0 05 10 15 20 21

T='2wl le— . | |

- 2 0 '
(T,= 10s) Os 10s 50s

Fig. 2.6. Examples of wave spectra. (Hy = significant wave height, 7, = mean
wave period). Modified Pierson—Moskowitz spectrum (see
equation (2.24)), JONSWAP spectrum . - (see equation
(2.30)).

STATISTICAL DESCRIPTION OF WAVES 27

frequency component @.;, is easier to select than the maximum
frequency component w,,,. For instance if a Pierson—Moskowitz
spectrum is used @, = 7/T,. The wave energy drops off more slowly
for larger frequencies than for small frequencies. We should therefore
investigate the results for different values of w,,,,, to ensure that the
results do not depend on the selection of w,,,.. We have only shown how
we can simulate the wave elevation £. For instance, if we want to
simulate the horizontal fluid velocity u and acceleration a, we can write

N .

u= Y, wAe”sin(wt —kx+¢€) . (2.33)
j=1
N

ay = 2, w?Ae" cos(wt — kix + €;) (2.34)
j=1

by superposition of the results for regular waves given in Table 2.1. The
random phase angles ¢; are the same for both &, « and a,.

Fig. 2.7 shows some examples of simulations of the wave elevation.
The same sea spectrum and the same duration is used in each simulation.
The reason for the differences in the results is the random selection of
frequencies and phase angles. We note that the largest amplitude in each
simulation (realization) is different. By selecting a large number of
realizations we find that the extreme values have their own probability
distribution. This is, for instance, discussed by Ochi (1982). In practice
the most probable largest value A,.. is often used. This can be
approximated as

3
Amax = (Zmo log i) (2.35)
T,

where ¢ is the time duration and ‘log’ is the natural logarithm. We should
note that A, is the most probable largest value. With that we imply that
there is a probability for A, to be exceeded during the time ¢ (Ochi,
1982). The most probable maximum crest-to-trough wave height H .
during the same time period is simply 2A,,.x-

The effect of short-crestedness may be important. A short-crested sea
is characterized by a two-dimensional wave spectrum, which in practice
is often written as

S(w, 8)=S(w)f(6) (2.36)

where 6 is an angle measuring wave propagation direction of elementary
wave components in the sea. An example of f(8) might be

2
~cos’ 0, —n/2<0=<m/2

@)=y n (2.37)

0; elsewhere
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WAVE ELEVATION (m)
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Fig. 2.7. Different realizations of a wave record Hy=8m, T,=10s, ISSC-

spectrum.
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where @ =0 corresponds to the main wave propagation direction. Other
ways of representing a short-crested sea spectrum may be found in the
report of the 10th ISSC. For short-crested sea equation (2.22) can be
generalized to

Z

K
(=2 ,?: (2S(w;, 6;) Aw; A6,
=1

J

x sin(w;t — kix cos 8, — k;y sin 6, + €;.) (2.38)

Long-term sea state
So far we have discussed a ‘short-term’ description of the sea, which

means the significant wave height and the mean wave period are assumed
constant during the time considered. The significant wave height and
mean wave period will vary in a ‘long-term’ description of the sea. In

order to construct a ‘long-term’ prediction of the sea we need to know
the joint frequency of the significant wave height and the mean wave
period. An example is presented in Table 2.2. These data are representa-
tive for the northern North Sea. The frequency table shows, for instance,
that the probability of the significant wave height being between 3 and
4 m and the spectral peak period being 10 s is 2960/100 001 = 0.0296. It
also shows that the probability of the significant wave height being larger
than 2 m is 1 — (8636 + 32 155)/100 001 = 0.59. This table can be used in
many ways, for example to obtain long-term statistics of the wave
amplitude or wave height. For each significant wave height interval we
find the probability of occurrence p; from the table. For instance the
probability that H, is between 4 and 5m is 9118/100001. Since the
probability function for the maxima of the wave elevation for given
significant wave height follows a Rayleigh distribution (see equation
(2.32)) we can obtain the long-term probability as a simple summation,
ie.

M .
P(H)=1- 3, 72y, 2.39)

Jj=1

Here P(H) is the long term probability that the wave height does not
exceed H. By wave height we mean crest-to-trough wave height and not

“significant wave height. When using equation (2.32), we have set

H=2A. If we use Table 2.2 we see that M =15, H’=0.5m,
H®=1.5m and so forth. The probability level O =1~ P(H) and the
number of response cycles are related by

Q:

2|



8636
32155
25792
15442

9118

4839

2329

1028

419
160
57
19

100001

2
16 17
7
3
1
0

22 Sum
0

2
5
2
1
0

33 16 15

19 21
30
22 10

18
56
67
50
35
21

12

17
12
105
110
84
58
37
23
14

16
22
194
263 135
231
191
142
98
39
22
11

15
41
78
39
16

497

849 458
748

398
309
217
138

14
74
634
901
226
111
45
15

387

13
132
1098
1228
885
533
261
101
30

12
232
1821
2452 1543
2163 1437
1696
1069
528
197
54
11

11
395
2846
3531
2796
1879
950
347
88
15

10
643
4102
4456
2960
571
136
20

1564

14454 12849 10225 7256 4570 2554 1285 594 263 117 52 45

982
5284
4707
2406

898

207

27
14513

1362
5814
3896
1371
315
39

1634
2295
481
57

1569
831
85

146

1061
9 212 1233 3223 5106
8

3
0

68 623 2446 5712 9576 12799

Spectral peak period (s)

59 403

Table 2.2. Foint frequency of significant wave height and spectral peak period. Representative data for the northern North Sea

Significant
wave height
(m) (upper
limit of
interval)

10
11
12
13
14
15
Sum

WIND 31

For instance, during 100 years by assuming an average period 7 s we find

0 - 365 - 24 - 3600
N=10 3574 36

ie. 0= 1077, By using (2.39) we can find the value H for which
O =10"%7. We have then found the wave height of what is called the
¢100 year wave’ in offshore engineering.

We can also use Table 2.2 as a basis for obtaining long-term
probability of response variables like the heave motion of a ship. In that
case we need to combine the joint probability of the significant wave
height and mean wave period with the short term statistical distribution
of the heave amplitude. Another way we can use Table 2.2 is in
operation studies. We can find out the percentage of time during a year
that an operation can be performed according to limiting criteria for the
operation. An example of such a criterion might be that an offshore
loading can only be performed for significant wave heights less than 7 m.
Table 2.2 tells us that it is not possible to do the loading for 1.7% of the
time during a year. A shortcoming of a joint frequency table of wave
periods and significant wave heights is that it does not tell anything about
the duration of the sea states. This is important information for studies of
marine operations. In addition we need statistical information on sea

direction.

=4.5 " 10°%,

WIND
Fig. 2.8 shows the cumulative distribution function for one hour mean

wind speed at 10 m above mean sea level (MSL) using representative data
for the northern North Sea. The extreme wind speed with return period
of 100 years can be found to be 41 m s~'. Time average wind speeds over
prescribed time periods are used in calculating steady wind forces on
marine structures. However, fluctuating wind forces due to gust may also
be of importance. In some cases gust winds can excite resonant
oscillations of offshore structures. An example is slow-drift horizontal
motion of moored structures. There exist different spectral formulations
of wind gust; for example the Harris wind spectrum is given by

! S({)= 4K.f2 : (2.40)

_ Uio Q2+
where U\ is the one hour mean wind speed at 10 m above sea level, f is
the frequency in Hz and f=Lf/U. An example of the scale length L is
1800 m and of the surface drag coefficient x is 0.0030. Equation (2.40) is
not recommended for frequencies lower than 0.01 Hz. A discussion of
different wind spectrum formulations is given in the report of the 10th

ISSC.
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probable*
7.5

Most

5.1-149 6.3
5.3-16.1

6.1-17.2 8.8
7.7-17.8 9.7
10.0-18.7 12.4

Modal wave period

®
16.4-22.5 20.0

11.7-19.8 15.0
14.5-21.5 164

Range”

North Pacific
probability
of sea

1.30

6.40
15.50
31.60
20.94
15.03

7.00

1.56

0.07

Percentage
state

probable®
9.7

Most

5.0-14.8 7.5
6.1-15.2 8.3
8.3-15.5

9.8-16.2 12.4
11.8-18.5 15.0

Modal wave period
3.3-128 75

(s)
14.2-18.6 16.4
18.0-23.7 20.0

Range®

0.70
80
23.70
27.80
20.64
13.15
6.05
1.11
0.05

6.

North Atlantic
probability
of sea

Percentage
state

8.5
13.5
19
245
37.5
51.5
59.5
>63

Mean

Sustained
wind speed
(knots)®
Range
0-6
7-10
11-16
17-21
22-27
28-47
48-55
56-63

>63

altitud V(H,/19.5)).
Minimum is 5 percentile and maximum is 95 percentile for periods given wave height range.

Based on periods associated with central frequencies included in Hindcast Climatology.

0.05
0.3
0.88
1.88
3.25
S
7.5
11.5
>14

Mean

0-0.1
0.1-0.5
0.5-1.25

1.25-2.5
9-14

2.5-4
4-6
6-9

>14

wave height

Significant
(m)

Range

0-1
2
3
4
5

N . . .
Ambient wind sustained at 19.5 m above surface to generate fully-developed seas. To convert to another

Table 2.3. Annual sea state occurrences in the North Atlantic and North Pacific (Lee et al., 1985)

altitude, H,, apply V,

state
no.
>8

Sea
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In addition to the information above we need to know how the wind
varies with the height above the sea level, in what direction the wind is
blowing and the joint probability between waves and wind. We will not
go into details about this here. Instead we will present a very simplified
picture of corresponding values between significant wave height, modal
wave period and sustained wind speed in Table 2.3. This table also gives
the percentage probability of sea states. The data are valid for open ocean
in the North Atlantic and North Pacific.

CURRENT
State of the art information on ocean currents from a design point of view

has been presented by the 10th ISSC. The surface current velocity U is
divided into the following components

U=U+Uy+ U+ Up+ Ugernp + Ua

Brent, Statfjord, Hindcast 1976—-83
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Fig. 2.8. Cumulative distribution function for the one hour mean wind speed
' at 10 m above MSL representative for the northern North Sea.
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where U, is the tidal component,
U, is the component generated by local wind,
U, is the component generated by Stokes drift (see equation (2.21)
valid for regular waves)
U, is ‘the component from major ocean circulation, if any,
depending on geographical location (Gulf Stream etc.),
Userup Is the component due to set-up phenomena and storm
surges,
.U" is the local density-driven current governed by strong density
jumps in the upper ocean.
The depth dependence of the tidal component U,(z) and the local wind
component U, (2) are given as

[ U(0), for —(h - 10) <z =<0
Uz)= 9
U0) loglo(l +-i), for —h <z < —(h — 10)
i 10—k
_
(ho + 2)
Uofe) = U.(0) P for —hg=<2z=<0
| 0, for 2 <~y

- where £ is water depth. Distances are in metres and ho can be chosen as
50 m. As a first approximation one may set

UW(O) = 002U10

where U is the wind velocity measured 10 m above sea level. However,

the Stokes drift is included in this formula. This can be significant (see

equation (2.21)) and should not be included if the current velocity is

wanted at a fixed point in space. The tidal velocity component depends

on the location. In open sea it may be up to =0.5m s ", A total current

Yelocity typical for design of offshore structures in the North Sea is
ms~.

EXERCISES

2.1 Resonant fluid motion in a rectangular tank
Consider a rectangular tank partly filled with water. The water depth is
constant and equal to h. The tank breadth is 2b. Assume two-
dime.nsional fluid motion in a (y,2) plane and that the tank is not
moving.
(a) Show that the velocity potential

¢ = A cosh(k(z + h)) cos ky cos wt (2.41)

satisfies the Laplace equation and the boundary condition on
the bottom of the tank.
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(b) Which values of & are possible for the velocity potential to
satisfy the boundary conditions on the side walls of the tank?

(¢) Show from the free-surface condition that the only periods
when fluid motion is possible (i.e. natural periods) are given
by

B\ 3
Ty = 2n/<g%rtanh<fg—)) n=1,2,3,... (2.42)

Derive an appfoximate formula when #/b— 0.
(d) Describe the fluid motion at the free-surface as a function of
time.

2.2 Propagating water waves
Consider a velocity potential
¢
o= Ae’“‘(—) cos(wt — kr) (2.43)

r

where r= (y* + %! and A is a constant. Assume deep water and a free
surface of infinite horizontal extent. '
(a) Is the Laplace equation satisfied everywhere in the fluid?
(b) In what directions are the waves described by equation (2.43)
propagating?
(c) How is the wave amplitude varying in space?

2.3 Wave kinematics in regular waves
Consider a model basin with a wave maker in one end that generates

long-crested regular waves with circular frequency w. In the following
calculation you can assume a wave period of 2 s and a wave amplitude of
0.25 m. The tank length is 100 m.

(a) Approximately how long will it take for a wave front to
propagate from the wave maker to the other end of the tank?
Assume the water depth is infinite.

(b) Consider a small cork that is floating on the water and is not
disturbing the wave field. Approximately how long will it take
for the cork to move from the wave maker to the other end of
the tank?

(¢) What is the maximum fluid velocity in the tank?

(d) Consider an observer situated along the tank side and a time
after the wave front has passed by. How long does it take
between. two succeeding wave crests to pass the observer?
What is the phase of the wave elevation 1.5 m closer to the
wave maker relative to the wave elevation at the position of

the observer?
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(e) What are the answers to the questions in (d) if the observer is
either moving with a velocity 1 ms™! toward the wave maker
or away from the wave maker?

(f) What would the answers to questions (c), (d) and (e) be if the
water depth is either 10 m or 1 m?

2.4 Sea spectrum
Assume a sea spectrum as presented in Fig. 2.9.
(a) Show from the definitions of H yand T, that e = 1.5 and
b=32m)"".
(b) What is the relationship between 7', and T',?

2.5 Standard deviations of fluid velocity and acceleration in
short-term sea states

(a) What are the standard deviations of the horizontal velocity
and accelerations given by equations (2.33) and (2.34) when
N—wand Aw—0.

() Assume the wave spectrum is either given in the form of
equation (2.24) or equation (2.30). Explain why the standard
deviation of the fluid acceleration does not exist for all points
in the fluid. How should the wave spectrum look for the
standard deviation of the fluid acceleration to exist for all
points in the fluid?

(¢) Generalize the results in (a) to short-crested sea by using
expressions similar to equation (2.38). Discuss the results.

4 —Z—S(w)
H113 T1
b -
o~ (.UT1
05 a h31

Fig. 2.9. Sea spectrum used in exercise 2.4. (Hy = significant wave height,
T, = mean wave period based on first moment of the spectrum).

3 LINEAR WAVE-INDUCED MOTIONS
AND LOADS ON FLOATING
STRUCTURES

Linear theory can, to a large extent, describe the wave-induced motions
and loads on semi-submersibles, ships and other large-volume struc-
tures. However, non-linear effects are important in severe sea states and
in describing horizontal motions of moored structures.

Consider a structure in incident regular waves of amplitude &,. The
wave steepness is small, i.e. the waves are far from breaking. Linear
theory means that the wave-induced motion and load amplitudes are
linearly proportional to {,.

RESPONSE IN IRREGULAR SEA
A useful consequence of linear theory is that we can obtain results in
irregular waves by adding together results from regular waves of different
amplitudes, wavelengths and propagation directions.
Let us explain what we mean by considering a long-crested irregular
sea described by a sea speci;rum S(w). We write the wave elevation as

N At
E=2 A;jsin(wjt — kix + €) @3.1)
=1
where
' 1A =5(w) Aw 3.2)

(see equations (2.22) and (2.23) with explanations). Because of linearity
we can analyse the response to each wave component in equation (3.1)
separately. Examples of response types could be heave or pitch motion
of a floating structure. Formally we can write the steady state response as

A |H(w))] sin(w;t + 6(w;) + €) 3.3)

Here |H(w;)| is called the transfer function, which is the response
amplitude per unit wave amplitude. We note also that there is a phase
angle &6(w;) associated with the response. Both |H(w))| and 6(w;) are
functions of the frequency of oscillation w;. The response can be any
linear wave-induced motion or load on a structure. Having obtained the
response due to one wave component we can linearly superpose the
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response from the different wave components, i.e. we can write
N
ElAj |H (w))] sin(w;t + 8(w;) + €) (3.4)
i=

In the limit as N— o and Aw—> 0 the variance of the response ¢,> can
be found in the same way as for the waves (see the text after equation
(2.23)). We find

= Jo S(w) |[H(w)l dw 3.5)

The Rayleigh probability function can be used as a good approxima-
tion to find the probability density function for the maxima (peak values)
of the response R, i.e. we can write

R
[)(R) _ —-O.SRZ/ar,.Z (3 6)
or },f/ /g\
1 }9\\/],(]
Here R may for instance be heave maxima and o, the standard deviation
of the heave motion.
The most probable largest value R, during a ‘short-term’ time ¢ is

then

i
R = (20 %log T) (3.7

This is valid for a given value of the significant wave height H y and the
mean wave period 7,, i.e. for a short-term description of the sea.
Strictly  speaking we should have used the mean period for the
response-variable instead of T, in equation (3.7). However, for linear
wave-induced motions and loads this will mean a negligible difference in
the estimation of R,,. By combining the Rayleigh distribution with a
joint frequency table for Hy and the modal wave period (or mean wave
period, see Table 2.2) we can obtain the long-term probability in a
similar way to equation (2.39). An important difference is that we have to
sum over both period and wave height, i.e. we must write

M K
PR)=1-2, 3 exp(—0.5R¥(a/*)%)p;, (3.8)

Jj=1k=1
where P(R) is the long term probability that the peak value of the
response does not exceed R, and o/* is the standard deviation of the
response for a mean Hy and modal period in significant wave height
interval j and modal wave period interval k. Further p; is the joint
probability for a significant wave height and a modal wave period to be in
interval-numbers j and k, respectively. For instance, by referring to
Table 2.2, the joint probability for the modal (spectral peak) period to be
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10s and Hy to be between 2 and 3 m is 4456/100 001. The values of M
and K are respectively 15 and 19. The probability level O =1 — P(R)
and the number of response cycles N are related by Q = 1/N. A return
period of 100 years corresponds to O =10"%7. The corresponding
response amplitude R can then be found from equation (3.8).

RESPONSE IN REGULAR WAVES
Since it is possible to obtain results in irregular seas by linearly
superposing results from regular wave components, it is sufficient from a
hydrodynamical point of view to analyse a structure in incident reg\ar
sinusoidal waves of small wave steepness. This will be done in the
following text. We will assume a steady state condition. This means there
are no transient effects present due to iwitial conditions. It implies that

”‘Lfﬁé'ﬁm;mc motions and loads on the structure are harmonically

oscillating with the same frequency as the wave loads that excite the
structure. The hydrodynamic problem in regular waves is normally dealt
with as two sub-problems namely:

A: The forces and moments on the body when the structure is
restrained from oscillating and there are incident regular
waves. The hydrodynamic loads are called wave excitation
loads and composed of so-called Froude—Kriloff and
diffraction forces and moments.

B: The forces and moment on the body when the structure is
forced to oscillate with the wave excitation frequency in any
rigid-body motlon mode There are no incident waves. The

Testoring terms.
Due to linearity the forces obtained in A and B can be added to give the
total hydrodynamic forces. This is illustrated in Fig. 3.1.

Before we go into detail and describe the different hydrodynamic
loads, we will define a coordinate system and the rigid body motion
modes. A right-handed coordinate system (x, y, z) fixed with respect to
the mean position of the body is used, with positive z vertically upwards
through the centre of gravity of the body and the origin in the plane of
the undisturbed free-surface. If the body moves with a mean forward
speed, the coordinate system moves with the same speed. The body is
normally assumed to have the x—z plane as a plane of symmetry. Let the
translatory displacements in the x-, y- and z-directions with respect to
the origin be 7, 7, and 73 respectively so that 7, is the surge, 7, is the
sway and 7, is the heave displacement. Furthermore, let the angular
displacement of the rotational motion about the x-, y- and z-axis be 7,,
ns and 7, respectively so that 7, is the roll, ns is the pitch and 7, is the
yaw angle. The coordinate system and the translatory and angular
displacement conventions are shown for the case of a ship in Fig. 3.2.
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Damping and Restoring
forces and moments

Added mass

Excitation loads

Fig. 3.1. Superposition of wave excitation, added mass, damping and

restoring loads.
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The motion of any point on the body can be written as
s=mi+ni+nk+toXr

where ¢ X’ denotes vector product and-
o=ni+tni+nk, r=xityjt+zk,

and i, j, k are unit vectors along the x-, y- and z-axis, respectively.
This means

s=(n +ans—yni+ (2 — 214 + xN6)i
+(ns+yny—xns)k (3.9)

We should note that n,, 7, and 73 do not need to be the translatory
motions of the centre of gravity of the bedy.

Added mass and damping terms
The added mass and. damping loads are steady-state hydrodynamic

forces and moments due to forced harmonic Tigid body motions. There
‘are no incidey t.waves. However, the forced motion of the structure
generates out'/ggi"[;g waves. The forced motion results in oscillating fluid
pressures on the body surface. Integration of the fluid pressure forces
over the body surface gives resulting forces and moments on the body.
By defining the force components in the x-, y- and z-direction by F,,
F, and F; and the moment components along the same axis as F,, Fs
and F¢, we can formally write the hydrodynamic added mass and

damping loads due to harmonic motion mode 7; as

dn,

de

! Yefp il - \ . ;
odfod o Juumpe T

d’n;
Fi= — Ay~ By (3.10)

X

Fig. 3.2. Definitions of coordinate system, rigid-body motion modes and
wave propagation direction. U is the forward speed of the ship.



42 LINEAR WAVE-INDUCED MOTIONS

Ay and By; are defined as added mass and damping coefficients. There is
a total of 36 added mass coefficients and 36 damping coefficients. If the
structure has zero speed, half of the coefficients are zero for a structure
where the submerged part has one vertical symmetry plane. For this to
be true for a structure with forward speed, it is necessary that the vertical
symmetry plane is parallel to the forward direction. The word added
mass may be misleading, since not all of the terms have }men310n of
mass. Some of the terms like A,,, have dimensions of an in€ertid moment.
Other terms like A;s have dimensions of mass multiplied by length. It
can be shown that A and B,; are functions of body form, frequency of
oscillation and the forward speed. Other factors like finite water depth
and restricted water area will also influence the coefficients. If the
structure has zero forward speed and there is no current it can be shown
that Akj = Ajk and Bjk = Bkj'

Let us give a more detailed explanation of added mass and damping by
considering forced harmonic heave motion of a structure. The heave
motion causes the fluid to oscillate which means there is a pressure field
in the fluid. To find the fluid motion and pressure field it is convenient to
use the velocity potential. The velocity potential satisfies the Laplace
equation in the fluid. In addition boundary conditions have to be
imposed. On the body surface it is required that the normal component
of the fluid velocity is equal to the normal component of the forced heave
velocity. On the sea bed it is required that the normal component of the
fluid velocity be equal to zero. Boundary conditions on the water surface
are derived by requiring that the fluid pressure is equal to atmospheric
pressure and that fluid particles will always remain on the free-surface
(see chapter 2). At infinity a radiation condition is required. When the
structure has zero forward speed and there is no current present, the
far field solution represents outgoing waves. When the velocity potential
is’ determined, the pressure can be found by using the linearized
Bernoulli’s equation. Excluding the hydrostatic pressure and integrating
the remaining pressure properly over the body we obtain a vertical force
on the body. The linear part of this force is written as

&ny _p dns

= -4
Fs B2 T TP g

(3.11)

This force is obtained by integrating the linearized pressure over the
mean position of the body. A,; is added mass in heave and B;; is heave
damping. The concept of added mass is sometimes misunderstood to be
a finite amount of water which oscillates rigidly connected to the body.
-This is not true. The whole fluid will oscillate and with different fluid
particle amplitudes throughout the fluid. In three-dimensional flow the
amplitudes will always decay far away and become negligible. The added
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mass concept should be understood in terms of hydrodynamic pressure
induced forces as above.

High-frequency limit of added mass in heave of a half circle

We will illustrate added mass in heave of circular cross-section with an
axis in the free-surface by an example. Consider an infinitely long
horizontal circular cylinder. In calm water the cylinder axis is at the
free-surface level. We want to find the two-dimensional added mass in
heave for very high frequencies (w—> ). By considering a very high
frequency we are simplifying the problem. However, the results are
useful in analysing high-frequency phenomena like ship vibrations: "By
two-dimensional, we mean that we study the flow in the cross-sectional
plane and find forces per unit axial length of the cylinder.

In order to find added mass in"neave for w—> o one has to solve a
boundary value problem for the velocity potential ¢ as illustrated in Fig.
3.3. From Fig. 3.3 we note that the velocity potential satisfies a
two-dimensional Laplace equation in the fluid domain. On the mean
wetted body surface we have the boundary condition

9¢

T —cosO|ns|lwcoswt for r=Rand —n/2<0<um/2
r

(3.12)

Here (r, 6) are polar coordinates and 73 = |73} sin wt is the forced heave
motion of the cylinder. Equation (3.12) approximately states that the
normal component of the fluid velocity is equal to the normal component

b
y?

2 2

9 3o .39 _g
—a—:?— =-cos O |n | w coswt ??Z + 5532_

Fig. 3.3. Boundary value problem for forced heave motion 7, = 13| sin wt of
a circular cylinder at very high frequencies w.

‘}‘/:» b
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of the forced heave velocity on the cylinder surface. We say ‘ap-
proximately’ because the body boundary condition is not satisfied on the
instantaneous position of the wetted body surface. However, equation
(3.12) is consistent with linear theory, which implies that the heave
motion is small relative to the cross-sectional dimension of the cylinder.
By a Taylor expansion of the exact body boundary condition one can
show that equation (3.12) is correct within linear theory.

We note that we have used the free-surface condition ¢ =0 on the
mean free-surface (see Fig. 3.3). Since ¢ is constant on z = 0, this means
the velocity cannot be horizontal along the free-surface and has to be
vertical. The conventional linearized free-surface condition is (see
equation (2.15))

3
- ¢+ga—(j=0 on z=0 (3.13)

We have neglected the second term with the gravitational acceleration g
the reason being that w is assumed to be very high and fluid accelerations
are much higher than g in the near-field of the body. If we had assumed
@ to be very small, another approximation would have followed from
equation (3.13), i.e. that 3¢/3z =0 on z =0. This is the same boundary
condition we would use if there were a rigid plane at z = 0.

When w—0 or w—>, the body cannot generate any free-surface
waves. The reason is that the approximate free-surface conditions in
these two cases state that there cannot be both a horizontal and vertical
velocity component on the free-surface. Both are necessary everywhere
for there to be any propagating waves.

Let us now return to the boundary value problem stated in Fig. 3.3.
We will in addition assume the water depth is infinite. The velocity
potential can be found by solving the ‘double- -body’ problem in infinite
fluid with no free-surface. The ‘double-body’ consists of the submerged
body and the image body above the free-surface. The solution is

2

R
¢ =|n3| @ cos wt7cos a (3.14)

We can check the solution by seeing that it satisfies the Laplace equation
and necessary boundary conditions. Equation (3.14) tells us that the
whole fluid oscillates harmonically. Far away from the body the
oscillations are small. =5y

The next step in ﬁnding added mass in heave 1sfto ﬁnd the pressure.
in Bernoulli’s equation will be neglected. The hydrostatlc pressure term
—pgz will be dealt with in the following section on restoring coefficients.

RESPONSE IN REGULAR WAVES A 45

This means the dynamic pressure part of interest can be written as
RZ
p= —p%?—plnslw smwt—cos@ (3.15)
t

The linear vertical force per unit length on the cylinder can be written as

t/2
F, =J p 113 @? sin.wt R* cos’6 d6

—5/2

d*ns
- R? (3.16)
pO57 de?
According to equation (3.10) it means that the two-dimensional added
mass and damping coefficients in heave are

e

A33=§nR2 | JEERY)

We note that the damping coefficient Bj; is zero. This is consistent with
our previous comment that the body oscillations do not generate any
water waves when @ — o, and thus cannot carry energy away to infinity.

Energy relations
We can show by energy arguments that Bi is related to the wave

amplitude A, generated by the forced heave osc1llat10ns In order to do
so we start out with general formulas presented for instance by Newman
(1977: pp. 260-6). The total energy E in a fluid volume € consists of
kinetic and potentlal energy. It can be written as

E(z)=pJJJ AV?2+gz)dr | (3.19)

where d7 is used as a symbol for volume integration. The time derivative
of the energy can be written as

dE(r) f [ (%%’_ (2;_1’%%) U)ds (3.20)

where S is the boundary surface to Q and 3/9n is the derivative along
the normal unit vector n to S. (Positive direction is into the fluid
domain. Note that Newman uses the opposite positive direction of n.) U,
means the normal velocity of S and p, is the atmospheric pressure.

In applying equation (3.20) to our problem we will cdnSIder a
two-dimensional problem and let the bounding surface consist of the
wetted body surface Sp, two fixed vertical control surfaces S, and §_,, at
respectlvely y=0 and y= —o, the free surface SF inside S., and S_.,
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and finally a surface S, far down in the fluid located between S..'and S_.,
(see Fig. 3.4). We can write

U,=3¢/n on Sy and Sg
U,=03¢/m=0 onS,

U,=0 on S,
P=0o on Sy
This means
¢ 3¢
= - Un d - T d .
LB (p — o) s—p s O On s (3.21)

The first term on the right hand side of the equation can be written as
d
& =poUpds = | (p=poimsds
Sh de Ss

d173 d? i dn
d&e (A” a2 +Bs “a HCams - ng)

(3.22)

We have here used the definition of added mass and damping and
included a term C33113 pgV _which arises due to the pressure term
— pgz. Physically  the Cass-term represents a change in the buoyancy of
the body due to a displacement 7; in the vertical direction. V is the

So

)

Fig. 3.4. Control surfaces used in evaluating the connection between the
heave damping coefficient and the far-field wave amplitude A,
generated by forced, harmonic and steady-state heave oscillations of
a two-dimensional body. The submerged body has a vertical
symmetry line.
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displaced volume of the fluid when #7;=0. The hydrodynamic force
representation is correct within linear theory.
The next step in the analysis is to average equation (3.21) over the

oscillation period 7. Since the energy of the fluid motion inside S is
periodic, we can write

TdE
| =dt=
J;dtzo

By algebra it follows that the first term on the right hand side of equation

(3.21) is

T
[a][ &-poUsds]|= 0?2 Bl (.23
0 S -
Here |n;| is the amplitude of the heave motion.
Physically, equation (3.23) is equal in magnitude and opposite in sign
to the work done in one period by the hydrodynamic forces on the body.
We note that there is no contribution from the added mass and buoyancy

term in equation (3.22). In the last term of equation (3.21) we let the

velocity potential represent outgoing waves. We can then write
A ,
¢ = % e*® cos(wt Fky + ) (3.24)

when y— . This assumes that the submerged body has the z-axis as
a symmetry-axis. By algebra it follows that

pf faza f f ?9?? p?gA32§gET
(3.25)

The integral over S_, gives the same result as equation (3.25). This is
the mean rate of energy flux through the surface S.. multiplied by the
period 7. Further, (0g/2)As? is the same as the mean (energy densityi of
the outgomg waves and 0.5¢/w is the energy propagatlon veloc1ty (see
equation (2.19)). It now follows from time averaging of equation (3.21)
that

A3) == 3.26
Ba=n( > (3.26
This expression is valid for any frequency. It shows that the damping
coefficient can never be negative. Similar results hold for B, : =2 and 4.
We do not have a similar guarantee for the added mass coefficient, which
actually can be negative for certain body shapes and frequencies.
Examples have been documented for catamarans, bulb sections and
submerged sections close to the free-surface. Fig. 3.5 illustrates an
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example for sway added mass of a two-dimensional catamaran section
that consists of two circular cylinders with axes in the mean free-surface
and radius R. The distance between the two axes is 2p. Large negative
added mass values occur in Fig. 3.5 for frequencies close to the lowest
natural frequency w, for antisymmetric sloshing modes between the two
hulls. With sloshing we mean resonant liquid oscillations between the
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Fig. 3.5. Two-dimensional added mass in sway A,,*™ for catamaran sections.
The cross-sectional form of each hull is circular with the axis in the
mean free-surface. Infinite water-depth. (2p = the distance between
the cylinder axes, R = Cylinder radius, w = circular frequency of
oscillation.)
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two hulls. We can estimate w, by assuming that resonance occurs when
there is half a wavelength between the inner sides of the two hulls, i.e.
we can write

) y
w,,(B) =(5— L. 3.27)
g »_,

R

The damping of sloshing oscillations is low since the resulting standing
wave carries no energy away. This means that the wave elevations
become large at the inner sides of the hulls for frequencies close to w,. A
characteristic feature of resonant systems with low damping is that the
phase angle of the response changes rapidly by 180° by varying the
excitation frequency through the resonance frequency. This means that
the wave amplitude at the inner side of a hull can change from being in
phase with the sway acceleration to being 180° out of phase. When
resonance occurs and large wave motion is present between the two
hulls, the hydrodynamic pressure on the inner side of the hull is closely
in phase and approximately proportional to the wave elevation in the
vicinity. The hydrodynamic pressure on the outer side of the hulls is
small in comparison. By remembering that added mass in sway has to do
with horizontal hydrodynamic pressure forces caused by forced sway
oscillation, we can understand that both very large positive and negatlve
added mass values occur in Fig. 3.5 in the vicinity of w,(R/g)* (see

equation (3.27)).

Parameter dependence of added mass and damping
The added mass and damping coefficients may show a strong frequency
dependence As another example, of his we may note that the added
mass in heave for a s Juﬁwngfg fo-dimensional body in deep water

goes logarithmically to infinity when w—0.

- The added mass and damping coefficients depend on the motion

r_node That means that added mass m heave for a body is not necessarlly
Fig. 3.3 it can be shown that the added mass in sway is equal to

p(/2)R? when w—> 0 while it goes logarithmically to infinity for heave
when w—> 0. Fig. 3.6 illustrates the frequency dependency of the added
mass and damping in heave and sway for a circular cylinder with an axis
in the mean free-surface. The results are based on numerical calcula-
tions. We should note that B3;%?’/(pwA) approaches the finite value 8/
when @ —> 0. This implies that the damping coefficient goes to zero when
w—>0. As pointed out earlier this is what is expected from physical
arguments.

The added moment in roll for the same cylinder depends on the choice
of roll axis. If we select the roll axis to go through (0, 0), there is no
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normal velocity component induced by the forced roll motion. This
means no fluid motion, i.e. roll added moment and damping are zero in
this case.

All the examples above have been two-dimensional cases. The
two-dimensional added mass and damping coefficients may be combined
with strip theory to obtain an approximation to the three-dimensional
added mass and damping coefficients for a ship. The princ;pr,e is to
divide the underwater part of the ship into a number of strips (about 20)
This is illustrated in Fig. 3.7. Two- dimensional coeﬁ"lcxents _are cal-
culated for each strip and combined according to Wthh added mass and
damping coefficient is wanted. Using strip theory . 1mphes that the
variation of the flow in the cross- -sectional plane is much larger than the
variation of the flow in the longitudinal direction. This will not be true at
the ends of the body. Let us illustrate the use of strip theory to find

SO IS S U B G B O A i S B BT O S N M A A
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Fig. 3.6. Two-dimensional added mass and damping in heave and sway for
circular cylinder with axis in the mean free-surface. Infinite water
depth. (A% = added mass in sway, B,,*™ = damping in sway,
A% = added mass in heave, B3;%" = damping in heave, p = mass
density of water, A = 0.51R?, o = circular frequency of oscillation).

Fig. 3.7. Illustration of strip theory for ships.
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added mass and daniping coefficients by considering a cylinder of finite
length L with constant circular cross-section of radius R. The x-axis
coincides with the cylinder axis and the x-coordinates of the cylinder
ends are at £ L/2. The cylinder is assumed to be in infinite fluid. As an
example let us consider how to find the added moment in pitch Ass.
Following the definition of added mass we have to study forced pitch
oscillations. A strip with average longitudinal coordinate x and length dx
will be exposed to a vertical acceleration — xijs. Associated with this
acceleration there will be a vertical added mass force on the strip that is
equal to piR? dx x7js. This force creates a moment about the y-axis. By
integrating over the cylinder length we find the total pitch moment to be
[— pnR? [H2,, x* dx]#is. As a matter of definition this moment is equal
t0 —Assi)s. This means Ass = $5paR2L3. Since there is no free surface
Bss=0.

The added mass and damping coefficients can be significantly in-
fluenced by the body shape. Numerical methods have to be used in a
general case to estimate these coefficients (see the following chapter 4). In
two-dimensional problems for ship cross-sections either source techni-

w mapping techniques are most commonly used. Lewis
orms are examples arising from a conformal mapping technique that
applies to most free-surface piercing ship cross-sections in deep water.
Implicit in applying the method we say that the non-dimensionalized
added mass and damping coefficients will only depend on the beam-
draught ratio B/D, the sectional area coefficient 0 =A/(B - D) and a
non-dimensionalized frequency of oscillation like w(D/g):. Here A
means the submerged cross-sectional area. This result will be used in a
later section when we discuss how ship motions depend on main hull
parameters.

Added mass results based on Lewis form technique are presented in
Fig. 3.8. This shows the added mass in heave for infinite frequency as a
function of B/(2D) and o =A/(B - D). Only the range 0.5<0o<1.0 is
shown. Qutside this range both for larger and very small ¢g-values the
Lewis form transformation represents a poor geometrical approximation
of typical ship cross-sectional shapes. For cross-sections with sharp
corners, for instance rectangular sections, the results are only ap-
proximate. The results in Fig. 3.8 can also be applied to heave added
mass values for cross-sectional shapes in infinite fluid when the body has
the y-axis as a symmetry axis. The height of the body in the oscillation
direction 75 is 2 - D and the cross-sectional area of the body is 2 - A. The
added mass-value A33@P will be twice the values obtained from Fig. 3.8.

For semi-submersibles we will later calculate the response for
wavelengths that are large compared to the cross-sectional dimensions of
the structural parts. This implies small potential-flow damping
coefficients and frequency-independent (w— 0) added mass coefficients
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Fig. 3.8. Two-dimensional added mass in heave A, for Lewis form
sections when the frequency of oscillation w — . Infinite water
depth (A = cross-sectional area, B = Beam, D = Draught, ¢ =
velocity potential). The results can be applied to heave added mass
for the ‘double-body’ with height 2 - D and area 2 - A. The added
mass will be twice the values in the figure.
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Fig. 3.9. Strip theory for semi-submersibles.
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- (but excluding the use of heave added mass of two-dimensional surface

piercing bodies, which diverge).

A semi-submersible consists very often of long cylindrical parts. To
calculate the effect of the cylindrical parts on the added mass, strip
theory may be used. This is illustrated in Fig. 3.9. In strip theory it is
necessary to know the two-dimensional added mass coefficients. The
discussion of Fig. 3.8 should be remembered. In addition we may note
that for an ellipse oscillating in sway (see Fig. 3.10), the two-dimensional
added mass coefficients in sway, 4,,%> is equal to pma?. A special case
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Fig. 3.10. Two-dimensional added mass coefficients in sway for an ellipse and
rectangular cross-sections in infinite fluid.
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of this is a circle, where the added mass is equal to the displaced mass of
the fluid. Another special case is a flat plate, where we note that the
.added mass is infinite relative to the displaced mass. If the body is long
in the oscillation direction, the added mass is much smaller than the
displaced mass. We have also shown results for rectangular sections in
Fig. 3.10.

The added mass value will be influenced when a cylinder comes close
to the free-surface, a wall or another body. In Fig. 3.11 results are
shown for a horizontal circular cylinder when w— 0 (which is the same
as long wavelengths). The plane z =0 can either be understood as an
idealization of the free-surface or as a wall. The distance from the top of
the cylinder is called A and the added mass in heave and sway is shown
as a function of H/R where R is the radius of the cylinder. We note that
the closer the cylinder is to the plane z =0, the greater is the added
mass. When the cylinder touches the plane z =0 the added mass is
(%/3—1) or 2.29 times the added mass for large values of H/R.
Further, we note that the cylinder has to be quite close to 2 =0 before
there is any influence. For instance, when H/R = 1.0 there is only 20%
increase in the added mass compared to the value for large values of
H/R. Analytical solutions for this problem have been reviewed by
Greenhow & Li (1987). :

Addﬁg mass
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Fig. 3.11. Added mass in sway and heave for a circular section close to a wall.
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Forward speed effects

A current or the forward speed of a structure will influence the added
mass and damping coefficients. An important effect for a ship at forward
speed is the effect of the frequency of an encounter. We will explain this
by an idealistic situation that can be created in a ship model basin. In one
end of the tank there is a wave maker that creates sinusoidal waves of
period Tp. On the towing carriage we have mounted the vessel. The
carriage is heading into the waves with a constant speed U. The phase
speed of the waves (i.e. the propagation speed of the wave profile) is
¢ =g/w,. Let us concentrate on one point P on the vessel and consider
the time T it takes for two successive wave crests to pass the point P.
This will obviously be less than T,. From Fig. 3.12 we can deduce

UT.+cT.=2

where A = 27g/wy?. This means that the circular frequency of encounter
w,=2m/T, between the ship and the waves can be written as

W= wo+ wo’U/g (3.28)

For a general heading angle B between the vessel and the wave
propagation direction we can write

CUOZU

W, = Wy + cos 3 (3.29)
Here B =0° is head seas, 8 = 90° is beam seas and 8 = 180° is following
seas. We note that w, = w, for beam seas and that w, is smaller than w,
for following seas. The frequency of encounter can actually be zero
which means the ship stays with the wave profile. For following seas
(B =180°) this occurs when T, =2xU/g. According to equation (3.29)
w. can be negative. If this occurs we will interpret w, as the absolute
value of the right hand side of equation (3.29). Because the ship will

Fig. 3.12. A ship in regular head sea waves with an explanation of the
frequency of encounter effect. (U = forward speed of the ship,
T, = encounter period between the ship and the waves, ¢ = phase
speed of the waves, A = wavelength).



56 LINEAR WAVE-INDUCED MOTIONS

oscillate with the circular frequency of encounter, the added mass and

damping coefficients have to be evaluated for w..
In the theoretical derivation of ship motions at forward speed, the

added mass and damping coefficients can be written in the form
Ajk = AjkO + UAjk(l) + UZAjk(Z)

2y (2)
B;, =B+ UByY + U’By,

For instance Salvesen et al.’s (1970) strip theory states that added mass
and damping coefficients for heave and pitch of ships with pointed ends

can be expressed as

Az = f Ass(ZD)(x) dx
L

B33 =f Bss(ZD)(x) dx
L

U
Ass == [ %A dx + 5 B
L

[

Bis= _f sts(ZD)(x) dx — UAs;
- (3.30)

BSS

C

U
Asy= = [ 2 tx =
L o

Bs3= ‘f xB33PX(x) dx + UAs;
L

2

Ass=fx2A33
L

Bss=fx
L

. 2 .
One reason for the terms proportional to U and U®, can be seen by
examining the Bernoulli’s equation. To show this we first write the total

velocity potential as

<I) =Ux+ ¢
Here the steady velocity potential Ux represents the forward speed effect
of the ship in a coordinate system moving with the forward speed of the

ship. Further, ¢ is the harmonically oscillating velocity potential when
the ship is forced to oscillate either in heave or pitch with the frequency

of encounter.

2
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By using Bernoulli’s equation (2.4), disregarding the hydrostatic
pressure term —pgz and keeping linear terms in ¢, it follows that the
linear pressure _part_contributing to the added mass and damping
coefﬁcrents is

%0 _ y3¢

3.31
azpax (3.3D

come from . the body boundary condltlon “In the body boundary
condition for ¢ an additional speed- dependent term will occur when we
analyse forced pitch motion. This is exemplified in Fig. 3.13. A flow has
to be set up to counteract the ‘incident’ velocity Uns in the cross-
sectional plane.

A more complete three-dimensional-analysis of linear wave-induced
motion and loads at forward speed is complicated. For practical purposes
strip theory is still recommended even if it does not properly account for
all physical effects. In many cases strip theory shows good agreement
with experiments. However, it is important to note its limitations. A strip
theory is basrcally a high frequency theory. That means it is more
applicable in head and bow sea waves than in following and quartering
sea for a ship at forward speed. The Seakeeping Committee of the 16th
ITTC reports, for instance, substantial disagreement between calculated
results and experimental investigations of vertical wave loads in following
waves.

It should also be noted that strip theory is Moude number

i

steady wave system and the he_oscillatory eﬂ”ects of shlp rnotlons Care

should be shown in applymg the theory for Fn =U /(Lg)z > =04,
Another limitation of of strip theory is the assumptlon of llnearrty between
ids

esponse and i wave amplitude. This means it is questionable to
respon q

»,1th sh1p slammlng and water on deck occurrmg

Fig. 3.13. Influence of forward speed U on the body boundary condition for a
ship forced to oscillate in pitch 7s.
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Strip theory is also questionable to apply for ships with low length to
beam ratios. The reason is that strip theory is a slender body theory. On
the other hand, the Seakeeping Committee of the 18th ITTC concludes
that strip theory appears to be remarkably effective for predicting the
motions of ships with length to beam ratios as low as 2.5.

Restoring forces and moments
When a body is freely floating, the restoring forces will follow from

‘hydrostatic and mass considerations. We may write the force and
moment components as
Fy=—Cy7; (3.32)

which defines the restoring coefficients C,. The only non-zero
coefficients for a body with the x-z plane as a symmetry plane for the
submerged volume are

Cis = pgAwp

Css=css.=_ngf9Cd5
Awp (3.33)

Cu=pgV(zs —26) + pg f f y*ds = pgVGMr

Awp

— — 2 = GM. .
Css = pgV (28— 26) + pg J'fx ds = pgVGM,, (;\, /o

Awp ’ﬁ‘ g

Here Awp is the waterplane area, V is the displaced \(olurr}é( of water, 2g
and zg are the z-coordinates of the centre of gravity/and centre of
buoyancy, respectively. GMr is the transverse metacentfric height, GM_,
is the longitudinal metacentric height. We can, for instance, deduce Cj;
by considering forced heave motion and analysing the resulting changes
in buoyancy forces due to the hydrostatic pressure —pgz. This can be
linearly approximated as —pgA,n;. From this Ci; follows from equation
(3.32). For a moored structure additional restoring forces have to be
added. However, the effect of a spread mooring system on the linear
wave-induced motion is generally quite small. In special cases, in
particular for long wavelengths, the mooring system will have an
influence.

Linearized wave exciting forces and moments
The wave exciting forces and moments on the structure are the loads on
the structure when the structure is restrained from oscillating and there
are incident waves. We assume the waves are regular and sinusoidal. The
unsteady fluid pressure can be divided into two effects. One effect is the
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unsteady pressure induced by the undisturbed waves. The force due to
the corresponding undisturbed pressure field is called a Froude—Kriloff
force. In addition there will be a force because the structure changes this
pressure field. This force is called a diffraction force and may be found in
a similar way as the added mass and damping coefficients, i.e. one has to
solve a boundary value problem for the velocity potential. The main
difference is the boundary condition on the body, where the normal
derivative of the diffraction velocity potential has to be opposite and of
identical magnitude as the normal velocity of the undisturbed wave
system. In this way we ensure that the normal component of the total
velocity on the structure is equal to zero. Let us illustrate this by
considering a vertical cylinder standing on the sea floor and penetrating
the free-surface. A horizontal submerged cross-section of the cylinder is
shown in Fig. 3.14. The figure defines polar coordinates such that
x=rcos @, y=rsin 0. The unit normal vector n is written as n =
cos 6i+ sin 6j. The undisturbed pressure, i.e. the Froude—Kriloff pres-

p 2

—
X

TTTITTTTTIT T

Fig. 3.14. Horizontal submerged cross-section of a vertical cylinder.
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sure, can be written as (see Table 2.1):

coshk(z+h) .
il A —k
cosh 77 sin(wt — kx)

for waves propagating along the positive x-axis. The Froude—Kriloff

force on the element dz can be written as

cosh k(z + k)
cosh kh

p=pgt,

dF = —ipgt, dzR

25
xj sin(ew? — kR cos 6) cos 8 d6
0

We will now assume that the wavelength is much larger than the radius R of
the cylinder. This implies that 2R is small. We can write

cosh k(z + h)

27
dzR{j cos 6 d0 sin wt
cosh kh o

dF =~ ~ipg¢,

2r

—|  RR cos?6 df cos wt}

0

We may note that the large part of the pressure, i.e. the part that is in
phase with sin wt, does not give any contribution to the horizontal force.
We can now write

cosh k(z + k)
cosh kh

Here pR* dz is the mass of the displaced fluid of the cylinder strip and
- @50 is the x-component of the fluid acceleration at x = 0 at the average
z-coordinate for the strip as if the cylinder were not there.

The undisturbed pressure force is only one part of the total force on
the strip. We can understand this by studying the undisturbed velocity
field. This causes a fluid transport through the cylinder wall. This is
unphysical and the cylinder must therefore set up a pressure field which
causes a velocity field that counteracts the normal component of the
undisturbed velocity field at the cylinder wall. To find the diffraction
force due to the additional pressure distribution we may argue as follows.
Due to the long wavelength assumption we may say that the problem of
finding the additional pressure distribution is equivalent to a problem

dF = ipgl, knR? dz cos wt =ipaR?dza,,_g

z-coordinate for the strip as if the cylinder were not there. In this way there
will be no resultant fluid transport through the cylinder wall. From basic
hydrodynamics we know that the force on the body due to the forced
oscillatory velocity —u|,., can be written as

Ana)yi—o
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where A,; is the proper added mass, which for the circular cylinder is

equal to the mass of the displaced fluid, volume,

What we have shown above is a derivation of the mass force in
Morison’s equation based on potential theory. With mass force we mean
a force that is proportional to the undisturbed fluid acceleration @,. The
horizontal force per unit length on a strip of the cylinder can, according

to Morison’s equation (Morison ez al., 1950) be written as

2

. ,
dF=erTCMa1+§CDD ] u (3.34)

Positive force direction is in the wave propagation direction. Further, p
is the mass density of the water, D is the cylinder diameter, u and a, are
horizontal undisturbed fluid velocity and acceleration at the mid-point of
the strip. In reality the mass and drag coefficients Cy and Cp, have to be

empirically determined and are ‘dépendent on many parameters like

Reynolds number, Keulegan—Carpenter number, a relative current
number and surface roughness ratio. This will be discussed in detail in
chapter 7. In this chapter the non-linear drag term is assumed to be
negligible. What we have shown is that potential theory gives C,, = 2 for
P T U . . R ot

a circular cylinder, where half the contribution comes from the

Froude—Kriloff force and the other half comes from the diffraction force.
If viscous effects are accounted for, Cym will differ from 2. We shouid
remember that the wavelength was assumed to be large relative to the

diameter. For arbitrary wavelength we may use the linear analytical

_solution by McCamy & Fuchs (1954). The theory is based on potential

flow and is valid for a circular cylinder standing on the sea floor and
penetrating the free-surface. This theory shows that there is one force
part in phase with a, and another force part in phase with the velocity u.

We may generalize the derivation above for any small-volume
structure. By small volume we mean that the wavelength 4 is large
relative to a characteristic cross-sectional dimension of the body. For
instance, for the vertical cylinder it means that A > 5D where D is the
cylinder diameter. The force on a relatively small body can be written as

where
F,': —jjpni ds +A,~1al +Ai2a2 +A,-3a3 (336)
S
Here p is the pressure in the undisturbed wave field and n= (n,, n,, n5)
is the unit vector normal to the body surface defined to be positive into
the fluid. The integration is over the average wetted surface of the body.
Further, a;, a, and a; are acceleration components along the x-, y- and
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z-axes of the undisturbed wave field and are to be evaluated at the
geometrical mass centre of the body.

The first term in equation (3.36) is the Froude—Kriloff force. The
other terms physically represent the fact that the undisturbed pressure-
field is changed due to the presence of the body (difiraction force),

If the body is totally submerged, the body is small relative to the
wavelength and the whole body surface is wetted we can show that:

1 a, )
—J.fp n, |ds=pV| a, (3.37)
s n3 as

‘where V is the displaced volume. Equation (3.37) is according to the
assumptions not valid for a structure (for instance a tank) standing on the
sea bed where the bottom of the structure is not wetted. However, in the
case of a horizontal sea bed, the fact there is no fluid pressure on the
bottom of the structure does not affect the horizontal forces. Equation
(3.37) is therefore only invalid for the vertical force in this case.

Equation (3.36) is often used together with strip theory to predict wave
excitation forces on semi-submersibles and TLPs when the wavelength is
large relative to the cross-sectional dimensions. Special care should be
taken_ at Junctlons between columns and pontoons. 1n evaluatmg the
then have to mtegrate the Froude— Krlloﬁ~ pressure force’ d1rectly

We will illustrate this by considering the vertical excitation force F(¢)
on a TLP (see Fig. 3.15) for long wavelengths. A similar analysis applies
for a conventional semi-submersible drilling platform. A main contribu-
tion to F3(t) comes from the pressure forces acting on the pontoons. A
strip theory approach may be used to estimate these pressure forces
because the pontoons can be treated as slender members. Then, the
vertical wave excitation load on a strip of length, ds, that is remote from
the columns can be written as:

F3 = (pAp + A33(2D)) ds asz (338)

where A, is the cross-sectional area, A% is the two-dimensional
added mass in heave in an infinite fluid, and a; is the vertical
undisturbed fluid acceleration at the geometrical centre of the cross-
sectional area. Equation (3.38) is based on a long wavelength assumption
relative to the cross-section. The first term represents the Froude—Kriloff
force (i.e. the pressure force on the cross-section due to the undisturbed
fluid flow). It should be stressed that in equation (3.38) the Froude-—
Kriloff representation is valid only when the whole circumference of the
cross-section is wetted. When this is not satisfied, the contribution to the
Froude—Kriloff force should be obtained by properly integrating the
undisturbed pressure p.
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To derive an expression for F4(t), we will write
as = —w?f,e* sin(wt — kx) (3.39)

Ugé,,e sm(wt — kx) (3.40)
where §, is the incident wave amplltude On the pontoons oriented in the
x-direction we obtain the following vertical force contribution.

B/2

—w?Eem2(pA, + AP f sin(wt — kx) dx

B/2
where
B/2
f sin(wt — kx) dx = (2/k) sin wt sin kB /2

—~-B/2

and 2, is the z-coordinate of the geometrical centre of the cross-sectional
area. B is explained in Fig. 3.15. On the pontoons oriented in the
y-direction we obtain the following verucal force contribution.

— w28, (pA, + Ass*P)B(sin(wt — kL,/2) + sin(wt + kL,/2))

where L, is explained in Fig. 3.15. By using only the Froude—Kriloff
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Fig. 3.15. Tension leg platform (ASM600). Dimensions are given in metres. Its
main characteristics are presented in Table 5.1.
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force on the columns it now follows that

k
F3(0) = pgl.e* sin wt[ - <4 sin—ezE + 2kB cos %)

Ay 39 |
X <Ap + ———3; ) + A, e cos 7‘] (3.41)

where 2y is the z-coordinate of the bottom of the platform, and A,, is the
total waterplane area of the platform. A;®™ can, for instance, be
calculated by the Frank close fit method (see Frank, 1967). Strictly
speaking, we should also introduce a correction to the added mass due to
the columns but this is not possible to do in a simple manner and will be
neglected herein.

We note that the force is either in-phase or 180° out-of-phase with the

undisturbed wave elevation at x =0. Furthermore, the excitation force -

can be zero. for. certain frequencies. For long wavelengths, this happens
when the last term in the brackets cancels the first two terms in the
brackets. Physically it means that the force on the columns cancels the
force on the pontoons.

The most convenient way to calculate the wave excitation loads on a
ship is to use a coordinate system fixed with respect to the forward speed
of the ship. We can then write the incident wave potential as

1= i’fa k2 cos(w.t — kx cos B — ky sin B) (3.42)

o

where k = w,’/g. By using the linearized Bernoulli’s equation (similar to
equation (3.31)) we find that the dynamic pressure is

= pgt.e* sin(w.t — kx cos B — ky sin §) (3.43)

By the nature of the Froude-Kriloff force its amplitude has to_be
independent of the ship’s speed. This is consistent with equation (3.43).
However, the amplitude of the diffraction force will in general be
speed- dependent For more details as to how the diffraction force can be
calculated within a strip theory approximation one may, for instance,
consult Salvesen et al. (1970). Their approach is based on using Green’s
second identity. The formulas use the velocity potentials due to forced
motion of the structure instead of the diffraction potential of the
structure. The advantage of introducing the velocity potentials due to
forced motion is that it is generally more correct to use a strip theory
approximation and neglect hydrodynamic interaction between the cross-
sections for the forced-motion potentials than for the diffraction poten-
tials. We illustrate this by considering head sea incident waves on a ship.
As the waves propagate along the ship they will be continuously
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modified. This is particularly true if the wavelength is. small relative to
the ship length (Faltinsen, 1972). This means hydrodynamic interaction
between the cross-sections has to be accounted for when the diffraction
potential is solved. We should note that the use of Green’s second
identity to calculate wave excitation forces and moments implies that we
do not find the pressure distribution along the ship.

If we want to apply an approximate method valid for long wavelengths
relative to the cross-section of the ship, we could argue as we did for the
vertical cylinder in the beginning of this section. We will show this for
zero ship speed. The problem of finding the vertical diffraction force on a
cross-section (strip) of a ship is equivalent to a problem where the strip is
forced to oscillate with a vertical velocity

—w = —wl,e*™ cos(wt — kx cos B)

This velocity is minus the incident vertical velocity at the area centre
(x, 0, 2,,) of the strip. From the section on added mass and damping we
know that the vertical hydrodynamic force on the strip due to the forced
velocity —w is

2D 2 z

—a;= Va)ZCae"’"" sin(wt — kx cos B)

"This is a force per unit length. Since the body is restrained from

oscillating, we should not include any restoring forces due to buoyancy.
The added mass and damping coefficients are frequency dependent Due
to the long wavelength assumption, the damping term is small compared
to the added mass term. However, we must not evaluate A;;%™ for zero
frequency. The reason is that A33(2D) diverges for a surface piercing body
when the frequency goes to zero. 4 ?‘%;

By properly integrating the diffraction loads over the length L of the
ship and including the Froude—Kriloff force we can write the vertical
excitation force F; and the pitch moment Fs as '

[rio)==[Jol 5o, e
_de[_lx]wg ek#n{A4,*P sm(wt kx cos fB)

~ B33P cos(wt — kx cos B)} (3.44)

Here p; is given by equation (3.43) and Sy is the mean wetted body
surface. '

Newman (1962) has derived simple formulas for beam sea incident
waves on an infinitely long horizontal cylinder and for incident waves on
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a vertical axisymmetric body. The formulas are valid for any frequency,
but assumes the structure has zero forward speed and no current. The
derivation is based on Green’s second identity. In that way the velocity
potential for forced motion of the body is introduced mathematically.
Newman is able to relate the force component number i to the damping
coefficient B;. For an Infinitely long cylinder in beam sea, Newman
(1962) writes the exciting force amplitude |F;] per unit length as

2 3
Fi=t(Z ), =234 (3.45)

where B;*™ is the two-dimensional damping coefficient in mode i, |F,
|F 4| is the roll moment amplitude.
For an axisymmetric body we can write

3 }
IF.-I=Ca<-z%2AB,-,->, i=1,...,5 - (3.46)

where A =1 for i = 3 (heave) and equal to 2 for i = 1,2,4,5. Newman’s
formula does not tell us what the phase of the wave excitation loads are
relative to the incident waves.

For a general body shape, numerical techniques have to be used to
evaluate wave excitation loads (see chapter 4). This is based on properly
integrating Froude—Kriloff and diffraction pressure forces. If one only
wants to find the wave excitation loads and not the detailed pressure
distribution, the Haskind relation can be used (Newman, 1977). In its
original form it is assumed that the structure has zero forward speed.
There is no current present. The derivation is based on Green’s second
identity. The formulas use the velocity potentials due to forced motion of
the structure instead of the diffraction potential of the structure.
Equations (3.45) and (3.46) can be derived from the Haskind relations.
An advantage of the Haskind relations is that they provide an in-
dependent test that the wave excitation loads are correctly calculated by a
computer program.

The equations of motions
When the hydrodynamic forces have been found it is straightforward to
set up the equations of rigid body motions. This follows by using the
equations of linear and angular momentum. For steady-state sinusoidal
motions we may write

. .
Z (M + Ajpdiie + By, + Cimil =Fe ' (j=1,...,6)
i1

(3.47)

where M}, are the components of the generalized mass matrix for the

is the horizontal force amplitude, [F'3| is the vertical force amplitude and
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structure and F; are the complex amplitudes of the exciting forces and
moment-components with the force and moment-components given by
the real part of Fje™*¢ (i is complex unit). The equations for i=1,2,3
follows from Newton’s law. For instance, let us consider j=1. For a
structure that has lateral symmetry (symmetric about the x—g ﬁlane) and
with the centre of gravity at (0, 0, zg) in its mean oscillatory position, we
can write the linearized _acceleration of the centre of gravity in the

x-direction as

d2771 d2775
ar TEeTgp

From this the components of the mass matrix M [ follow as

My=M, M,=0, M;;=0, My,=0,
Ms=Mazg, Mg=0
Here M is the mass of the structure. Similarly for j =2, 3. Forj=4,5,6

we have to use the equations of angular momentum. We can then set up
the following mass matrix

[ M 0 0 0 Mz 0
0 M 0 —Mz; 0 0
0 0 M 0 0 0
Ma=1'0 _Mag 0 1, o I (3.48)
MZG O O 0 15 O
N O O O _146 O 16 J

where /; is the moment of inertia in the Jth mode and I is the product of
inertia with respect to the coordinate system (x, y, 2).’

For a structure with no forward speed and where there is no current
present it can be shown by Green’s second identity that the added mass
and damping coefficients satisfy the symmetry relations Ay =A,;,
Bjk = Bkj-

For a structure with lateral symmetry, the six coupled equations of
motions reduce to two sets of equations, one set of three coupled
equations for surge, heave and pitch and another set of three coupled
equations for sway, roll and yaw. Thus for a structure with lateral
symmetry, surge, heave anc pitch are not coupled with sway, roll and
yaw. This will be assumed in the following text. In order to understand
why surge, heave and pitch are not coupled with sway, roll and yaw, we
need to study the added mass and damping coefficients. Let us illustrate
this by an example and analyse coupled added mass A3 between sway
and heave for the case presented in Fig. 3.3, i.e. we consider forced
heave motion of a circular cylinder when w—> . The pressure on the



68 LINEAR WAVE-INDUCED MOTIONS

body is given by equation (3.15). This pressure is symmetric about the
z-axis. A consequence of this is that the resulting horizontal force is
zero. By definition (see equation (3.10)) the added mass and damping
coefficients A,; and B,; are zero. For forced heave motion of a general
body shape where the submerged body surface is symmetric about the
x—2 plane we will also find that the pressure distribution is symmetric
about the x—2z plane. This means no horizontal force and no roll and yaw
moment. A consequence from equation (3.10) is that A,; and B,; for
k=2,4 and 6 are zero. A similar argument can be shown for forced
pitch and surge motion, i.e. that A.,, Aps, Bz and B,s are zero for
k=2, 4 and 6. If we consider forced sway, roll and yaw motion, the
pressure distribution will be antisymmetric about the x—2z plane. This
implies A}, As., Ase, Bux, Bs, and Bs, are equal to zero for & =2, 4 and
6.

We can combine this information with the fact that there are no
coupling effects between the lateral motions (sway, yaw, roll) and the
vertical and longitudinal motions (heave, pitch, surge) due to restoring or
mass terms (see equations (3.33) and (3.48)). We can then conclude from
the equations of motion (equation (3.47)) that the lateral motions are
uncoupled from the vertical and longitudinal motions.

- The equations of motions (3.47) can be solved by substituting

N, = 7, €7 in the left hand side. Here 7, are the complex amplitudes
of the motion modes. Dividing by the factor e~ the resulting equations
can be separated into real and imaginary parts. This leads to six coupled
algebraic equations for the real and imaginary parts of the complex
amplitudes for surge, heave and pitch. A similar algebraic equation
system can be set up for sway, roll and yaw. These matrix equations can
be solved by standard methods. When the motions are found, the wave
loads can be obtained using the expressions for hydrodynamxc forces
which we discussed previously.

It should be stressed that equations (3.47) are only generally valid for
steady state sinusoidal motions. For instance, in a transient free-surface
problem the hydrodynamic forces include memory effects and do not
depend only on the instantaneous values of body velocity and accelera-
tion (Ogilvie, 1964).

DISCUSSION ON NATURAL PERIODS,

DAMPING AND EXCITATION LEVEL
The natural or resonance periods, damping leve]l and wave excitation
level are important parameters in assessing the amplitudes of motion of a
platform or a vessel. Relatively large motions are likely to occur if the
structures are excited with oscillation periods in the vicinity of a
resonance period. However, if the damping is high or the excitation level
is relatively low due to cancellation effects, it may be difficult to
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distinguish the response at resonance periods from the response at other

periods.
The uncoupled and undamped resonance periods can be written as
M+ Ay }
Tm- = 2.717<—“C——) (349)

For an unmoored structure there are no (uncoupled) resonance periods
in surge, sway and yaw. For a typical moored structure the natural
periods in surge, sway and yaw are of the order of magnitude of minutes
and will therefore be long relative to wave periods occurring in the sea.
We will see in chapter 5 that non-linear effects may excite resonant
oscillations at these long periods.

The natural period in heave for a semi-submersible or a ship, or any
other type of freely floating body can be written as

M+ A33)i
PEA,,

where A,, is the waterplane area. It is common design procedure for
semi-submersibles to require that the natural periods in heave, pitch and
roll are larger than T =20s, i.e. high relative to most wave periods
occurring in the open sea. This is possible to achieve by the low
water-plane area of semi-submersibles. For a ship we can write equation

(3.50) as
CgD Asz\\
Ta=2a(g2 2 (1+52))
3= .ﬂ'cwg 1+M

where Cp = V/(BLD) (V = displaced volume of the ship) is the block
coefficient and C,, = A,,/(BL) the waterplane area coefficient. If the ship
does not have forward speed, the heave oscillations at the natural period
will be excited by waves with wavelength

Cs < Ass)
CWD 1+ 7, (3.51)

Since 27D is in the range of the ship length, equation (3.51) means that
the resonant wavelength is of the same order of magnitude as the ship
length. If the ship has a forward speed it is a different wavelength that
causes the resonant heave oscillations. The requirement for resonance is
that the encounter period T, is equal to T,3. This means

To

Tps= 2::( (3.50)

-8 r2_
A' 2.71,'Tn3

=T, (3.52)

2nU
1+ ——cos
To g h

This is illustrated in Fig. 3.16. The figure tells for instance that period
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To = 12's causes heave resonance when the vessel is heading with a speed
10ms™' (19.4knots) against the waves. At zero speed, resonance is
caused by a period of 7.8 s. For head seas it means that the wavelength
that creates resonance increases with the forward speed. If the vessel
changes direction, for instance to bow sea (8 = 45° heading), a resonant
heave oscillation will not occur for a speed of 10ms™" and wave period
To=12s. It would occur if the ship had a speed of 10 ms™!/cos 45°=
14ms™".

The natural period in heave for a tension leg platform can be written as

M +A33)5
EA/l

where E, A and [ are respectively modulus of elasticity, cross-section
area of the tendons and length of the tendons. The stiffness due to the
waterplane area is negligible in comparison with the restoring effect of
the tendons. We note from equation (3.53) that the heave natural period
increases with increasing tendon length (i.e. the water depth). Similar
considerations apply for the pitch and roll natural periods. Generally
speaking, the natural periods in heave, pitch, and roll of a TLP will be
low relative to most wave periods occurring in the open sea. However,
they may be excited by non-linear second-order effects (see chapter 5).

Tys= 2n< (3.53)
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Fig. 3.16. Relation between resonance period, wave period, forward speed and
wave propagation direction.
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The uncoupled natural period in pitch for a freely floating body like a
ship or a semi-submersible can be written as

Mrs + Ass)i (3.5

1o = 2( =
Tos =27\~ oVGM,

where rss is the pitch radius of gyration with respect to an axis parallel
with the y-axis through the centre of gravity, Ass is the pitch added
moment and GM; is the longitudinal metacentric height. For a ship, rss
can be approximated as 0.25 times the ship length. The order of
magnitude of T s for a ship is the same as T';.

The uncoupled natural period in roll is

24 A\t
Mﬁ‘.‘_.__._i“) (3.55)

Tn=2< ¢
= S\ pgVGMy

where r,, is the roll radius of gyration with respect to an axis parallel
with the x-axis through the centre of gravity, A, is the roll added
moment and GMr is the transverse metacentric height. For a ship, 74, is
typically 0.35 times the beam. The transverse metacentric height
depends on the loading condition. A design rule/recommendation for a
ship is to try to select natural periods in roll larger than 10s. In this way
rolling is not a problem in small and moderate sea states. The parameter
which has most influence on the natural period is the metacentric height.
T,4 is typically 4-6s for small fishing vessels, 8—12 s for conventional
merchant vessels and up to 20-25s for specialized heavy lift vessels.
Semi-submersibles have T,, in the range of 35-50s. T, depends very
much on the stability requirements and how the ship is built with respect
to damage stability.

Ships without roll stabilization equipment are exposed to strong
resonance effects in roll. The amplitude at resonance depends on the
damping level. The damping in roll for a ship at zero Froude number,
i.e. zero forward speed, is due to wave generation, viscous effects and
roll stabilization equipment. At high Froude numbers the lifting effect of
the hull and the rudders is important. By lift we do not mean that there
is a vertical force, but that the ship and the rudders act as lifting surfaces
in a hydrodynamic sense. The roll wave damping is due to the waves
created by the roll motion and is frequency dependent. When the
frequency goes to zero or infinity, the roll damping goes to zero. Since
the roll damping dominates the roll motion around roll resonance, the
natural period in roll will have an important influence on the effect of the
roll wave damping. The roll wave damping has a tendency to be small
due to cancellation effects for normal midship sections. By cancellation
we mean that the roll moment caused by the pressure forces on the ship
sides tend to counteract the roll moment caused by the pressure forces on
the shin bottom. For a circular cross-section the roll damnine will he
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zero if the moment axis coincides with the cylinder axis. If either the
cross-sectional beam is small or large, the cancellation effect will be less
pronounced. This will cause relatively large roll wave damping. This is
illustrated in Fig. 3.17 where two-dimensional roll wave damping
coefficients B,*™ for rectangular cross-sections are shown for different
oscillation periods T as a function of the beam draught ratio B/D. The
oscillation periods in Fig. 3.17 are in a limited range. This means the
data do not show that B,®®— 0 when T— 0 or .

Viscous effects can be divided into skin friction effects and viscous
effects due to the pressure distribution around the ship. The last effect is
often associated with eddy making and is therefore called eddy-making
damping in the literature.

The effect of skin friction is more important in model scale than in full
scale. In model scale it cannot be completely neglected, while it is
negligible in full scale. Depending on the frequency and the roll
amplitude, the roll wave damping may be larger or smaller than the
eddy-making damping (Ikeda et al., 1977a). For a ship without bilge
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Fig. 3.17. Two-dimensional roll wave damping B,,“" as a function of
beam-draught-ratio for rectangular cross-sections. Infinite water
depth. The roll axis is in the mean free-surface. (B = beam,

D = Draught, A = submerged cross-sectional area, 7" = period of
oscillations.) (Vugts, 1968.)
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keels, the bilge radius has an important influence on the eddy-making
damping for midship sections (Tanaka, 1961). The eddy-making damp-
ing can be quite large for rectangular cross-sections while it is of less
importance for conventional midship sections. Kato (1966) and Ikeda et
al. (1977b) have given empirical formulas for roll damping due to bilge
keels. The bilge keel damping can very well amount to 50% of the total
damping. Eddy-making and bilge keel damping is non-linear and
expressed in the form of B, 74|, where dots stand for time derivatives.
In practical calculations equivalent linearization is used to determine the
roll amplitudes (see exercise 3.5).

Heave and pitch damping of monohull ships are dominated by wave
damping. For catamarans at zero or very low forward speeds small wave
damping may occur due to interaction effects of the two hulls. This
occurs typically when the distance between the hulls is an odd number of
half-wavelengths. A simple way of explaining the phenomenon is to
combine the far-field wave picture generated by each hull and neglect the
diffraction caused by the other hull. We will illustrate what we mean by
considering a two-dimensional case. The wave elevation in the far-field
(y— +) due to forced heave motion of the two hulls is written as

Assin(wt — k(y —p) + &) + Az sin(wt — k(y + p) + )
= 2A, cos(kp) sin(wt — ky + &) (3.56)

Here A; and « are the wave amplitudes and phases caused by one hull as
if the other hull were not there. Further, 2p is the distance between the
centre planes of each hull. We note that equation (3.56) becomes equal to
zero when cos(kp) =0, i.e. A/2p)=2/2n+1),n=0,1,.... The most
interesting practicali case is when n =0, i.e. when there is half a
wavelength between the centre planes of the two hulls. When the
far-field wave amplitude generated by forced heave oscillation is zero we
know from equation (3.26) that the damping in heave is zero. Both
three-dimensional flow effects and forward speed effects will cause less
cancellation of the far-field wave system around a catamaran. This is
particularly true for a high-speed catamaran.

Small excitation forces may also occur due to cancellation effects. One
example of this is a ship in head sea waves with a wavelength of the order
of the ship length. The phase difference in the vertical excitation loads
along the ship causes the total heave excitation force to be small. Since
the heave resonance period for a ship at zero forward speed corresponds
to a wavelength of the order of the ship length, the heave motion may be
rather small at the heave resonance.

For semi-submersibles and TLPs, the Froude—Kriloff force and the
diffraction force tend to cancel each other at large periods, typically
between 15 and 20 s. This is evident from Fig. 3.18.
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LINEAR WAVE-INDUCED MOTIONS AND

LOADS ON A TENSION LEG PLATFORM (TLP)

IN THE MASS-FORCE DOMAIN
Fig. 3.18 presents results of calculated linear motions for the ASM600
platform (Fig. 3.15) in head seas. These calculations are based on
incident regular waves using the theory described by Faltinsen et al.
(1982). Here we will only try to explain the essential part of the
calculations when wave diffraction is of small importance, and fo¢us our
attention on the heave motion 7; of the centre of gravity of the platform.
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Fig. 3.18. Motion of the TLP presented in Fig. 3.15.
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The undamped equation of motion can be written as

d? EA
(M + As) TP+ 13 = F3(0) (3.57)

where the dominating restoring coefficient Cs; is due to tethers. E is the
modulus of elasticity, A is the total cross-sectional area and [ is the length
of the tendons.

The frequencies of interest are much lower than the resonance
frequency in heave. We will therefore neglect the first term on the left
hand side. A formula for the excitation force F;(z) has been derived in
equation (3.41). It was noted that the force is either in-phase or 180°
out-of-phase with the undisturbed wave elevation at x = 0. Furthermore,
the excitation force can be zero for certain frequencies. This is also
evident from Fig. 3.18(a). The force is not exactly zero in the figure
because wave diffraction was also incorporated in the computer program.
The small vertical force at the largest period in Fig. 3.18(a) occurs
because the forces on the columns cancel the force contribution from the
pontoons.

Computer calculations have shown that the volumetric ratio, R,, of
columns to pontoons is an important parameter for the dynamic tension
variation. We can write

A, D

RV~AP4B (3.58)
where D is the draught of the platform. This can partly be seen from
equations (3.41) and (3.57). The ratio A,/Ap is a parameter which
controls the cancellation period of (3.41), and D governs how much wave
energy there is at the pontoon depth. The spacing between the pontoons,
which is related to B, will also influence the dynamic tensions according
to equation (3.57).

The calculation of the pitch and surge responses in Fig. 3.18 can be
based on a similar procedure to that outlined for heave. In this case the
columns will also contribute to the wave excitation force. The heave at aft
or fore tendons can be calculated by properly combining the heave at the
center of gravity and the pitch motion. Fig. 3.18 indicates that the
‘design wave approach’ may be dangerous to apply in predicting the
tendon loads in a survival situation. These loads are sensitive to the
frequency range of interest. By ‘design wave approach’ we mean that
we only consider the response due to one regular wave system. Let us say
we chose a wave period in the vicinity of 15s (w = 0.42 rad/s). We see
from Fig. 3.18 that the tendon loads are sensitive to what wave period we

select.
Standard procedures exist for calculating irregular sea effects when the
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response is linear (see the introduction to this chapter). The simplest way
of applying this to the heave motion requires us to assume that the most
probable largest heave motion 2., in N oscillations (N large) or time, ¢,
can be approximated as

Zmax = 0(2 log N} (3.59)
where
o0 2
02=f S(w)’ ~——— | dw (3.60)
0 C'!
t
N = — (3.61)

2

This approach is valid for a long-crested sea of given significant wave
height H}, direction and mean wave period T,. However, by combining
these results with results for other wave directions and a scatter diagram
for Hy and T, (or modal period T) (see Table 2.2) it is possible to obtain
long-term statistical values.

It should be noted that the hydrodynamic theory in the mass—force
domain implicitly assumes that the incident waves are not disturbed by
the platform. In order to evaluate the necessary deck elevation (air gap) it
would then be necessary to use the most probable highest wave of a
specific return period (for instance, 100 years). On the other hand, we
should bear in mind that the theory is based on linearity. To demonstrate
that non-linearities have an effect, we will consider an idealized case with
regular waves that are periodic in space and time. For a wave of
steepness H/A=0.1 the wave elevation at the crest is roughly 20%
higher than that predicted by the linear theory (Schwartz, 1974). A
steepness of 0.1 is not at all unrealistic for extreme wave situations,
which shows that the consequences of non-linearities should be kept in
mind. However, at present there are no rational or practical ways of
evaluating these effects for an irregular sea, so model tests are needed.

In the wave-interaction domain we have to rely on a three-
dimensional source technique. The method is well established as an
engineering tool for calculating linear wave-induced motions and loads
on large volume structures in regular incident waves without the
presence of current. This will be discussed in chapter 4.

HEAVE MOTION OF A SEMI-SUBMERSIBLE
We will analyse semi-submersibles that consist of two pontoons with
columns on each floater (see Fig. 3.9). The platform has fore-and-aft
symmetry and operates in deep water. The heave motion in beam seas
will be studied. The undamped equation of motion in the mass—force
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domain can be written as
M +A33> T + pgAwns = F(0) (3.62)
By following a similar analysis as for the TLP we will find that

A
F(t) = pgl,sin wt e cos(kB/2)| Ae*@ = —k(V, + 22

(3.63)

where A,, is the waterplane area of the semi-submersible, z, and z,, are
respectively the z-coordinates of the top and the geometric centre of a
pontoon, B is the distance between the centre planes of each pontoon and
V, is the total volume of the pontoons. In deriving equation (3.63) it is
assumed that the free-surface elevation at the centre plane of the
platform is §,sin wt. By using the fact that k(s — zy,) is small we can
approximate equation (3.63) by

Fy(t) = €, sin wt & cos(kB /2)(pgAy, — (M + Ass)
— pw°A,5m) (3.64)
From (3.62) it follows that

12— sin wr e cos(kB/2)[ 1 - ——2— (3.65)
: L
wn
where
PgA. )*
= (P8 3.66
@n (M T A, (3.66)

is_the natural circular frequency in heave. The heave motion is either
in-phase or 180° out-of-phase with the wave elevation at the centre plane
of the platform. When w = w,, the heave motion is infinite. This is
unrealistic and is mainly due to neglection of viscous effects. It follows
from equation (3.65) that the heave motion is zero when

wn
W=t
A (1 = Jom| @n’/g)?

— e

or cos(kB/2)=0, i.e. A=2B/2n+1) (n=0,1,2...). The highest
period where the theoretical heave value is zero is normally found from
equation (3.67). For instance, if T,=22s and |2,/ =20 m, we find the
cancellation period corresponding to (3.67) is 20.1 sec. Equation (3.65)
tells us that the heave response in beam sea in the mass—force domain is
mainly a function of the dimensionless parameters ®/w, and @, |zm!/g

(3.67)
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Fig. 3.19. Heave amplitude {7| in beam sea of the semi-submersible described

in the figure. The results presented as a function of main parameters.

(@, =27/T, = Natural heave frequency (rad/s), 2, = z-coordinate
of the geometrical centre of the pontoons, B = distance between the
centre planes of the pontoons, 7' = oscillation period, &, = incident
wave amplitude.) Infinite water depth.
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Fig. 3.20. Semi-submersible. Dimensions in metres. (G = centre of gravity).
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(see Fig. 3.19). The simplicity of equation (3.65) makes it a good starting
point for choosing main platform dimensions that minimize heave motion
for extreme weather conditions. In practical semi-submersible design
one normally wants to have the heave period above 20 s so that there is
seldom any wave energy to excite resonant heave oscillations. Stability
and requirements of load carrying capacity governs the requirement on B
and the waterplane area A,,. Thus, with selected w,, the only parameter
that will influence the heave response is the draught 2. Variation of
pontoon geometry will change As; and w, (see equation (3.66)).

Example. Heave and pitch motion of a semi-submersible in

head sea
Fig. 3.20 shows a semi-submersible with rectangular pontoons and
circular vertical columns. The dimensions are in metres. The platform is
moored in deep water. Assume the mooring system has no influence on
the motions and disregard the- effect of damping. Regular sinusoidal
waves of period 10s and amplitude 1 m propagate along the negative
x-axis. Calculate the pitch motion and the heave of the centre of gravity
G of the platform.

Solution
We disregard the coupling effect from surge. Due to the symmetry of the
submerged part of the platform, it is possible to show that the coupling
terms Ais, Ass, Cis and Cs; are equal to zero. We may write the heave
equation of the centre of gravity of the semi-submersible as

dZ
(M + As) 7+ Cssms = F) (3.68)

From strip theory it follows that
A33 = 2LA33(2D)

where L is the length and A33%™ is the two-dimensional added mass in
heave for one pontoon. A3, will be set equal to 2.3 - pA where A is the

cross-sectional area of one pontoon. It now follows that

M+ As; = PRLA + |z Ay) +2-2.3 pAL =7.59 - 107 (kg)
The restoring coefficient

Css = pgA,, = 3.16 - 10° (kg s~2)
The vertical excitation force is obtained by strip theory. We may write
A

L2 A
F3=2f (PA+2.3 pAdasdx +pp— + pp—
L2 2 2
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The first term represents the vertical force on the two pontoons assuming
no vertical columns. The two last terms are corrections because of the
vertical columns. We write the incident wave potential as

¢ = g—f}—a e** cos(wt + kx)

This means
as = —w*,e" sin(wt + kx)

where z;, = —18.5 m. In the last two terms in the expression for F,
pa= pgle™sin(we + kx,),  pp= pgl.e* sin(wt + kx,)

where z,= —15m, x; = —37.5m, x, = 37.5 m. We may now write

2
F3=—6.6pAw*E,e" . sin(kL/2)sin wt

A, i
+ > pg&.e 2 sin wt cos(kx,)

=-5.9-10°sin wt (N)

The heave motion of the centre of gravity of the semi-submersible may
now be found from equation (3.68) by substituting 75 = || sin wz. We
find

13 =0.2sinwt (m)

The pitch equation of the semi-submersible can be written as
d? .
Us+Ass) 75+ Cssns = F5(0) (3.69)

The pitch inertia moment /5 will be set equal to Ass. This is not
generally true. The pitch added mass Ass may be obtained by strip
theory and by following the definition of Ass, i.e. by studying forced
pitch oscillation 7s and the resulting pitch moment on the semi-
submersible. A strip of length dx of the pontoons will be exposed to a
vertical acceleration —x}s due to the forced pitch oscillation. This creates
a vertical force A;;*™xiisdx on the strip which again causes a pitch
moment about an axis parallel to the y-axis through the centre of gravity.
The total contribution to the pitch moment from the pontoons can be
written as

L/2
2 XA dx

=L2
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Let us now study the effect from the columns. A strip of length dz on one
of the columns will be exposed to a horizontal acceleration (z + 10)#s due
to the forced pitch oscillation. This creates a horizontal force
~A;1%P(z + 10)#js, which in turn causes a pitch moment about the
y-axis. We may write
L2 0

Ags=12 f A®Px*dx+4 | APz + 10 dz

' —L/2 -15
where AP = px10*/4 and length is measured in metres. We find
Ass=4.1-10"kgm?. Css follows from hydrostatic considerations and
can be written as

Css = pgVGMy = 2.8 . 10° kg m? s>
The wave exciting pitch moment can be written as

L2
Fs= f 6.6pAw? L. sin(wt + kx)x dx

~L12

- X % pgt.e™ sin(wt + kx,)

A
- X, 7‘" pgt.e sin(wt + kx,)

0
~2 f (z + 10)0.25pA.,
—15
+ A\ PNYw?E e cos(wt + kx,) dz
. .
-2 f (z + 10)(0.25pA,,
-15

+ A ®PYw?E ™ cos(wt + kx,) dz

The two last terms are contribution to the wave exciting pitch moment
from ‘the horizontal forces on the columns. If we neglect the last two
terms, we will find Fs= 2.3 - 108 cos wt(Nm).

By substituting 15 = |ns| cos wt in equation (3.69) it now follows that
the pitch motion is

15 = —0.008 cos wt(rad)

MINIMALIZATION OF VERTICAL SHIP
MOTIONS '
We now discuss which parameters influence the heave and pitch of the

ship. In order to do this we choose a simplified mathematical model and
consider first a ship of constant cross-section in head sea at zero Froude
number. We do not recommend the use of this model for accurate
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calculations, the intention here being to show general trends. We will use
strip theory and a long wavelength approximation for the wave excitation
loads (see equation (3.44)). The latter implies that the vertical wave
excitation load on a strip is written as the sum of the vertical
Froude—Kriloff force and a vertical diffraction force consisting of two
parts. The first part is the cross-sectional added mass in heave multiplied
by the vertical incident wave acceleration at a representative point of the
strip. The second part is the cross-sectional damping in heave multiplied
by the vertical incident wave velocity at a representative point of the
strip. It is assumed that the cross-sectional dimension is small relative to
the wavelength. By following this approach we will find that the
amplitude of vertical wave excitation force in head seas |F3|peaq s Can be
related to the amplitude of the vertical wave excitation force in beam seas

|F3|beam sea by the formula
kL
Sm( )' (3.70)

2

Here L is the length of the ship and k = 2x/A is the wavenumber of the
incident waves. Equation (3.70) shows the way that the wave loads
along the ship in head seas may counteract each other and cancel the total
wave excitation loads on the ship. Equation (3.70) implies that the heave
amplitude |73)peaq sea i head seas can be related to the heave amplltude in
beam seas |73]peam sea DY the formula

sin (kL)

l

2

Similarly we can analyse the amplitude of the pitch angle |ns|. If we
assume constant mass distribution along the length of the ship we can
write

2
|F3|head sea — |F3[beamsea kL

Mlhenden = [Msloeumsea* 3.71
N3ihead sea = N 3lbeam sea kL ( . )

12 kL
lnSlhead sea |773|bcam sea ' - T C <7>

2 (kL)’ 3.72
szzsm 5 (3.72)

The analysis of the ship at infinite Froude number becomes more
complicated. In this context we will only incorporate the important effect
of the frequency of encounter w, which is written as

2
[4})
we=w0+?°U (3.73)

Here wo?/g =2m/A =k and U is the forward speed of the ship.
Equation (3.73) is valid for head seas. If we assume the same natural
frequency at forward speed as in zero speed, equation (3.73) tells us that
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it is a larger wavelength of the incident waves that creates resonance in
heave and pitch at forward speed than at zero speed. This is illustrated in
Fig. 3.21. For a real ship form at zero forward speed the cancellation
effect on the heave wave excitation force may be dominant around the
natural frequency for heave and pitch. Due to the effect of the frequency
of encounter, the cancellation effect on the heave and pitch wave
excitation loads will be less pronounced at forward speed. The con-
sequences are increased heave and pitch at resonance within certain
limits of increasing Froude number..

From equations (3.71) and (3.72) we see that it is relevant to consider
heave in beam seas when we discuss heave and pitch in a head sea. We
will use heave at resonance in beam seas as a basis for this discussion. If
we use equation (3.45) for the wave excitation loads we find

)
[73lbeam sea = Caz-ogy—z [ B—_%D)] at heave resonance (3.74)
n3 33
Here £, is the undisturbed wave amplitude, @,; the natural circular
frequency of oscillation in heave and B3;@P is the cross-sectional
two-dimensional damping in heave. B,;;“™ is a function of w,;. In
two-dimensional problems for ship cross-sections either source techni-
ques or conformal mapping techniques are most commonly used to
calculate added mass and damping in heave. Lewis-form technique is an
approximate conformal mapping technique. We know that the Lewis-
form technique is a satisfactory method to find the added mass and
damping coefficients of most of the cross-sectional forms of ships. This
implies that the beam-draught ratio B/D and the sectional area

WAVE PROPAGATION
V=0 DIRECTION

WAVE PROPAGATION
U=10ms"! DIRECTION

A=225m

Te=18s

Fig. 3.21. Illustration to show that the frequency of encounter corresponds to
different wavelengths for zero and non-zero forward speed of a ship
in head sea. (T, = encounter period, A = wavelength, U = forward
speed.)
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coefficient o0 = A/(B - D) are sufficient hull parameters to determine the
added mass and damping coefficients. However, this is not true for bulb
sections for instance. By using results from Tasai (1959) for the added
.mass and damping coefficient in heave we can evaluate equation (3.74).
The natural frequency w,; in equation (3.74) depends on the added mass
coefficient. This means w,; will not be the same for different cross-
sectional forms of our ship. The results for heave at resonance in beam
sea as a function of beam-draught ratio B/D and sectional area
coefficient 0 = A/(B - D) = Cy, are plotted in Fig. 3.22. We can conclude
that the heave motion decreases with increasing beam—draught ratio and
increases with increasing sectional area coefficient. In reality the sectional
area coefficient corresponds to the block-coefficient for our particular
choice of ship.

From the discussion above one may be tempted to conclude that as
long as the cancellation effects of the wave loads along the ship are not
pronounced, the heave and pitch motion in head sea at resonance
decrease with increasing beam-draught ratio and decreasing block-
coefficient. On the other hand, if the cancellation effects are pronounced
we should be careful in making such a statement. The reason is that the
natural periods in heave and pitch are dependent on the hull parameters
and we will get different cancellation effects at the heave and pitch
natural periods of the different hulls. In addition the heave and pitch

LES
ga at resonance Ca |at resonance
B .
4} “ A 55~ = 0666
\
‘\ 20 B
2 0 B .
\ -—— Cg=~10 3D 1.0
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Fig. 3.22. Heave amplitude |7] at resonance of a ship in beam sea as a function
of beam—draught ratio and block coefficient. The ship has a constant
cross-section along its length. (£, = incident wave amplitude,

B = beam, D = draught, C3 = block coefficient.) Infinite water
depth.
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motion increase with increasing Froude number within certain limits.
The conclusions above are based on discussions of transfer functions.

If we combine the transfer functions with a sea spectrum it is obvious
that the root mean square values of the vertical motions will depend on
the ship length L. In addition it is expected that the vertical ship motions
as a general trend decrease with increasing ship length. We do not say
that this always occurs. This depends on the peak period of the wave
spectrum and the ship length.

The vertical motions may depend on hull parameters other than Cg,
B/D and L. Since the waterplane area coefficient Cy can be thought of
as representing the local beam—draught ratio along the ship we may be
tempted to conclude that increasing Cy and keeping draught constant
means decreasing heave and pitch motions. Based on our simplified
theoretical model it would be speculative to include any new parameters,

but we should be aware that there is no coupling between heave and

pitch in our simplified model. One reason is that we have selected a ship
model with fore- and aft-symmetry. It is known that coupling effects
between heave and pitch are of some importance. It would therefore be
logical to introduce a hull parameter characterizing the fore- and
aft-symmetry of the hull, for instance LCB-LCF where LCB and LCF
are respectively the longitudinal centre of buoyancy and floatation.

If we compare our conclusions with Schmitke & Murdey’s (1980)
conclusions from a systematic investigation of frigate hulls in different sea
states, we are in agreement about the influence of L, B/D, Cy and Cg.
Gerritsma et al. (1974) did a series of tests and calculations for regular
waves where the length, draught and block coefficient were kept
constant. The beam and the Froude number were varied. Their results
seem to be in agreement with our conclusions that heave and pitch at
resonance decrease with mcreasmg beam—draught ratio, and increase
with increasing Froude number. , %7.7% "7/

It has been reported in the lterature that the vertical ship motions
depend on the bulb, transom stern, and the pitch radius of gyration. )

Further, ships with U-form seem to have different heave and pitch
motions than ships with V-form. Our simplified theoretical model is not
able to explain this.

We should note that heave and pitch motions are not sensitive to small
changes in hull form. However, we should be careful in generalizing the
findings to relative vertical motions between the ship and the waves. The
phases of heave and pitch motions are then important in the evaluation.

3
‘

Joat
ROLL STABILIZATION
Rolling of a ship can be a problem and roll amplitudes of 30 and 40° have
occurred on ships. Large roll angles make it difficult for the crew to do



M
i
I
1
\
AY
\\

1b

FREE SURFACE TANK

tank breadth, h

U-TUBE TANK
“effective” cross—dimensional length)

(1=

mean water depth)

(b=

Fig. 3.23. Passive anti-roll tank stabilisers.
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their job. Many ships have therefore been equipped with roll stabi-
lization equipment, to avoid a strong resonance effect in roll.

The importance of bilge keels to damp roll motion is well known. The
bilge keel damping is due both to the resistance of the bilge keel through
the water and the effect of bilge keels on the pressure distribution around
the body. Empirical formulas for the bilge keel damping can be found in
Kato (1966) and Ikeda et al. (1976, 1977b). In this context we will
concentrate on describing passive anti-roll tanks as means to dampen roll
motions.

Passive anti-roll tanks
Passive anti-rolling tanks have been installed on many ships. Principles

for the free-surface tank and the U-tube tanks are shown in Fig. 3.23.
By changing the water level it is possible to change the resonance
frequency of the free-surface tank. This type of rolling tank is therefore
especially well suited for ships operating with a broad spectrum of
metacentric heights.

A major problem with anti-roll tanks is saturation. When the ship
motions become large, the water motion may hit the tank top. This
reduces the effect of the system.

In order for the anti-rolling tank to work satisfactorily, it is necessary
for the natural period of the water motion in the tank to be close to the
natural period of roll motion. Some people choose to set these two
eigenfrequencies to be equal, while others prefer to set the eigenfre-
quency for the passive tank to be 6~10% higher than the eigenfrequency
in rolling. The tank’s damping effect will be improved by an increased
ratio between the tank’s and the ship’s metacentric height. Typical
passive tanks have a ratio of 8GM1/GMr between 0.15 to 0.3, where
OGM; means a decrease in the ship’s metacentric height due to
anti-rolling ' tanks. By means of the tank’s natural period and the
metacentric height ratio §GM/GMp it is possible to determine the tank
dimensions.

The highest natural period of a rectangular free surface tank of infinite
length can be written as

Tn=27 / (%” tanh<’—;—h))i (3.75)

where & is the water depth in the tank and b is the breadth of the tank
(see equation (2.42)). This is the natural period that is most likely to be

in the vicinity of the roll natural period.
The waterdepth 4 will in practice be small compared to . We can then

write

2b
TN = —(g—h—)_% (376)
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This shows in a simple way how the tank breadth and tank depth
influence the natural tank period.

For a U-tube tank of constant cross-section A we can write the natural
period as

Ty= 2ﬂ<é>i 3.77)

where [ is a length dimension of the water, defined so that /- A is the
fluid volume (see exercise 3.6(d)).

The reason why the natural period should be selected close to the
natural period of roll motion is that the tank moment is very closely in
phase with the roll velocity and has maximum damping effect when the
tank is forced to oscillate in roll at the natural period of the tank motion.

This is also illustrated in Fig. 3.24. At the resonance of the fluid
motion a hydraulic jump is formed. The position of the jump is close to
the mid-point of the tank when the roll velocity is at a maximum. The
hydrodynamic moment due to the fluid motion inside the tank can be
calculated by noting that the fluid pressure is static below the instan-
taneous free-surface position. We note that this causes a moment against
the roll velocity. The maximum moment due to the fluid motion occurs
when the hydraulic jump is at the mid-point, i.e. when the roll velocity
is at a maximum.

We will now show how to choose the main dimensions %, b and L of a
free-surface tank in a pre-design phase. L is the length of the tank. We
choose b to be the cross-sectional beam of the ship where the tank is
going to be installed. The water depth 4 is chosen by requiring that

(TN)lank = (TN)roll

VELOCITY OF HYDRAUUC
JUMP

—_—

h—

A EEE R R IRV YYRY

b PRESSURE FORCE l

Roll motion

Fig. 3.24. Simplified picture of fluid motion in a shallow water tank at
resonance condition shown at the time instant when the roll angle is
zero and the roll velocity is maximum.
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This means (see equation (3.76)) that the water depth

_ 1 452
g (TN)fou

The length L of the tank is chosen so that 6GM/GMr is between 0.15
and 0.3. We must obviously have the hydrostatic stability requirements
in mind when we do that. In order to assess the effect of the anti-rolling
tanks accurate model tests are needed.

h (3.78)

EXERCISES

3.1 Motions and sea loads on a barge (Fig. 3.25)
Suppose a barge is a box-shaped floating body with length L =200 m,
beam B =30 m and draught D = 15 m. Assume constant mass density,
and that the barge has zero forward speed. Assume regular sinusoidal
waves that propagate along the negative x-axis, and use a wavelength A
of 300 m and wave height of 20 m. Define the velocity potential of the
incident waves as

o= gt e* cos(wt + kx)
W
(a) Show that the vertical excitation force can be written as

kL
F3={pgl.Be "’ — gA3;* ke~ *P"%} % sin<—2—>sin wt

by means of long wavelength formulas and strip theory.
Discuss applicability of this approximation and what happens

when w— 0.
Zz
| P
e
L
I ~
e ___ ~__B .
D X
14 P

Fig. 3.25. Definition of parameters and coordinate system used in exercise 3.1
for the analysis of a barge.
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(b) Use A33®™ =0.8pBD, neglect damping and show that the
heave motion of the centre of gravity is

73=4.9sin wt (m)

Discuss the heave motion relative to the incident waves with
respect to both amplitude and phase.

(c) Based on the assumptions of () and (b), show that the pitch
excitation moment is

B L) L)
ST 2%\ TR

X cos wt{e P — 0.8kDe~*P'?}

(d) Show that the pitch motion can be written as
1s = —0.15 cos wt (rad)

Discuss the pitch motion relative to the incident wave slope
with respect to both amplitude and phase.

* (e) Show that the amplitude of the vertical acceleration in the

bow (x =L/2)is 0.34 g.
(f) Show that the relative vertical motion between the barge and
the incident waves in the bow is

9.9sin wt+ 6.7 cos wt (m)

Will the barge bottom go out of the water? What must the
freeboard be to avoid water on deck?

(g) Find the vertical dynamic bending moment midships. Show
that the contribution from wave excitation loads, restoring
loads, added moment loads and inertia moment loads can be
written as respectively

1,=pgia {e™* — 0.8kDe422)
fom o~ Leo(2) LB
E R\ T2
+ cos a)t[écos(k—L>—l i (kL>]}
2%\ 7) TR
L\2 1 /IN3
I,= (-2-> prna—g(E> Bpgns

1
2
1
2

L\2 d?n, 1/L\3 d?
_1(L e M3 1 - n
L= (2) A7 de? 3 (E) A dzzs

1/L\> s 1/L 4z
b 8o o
+==12\7) PBD g7 —3\5) PBD g2
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The wave bending moment midships is given as

BM=11+12+I3—14’~2.1' 10°sin wt  (Nm)

3.2 Resonant heave motion of surface effect ships (SES)
SES (see Fig. 3.26) is an air-cushion supported vehicle where the air
cushions are enclosed on the sides by rigid sidewalls and on the bow and
stern by compliant seals. Resonance heave motion may cause excessive
vertical accelerations which are unpleasant and limit operations on board
a SES in cushion-borne condition.

(@) The resonance period of the heave motion of the centre of
gravity of a cushion-borne SES is much lower than for
monohull ships with comparable length. The natural period
for heave of the centre of gravity of a cushion-borne SES can
be approximated by

- Mhy 7P _ o 7P
Tus= Zn[yAb(po + po] - 2“[ ye(l + pa/po>] 3.79)

where y = specific heat ratio of air (=1.4)
g = gravitational constant
p. = atmospheric pressure
po = difference between cushion pressure and atmospheric
pressure
h,, = cushion plenum heighi
A, = cushion area :
M = mass of the SES

This is also the natural period for the cushion and arises from
the compressibility of the air in the cushion.

We shall show how we can derive equation (3.79). We will
neglect hydrodynamic forces on the sidewalls and the seals
and assume an adiabatic pressure—density relation for the air.
Show that for small dynamic pressure variations Ap in the air
cushion we may write the following linearized pressure—
density relation

p = pall + u/ly(1 +pa/po)]]

R |
2 A{-V 7 # 7
Ap

‘7 / \ \ _Po'*i':: /V“—"

Fig. 3.26. Surface Effect Ship (SES).
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where u = Ap/p, and p, is the air density at the pressure
pa+Do. (Hint: p = ap? where « is constant).

We will assume the air cushion is rectangular-box-shaped
and neglect air leakage and effect of fan flow. Show that the
linearized continuity equation for the air in the cushion can
be written as

dT]3 + dVW Abhb 9& _
de * de y(1+pu/po) dt

where Vy is the change in the air cushion volume due to the
waves. (Hint: Use that d(p2)/dt = 0 where Q is air cushion

volume).
Show from Newton’s law that
d2773

M e PoAou =0

Show equation (3.79) by neglecting the forcing function in the
continuity equation and by assuming the solutions for heave
and dynamic pressure to be of the form e'*.

(&) Consider a 200 tonne ship with a cushion length 40 m,
cushion beam 10 m and a cushion plenum height 2 m. Show
that 7,3 = 0.5 s if the effect of the buoyancy of the rigid
sidewalls is neglected.

(¢) Show that the ratio between T ,; in model and in full scale is
proportional to Ly /L if model tests are done with a model at
length scale ratio Ly /L (Ly = model scale length, L = full
scale length). What are the consequences of this when model
tests of heave accelerations are done?

(d) Consider a sea state with a modal period Ty = 2.5s. Assume
long-crested head sea waves and assume for simplicity one
regular wave system with period 7y = 2.5 s. What vessel
speed causes heave resonance?

(e) Ride control systems are used to damp resonance heave
oscillations. By examining equation (3.79) discuss what
additional possibilities there are to reduce the effect of
resonance heave oscillations in an operational situation.

(f) Assume the surface wave elevation is given by §, sin(w,t +
kx). Show that the wave volume pumping dV/dt =
—ApL.w, cos(w.t) sin(xL/A)/(mL/A). L = length of the air
cushion.

3.3 Vertical motions of hydrofoil catamarans
Fig. 3.27 shows an example on a hydrofoil-catamaran with four foils. At
design speed most of the weight of the vessel is carried by the hydrofoils.
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Depending on the design the buoyancy of the catamaran hulls may be
0-30% of the weight of the vessel at maximum speed.

Consider incident regular head sea waves in deep water. Define the
velocity potential of the incident waves as

Wo

‘¢ cos(w,.t — kx)

The coordinate system is defined in Fig. 3.2. Assume the wavelength is
large relative to the cross-dimensions of the foil. Neglect the hydrodyna-
mic forces on the catamaran hulls and use strip theory for the foils.
Assume quasi-steady flow when the lift forces on the foils are analysed.
The effect of the free-surface can be neglected. The lift force F,, per unit
length on a two-dimensional section of the foil will be expressed as

Fl. = 'g Clllljz

where [ is the chord-length of the foil and C, is the lift coefficient. C;,
depends on the foil characteristics and the angle of attack « of the
incident flow velocity relative to the foil.
(a) Explain that the linear dynamic lift force per unit length on
the foil can be approximated by

Fio= g % w=an lU(“"’Cae"z‘ cos(wet — kx;)
dn; dns )
—— B4 U
ar g s

where (x;, ¥, z;) is the geometric centre of the foil and & = a,
is the angle of attack of the incident flow in still water.

Fig. 3.27. Hydrofoil-catamaran.
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(b) There are additional vertical hydrodynamic forces per unit
length on the foil that can be written approximately as

773 dns>
+x—5

l 2
F3A=pn<£> <—w0weCae"z‘ sin(w.t — kx,)—

Explain this when U = 0. (Hint: Explain the contribution
from the first term in the brackets in a similar way as we did
in explaining the diffraction part of the mass term in
Morison’s equation (see equation (3.34))).

~(¢) Consider a hydrofoil-catamaran like the one in Fig. 3.27 but

with two foils. The centre of gravity is midships and the

longitudinal position of the foils are x; = £L/2. The foils are

equal and the span is s. Show that the added mass and
damping coefficients in heave and pitch for the vessel can be
written as

l 2
Az = 2:rp<§> $

B33—p— IsU

da a=ap

A35=A53=Bas=353= 0
Ass =A33(L/2)2
Bss= B33(L/2)Z

Show that the foils cause the following non-zero restoring
coefficient

dC
Cyis=—p—— do =

lsU2

Show that the vertical excitation force F3 and pitch excitation

moment Fs can be written as
I\? L
Fi= —2pn<£> sWow.Ee™ cos<k 3

dc,
+p— da

) sin w.t

L
IsUwoE 2™ cos(k —2—> COS Wt

a=ap

1\? N
Fs= —pn<£> sWow 5.6 L sm(k E) COS Wt

ldCL

L
e lsULwOCae’“" sin(k E) sin wet
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(d) Consider an example of the case presented in (¢). The vessel
mass M = 1.3 - 10° kg, the pitch radius of gyration rss =
8.9 m, the length L of the vessel is 30 m, the chord length
I =1m, the foil span s is 5 m, dC;/da = 5.5 and the ship
speed U = 25 ms™'. Assume there is some buoyancy effect of
the hulls and include the dynamic effect of the hulls only as
hydrostatic restoring terms. The total waterplane area is
30 m?. C;5 and Cs; due to the hulls are zero and Css/Cs; =
60 m?.

Consider the uncoupled equations for heave and pitch.
What are the undamped natural periods T3 and 75 for
heave and pitch? What are the ratios { of the damping relative
to the critical damping? (Hint: The critical damping in heave
is 2(M + A33)27/T5.) (Answers: T3 =4.3s, T s=5.25s, §
for heave: 1.7, ¢ for pitch: 5.3.)

3.4 Sway and roll motion of a buoy
Consider a buoy in regular incident waves in deep water. The buoy is a

~ cylinder with circular cross-section and the incident waves are propagat-

ing along the positive y-axis (see Fig. 3.28). The wavelength A is
assumed to be larger than 5 times the diameter so that the buoy does not
generate any waves of significance. Linear potential theory can be
assumed. In the figure, B means the centre of buoyancy and G the centre
of gravity. The coupled equations for sway and roll can formally be
written

d’*n,

d2
M +Az) ’“+A24 i

=F,cos wt

d2
d 2
where 17, is the sway motion of the centre of gravity. The moments are

referred to the x-axis through the centre of gravity. I, is the moment of
inertia in roll. The velocity potential for the incident waves is written as

Ap—5 2 4 U, + A44) + pgVGMn, = F, cos wt

¢= g e*® cos(wt — ky)
)
(a) Show by strip theory that
Ay =pAd, Ay = "'PAdEG

d3?
A= ~pAdBG, Au=pA( 5

Fy=2pgAt(1—e™), Fy=~2pgAL,(C + De™)

+ dBGZ>
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where
d — 1 d — 1
C= <—+B ) -, =_— -
5 G 5 D 5 BG+k

(b) Show that the natural circular frequency for the coupled
oscillation in roll and sway is

_ ( pgVGMy )5
U4+ Ag) — SMBG?

(¢) Assume a diameter D = 2 m, the draught d = 10m, BG=1m
and the height of the buoy L = 14 m. The wavelength
A =20m and the wave height is 0.5 m. The roll inertia
moment with respect to the axis through the centre of gravity
isl,=0.15ML>

(#) Show that the natural period for coupled roll and sway
motion is 12.3 s.

Wl
i
v

d/2

B
x

x
G

N

D

Fig. 3.28. Buoy (B = centre of buoyancy, G = centre of gravity).

(1) Show that.the roll motion can be written as
14 =0.012 cos wt (rad)
and the sway motion of the centre of gravity is
7, = —0.07 cos wt (m)

Discuss how the buoy sways and rolls relative to the incident
waves.

(i) Is there any point on the buoy where the horizontal motion is
always equal to zero?

(7v) Find the horizontal acceleration of the top of the buoy
(Answer: 0.59 cos wt (m s™2)).

3.5 Roll motions of ships
We will assume a beam sea and use strip theory. For simplicity we will
assume the roll motion is uncoupled from other motions. The uncoupled
linear roll equation in regular waves can be written as

d2774

(4 ﬂ-LA‘“)F

+B44%+C44174=F4 sin wt (3.80)

(a) Give a short explanation of the terms in equation (3.80) and
be precise about what moment axis is used.

(b) Assume that the damping term is due to wave radiation.
Derive a relationship between the far-field radiated waves due
to forced roll motion and B 4.

(¢c) The steady-state solution of equation (3.80) can be written as

F,sin(wt + 6;) (3.81)

Nns= 2\ 2 294
w w
el (1-(2)) +(e50) |
where
o = ( Caa )5
TN+ A
£ = ___Bﬁ‘_—- (fraction between damping and critical
2014+ Ao, damping 2(14 + A4 @n)
gl
0, =arctan ——-—2"
®
1 - @ 2



98

LINEAR WAVE-INDUCED MOTIONS

Assume the ship has a constant cross-section. Express the roll
amplitude at resonance frequency w, in terms of only B ,,@,
wn, &,y pandg.

(d) In practice viscous roll damping is important. A modified roll
equation can then be written

dn,

de

d? d d
U4+ Aw 7 + B gl + Byt

de de + C44774 = F4 sin wt

(3.82)

When equation (3.82) is solved, it is usual to linearize the
non-linear term, by introducing a linear term K dn,/dt so
that the work done over one period is the same for this term
and the non-linear term. Show that

8w
K=Bv|n4|§ (3.83)

This is called the method of equivalent linearization.

(e) If the effect of bilge keels is accounted for, this is only done in
the damping term. Give an estimate what the effect of
bilge-keels would be on the mass term by considering a ship
with constant circular cross-section and with moment axis
coinciding with the cylinder axis. Assume that the b#lge keel .
has a radial direction, zero thickness and a maximum breadth
of 2% of the beam of the ship. Neglect free-surface effects
and the curvature of the hull in the analysis of the bilge keel.

Derive an expression for the roll damping of the bilge keels
for the same situation. Use the fact that the normal force F,
onthebilgekeelcanbewrittenasF, = —0.5pCpAu |u| where
u is the velocity normal to the bilge keel as if the bilge keel
were not there. Further, A is the frontal area of the bilge keel
and Cy, is the proper drag coefficient, which can be set equal
t0 8.0 KC™3 where KC = u,,,, T/(2b) (4,5, = maximum value
of u, T = oscillation period, b is the bilge keel breadth).

(f) In an irregular sea a different linearization technique has to be
used. We cannot use equation (3.83). One can show (see
Price & Bishop, 1974) that

2\ 3
K =2(%) Byoy, (3.84)

where o, is the standard deviation of the roll velocity.

Describe briefly a procedure to find o;, and o,),.
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(g) In practice, coupling between roll and sway is important in
the case presented above. Suppose the coupling effect is
accounted for. Is it possible to find a horizontal axis on the
ship where there is no horizontal motion? (This axis is
sometimes referred to as the roll axis.)

(k) Assume that the sway, roll and yaw motions are known.
Derive an expression for the lateral acceleration in a body-
fixed coordinate system.

3.6 Fluid motion in a moonpoot
Consider a moonpool as shown in Fig. 3.29. Resonance oscillations may
occur in the moonpool. We will analyse this by using a linear theory. It is
assumed that the ship motions are known.

The figure represents a longitudinal cross-section of the ship. The
moonpool is assumed to have a constant horizontal circular cross-section
with diameter D. We will assume the water motion does not vary across
the moonpool. This means there is a constant vertical velocity dn/dt in
the moonpool, where 7 is the free surface elevation in the moonpool.

(@) Show by differentiating Bernoulli’s equation (see equation
(2.4)). that the vertical pressure gradient dp/3z can be related
to the vertical fluid acceleration by

dn__12_, (3.85)

(b) Integrate equation (3.85) from 2 = —h to 2 = 7 and show that
the following linearized equation follows

__ld9¢
T hot

&'

= (3.86)

g
+_..
h

g=—h

(¢) Equation (3.86) is like a mass—spring system without
damping. The right hand side represents the exciting ‘force’.
Show that the natural period T, of the system is

Tn=zn\/f‘ (3.87)
g .

tZ

£
hI D

Fig. 3.29. Moonpool dimensions.

SBle—
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(d) Equation (3.87) resembles the natural period for a U-tube
tank (see equation (3.77)). Consider a U-tube tank as shown
in Fig. 3.23 with constant cross-section. Follow the
procedure outlined in (a) and (b) and show that equation
(3.77) holds.

(e) We see that equation (3.86) leaves us with an infinite response
if the wave period T is equal to T,. It is likely that T will be
close to T,,. For instance if 2 = 10 m we see that T, =6 s. In
order to predict realistic values at resonance we need to
introduce damping terms. We will assume this is due to
viscous effects and write

EXERCISES I01

(b) Assume head sea waves and show that
S(wo)
14+ 2Uwe/g
How can the transfer function for heave be determined?
(c) Consider a following sea and show that
S(wy) +S(wy) S(ws)
(1 -4Uw /g (1+4Uw./g)t

when w.U/g <3. It is assumed that w, = |y~ w*U/g|.
Illustrate by a figure what the meaning of w,, @, and w; is.

SHwe) =

Swe) =

_13¢ L What is the result when w U/g>4?

2
41, g dn(dn) 8, (3.88)

a PP fdel TR Th e e,
Let us consider an irregular sea described by a sea spectrum
S(w). In this case the linearization has to be done in a
stochastic sense (see for instance (3.84) in the discussion on
non-linear roll damping). The result is

2\} ;
K= 2(;) Bpo; (3.89) |

where g, is the standard deviation of the mgonpool velocity. :
Following the definition of standard deviation applied to a
mass—spring system we can write '
2_ f ® SHw)dw
b (¢ —mw?)? + K*w?®

What do Sg, m, K and ¢ mean in this case?

Oy

(3.90)

3.7 Steering capability of a ship in following sea
Consider a ship in regular following waves in a situation where the
frequency of encounter is zero. Neglect the effect of oscillatory ship
motions and diffraction effects of the incident waves. Discuss the steering
capability of the ship by discussing the incident velocity to the rudder as
a function of the position of the waves relative to the ship.

3.8 Frequency of encounter spectrum
Consider incident long-crested waves on a ship with forward speed U.
The wave spectrum is given as S(wg). Assume the frequency of
encounter spectrum S;%(w,) of heave has been determined.
(a) Explain why the frequency of encounter spectrum S°(w.) of
the incident waves can be related to the wave spectrum by

Swe) ldw.} = S(wo) |[dwol
when there is a one-to-one relationship between w. and w,.




4 NUMERICAL METHODS FOR
" LINEAR WAVE-INDUCED MOTIONS
AND LOADS

There exist practical numerical tools based on three-dimensional
analyses that predict linear wave-induced motions and loads on large-
volume structures at zero Froude number. A wave spectrum is used to
describe a sea state and results in an irregular sea can be obtained by
linear superposition of results from regular incident waves. Panel
methods are the most common techniques used to analyse the linear
steady state response of large-volume structures in regular waves. An
example of panelling of a TLP is shown in Fig. 4.1, where a total of
12 608 panels is used for the whole structure. In general about 1000
elements would be sufficient. There exist different panel methods. One
way is to distribute sources (and sinks) over the mean wetted body
surface. Another way is to use a mixed distribution of both sources, sinks
and normal dipoles distributed over the mean wetted body surface. Panel
methods are also called boundary element methods.

Panel methods are based on potential theory. It is assumed that
oscillation amplitudes of the fluid and the body are small relative to
cross-sectional dimensions of the body. The effect of flow separation is
neglected. This means that the method should not be applied to jacket
type structures, risers or tethers. The method can only predict damping
due to radiation of surface waves. This means a panel method does not
satisfactorily predict rolling motion of a ship close to the roll resonance
period because the wave radiation damping moment due to roll may be
small and viscous damping effects due to flow separation are
important. Another case where panel methods fail to give physically
correct answers and viscous effects are important is in predicting vertical
forces on a TLP in extreme wave situations in a frequency region where
small excitation loads occur. This happens in general in a period range
between 15 and 20 s. and is important in establishing design loads for the
tethers of a TLP. The reason for the small forces was discussed in
connection with equation (3.41). The vertical hydrodynamic forces at the
intersection between the pontoons and the columns counteract the
hydrodynamic forces on the pontoons. Since the hydrodynamic forces
due to potential flow effects become small other physical effects are
important. In this case viscous effects matter.
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SOURCE TECHNIQUE
We will discuss the source technique in detail and start by repeating what
a source is. A source is a point from which fluid is imagined to flow out
uniformly in all directions. If the total flux outwards across a small closed
surface surrounding the point is Q, then Q is called the ‘strength’ of the
source. A negative source is called a ‘sink’. We will from now on use the
word source both for sources and sinks.
The velocity potential at any point P, due to a three-dimensional point
source, in a liquid at rest at infinity, is

¢ = —Q/(4nR) “.D

where R denotes the radial distance of P from the source point. This
gives a radial flow from the point and if ds is an element of a spherical
surface having its centre at the source, we have the velocity flux through
the spherical surface as

” a¢ds-4—§34 aR*=Q ) 4.2)

In two dimensions the expression for the velocity potential due to a

11
+

Fig. 4.1. Submerged portion of one quadrant of a six-column TLP discretized
with 3152 panels per quadrant (12 608 panels for the total structure)
(Korsmeyer et al., 1988.)
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point source is

¢ =%logr (4.3)

where r is the radial distance from the source point and ‘log’ means the
natural logarithm.

We note that the source expressions are infinite at the source points.
However, if we use a continuous representation of sources over a surface
the velocity will be finite everywhere in the fluid, except at sharp corners
on the body. We will first explain the source technique for a simple
problem. We consider a circular cylinder in infinite fluid and we want to
find the heave added mass. The boundary value problem we have to
solve is partly formulated in Fig. 3.3. The differences are that there is no
free-surface and the body boundary condition (3.12) applies for all 8,
ie.

a—(f= —cos @nslwcoswt for r=Rand —m<B<ax
4.4

We will find the velocity potential by distributing sources over the
body surface. That means we write

$0,2)= [ qOIogy = n©P+ G- LD @)

Here (5(s), {(s)) are coordinates on the body surface, s is an integration
variable along the body surface and (y, z) are coordinates in the fluid
domain.- The integration is over the wetted body surface S and g(s) is a
source density. (Strictly speaking we should have divided the right hand
side by 2 if we call ¢g(s) a source density.) Equation (4.5) satisfies the
Laplace equation. The source density g(s) is found by satisfying the body
boundary condition (4.4). This can be done numerically by the following
1. Approximate the body surface into N straight lines
This is shown in Fig. 4.2 where we have used 16 segments
2. Assume the source density is constant over each segment
This means we approximate equation (4.5) by a sum over
each element, i.e.

o=a, L log((y ~ ()Y’ + (= — £} ds

+...

+ais [ 108y~ m(+ 2 — L) ds 4.6)

16
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3. Satisfy the body boundary condition (4.4) on the mid position
(;, &) of each segment
This is done by first normalizing the source density. The
purpose of the normalization is to separate out the time-
dependence and the unknown heave motion. We write

g(s) = —4(s) [ns| w cos wt 4.7)

which expresses the fact that the source density is either
in-phase or 180° out-of-phase with the heave velocity. The
following linear equation system can be set up for the
unknowns §; for each element

(2 6] rvad2] ol

; on s, V1,21
? = CO0S ) I)—’I:EI
: : 4.8)
|5 L 0] 5
— ds +... .+ G|l — [ 1ds
q‘[an sl[ ] 516216 “Lan S16 F16:Z16
= cos 8 I)—'le,z'le

" The brackets in the integrals are log((y — n(s))> + (z — £(s)))?
and the normal derivative 8/3n is the same as 3/3r. When we

%2, (%5.2,5)

(Y, .Z,)
e (a6 +Z16)
% %) (9.2
¥, 2 (9,2,

y5 25! {y,.2,)

Fig. 4.2. Approximation of a circular cross-section by straight line segments
to be used in numerical solutions with the source technique.

((3;, £) = midpoints of segment S,).
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differentiate with respect to n, we should realize that it is y
and z that are variables. It means that # = n(y, 2) or that
d/dn=mn, 3/3y + n;3 3/8z. Here n, and n; are the y- and
z-components of the normal vector n to the body surface. In
the case of a circular cylinder n, =sin 6, n; = —cos 6 (see
Fig. 3.3). Equation (4.8) means we have to solve an equation
system of the form

where both 7 and j run from 1 to 16. The coefficient matrix in
equation (4.9) consists of what we can call influence
components. That means if element j has source density 1, it
will induce a normal velocity equal to A;; in the midpoint of
element 7. The total normal velocity at this point is the sum of
contributions from each element, and can be expressed by

121 A;g;. In order to satisfy the boundary conditions this
sum shall be equal to the prescribed normal velocity B; at
element i.

. A normalized velocity potential ¢ defined by

¢ =—¢ |ns| o cos wt (4.10)

can now be determined from (4.6), (4.7) and the solution Jis
J =1, 16 found from (4.8).

. The pressure part that determines the added mass can be

found from calculating

2 _
p==p22=—p Ins| ’sin wr 4.11)

. The resulting vertical force can be found from

16 .
Fy= __f pnyds ~ _{p > [f @ cos @ ds]}wz (73] sin wt
S F=1 LIS,
4.12)

By using the definition of added mass and damping (see
equation (3.11)) it follows that the two-dimensional added
mass in heave can be written as

16
Ay =—p > [ f @ cos 6 ds] (4.13)
j=l SJ‘

and B3;%™ =0 in the infinite domain case.
The integrals in (4.6) and (4.8) can be analytically

“determined. We will show how this can be done by studying

the influence from a source distribution along a segment of
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the y-axis between 0 and 1. That means that we study

1
B0 2)= [ log(y =¥+ sk dn (4.14)
1]
The corresponding velocity can be written
1 - 2 2
9¢_ [ O-—mdn 1. y.+zz i @.15)
& s (y-nl+z 2 T (-1+z
! -1
§(—P= —z—dzn.—2= -2 [arctgj—}-——arctgl] (4.16)
8z Jo(y—m)+z |2 |2] [z

"The vertical velocity 8¢/3z is plotted in Fig. 4.3 along the line y = 3.

Far away from the segment we see that the behaviour is similar to a
source singularity in (0, 3). However, close to the segment the behaviour
differs, and we see that 3¢/3z—> s when z is approaching a point on Fhe
segment from positive values. We translate this information to equation

8y
0z " source
ok distribution
= 1
N ‘r—Slngle source approximation
M+ \
\
\
2
&
o
A

-2.000

1
2

z

4,000 -2800 0%0 27000 4000

1-4000

Fig. 4.3. z-variation of the vertical velocity 3¢/8z induced aty = 1duetoa
line distribution of two-dimensional sources of constant strength 27
distributed between y =0 and y = | on the y-axis.
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(4.8) by considering the coordinate system used in equation (4.14) as a
local coordinate system for each element. This means that the normal
velocity on an element induced by the element itself is equal to 7.
Another way of saying this is that the diagonal terms A; in equation
system (4.9) are all equal to 7.

From equation (4.15) we note that 8¢/8y — = at the end points (0, 0)
and (0, 1) of the segment. This is not a physical phenomenon. It is a
consequence of approximating the body by straight line elements and
assuming that the source density is constant over each element.
However, it illustrates that care should be shown when evaluating fluid
behaviour in the vicinity of the body.

Symmetry and antisymmetry properties

It is possible to reduce the equation system (4.8) by considering
symmetry properties of the source density. The source density is
symmetric about the z-axis because the body is symmetric about the
z-axis and is forced to oscillate in heave. This can be shown by noting
that the flow is symmetric about the z-axis, i.e. that the y-components of
the velocities induced by two sources symmetric about the z-axis have to
cancel each other along the z-axis.

Equation system (4.8) can be further reduced by using the fact that the
source density is antisymmetric about the y-axis. The reason is that the
body is symmetric about the y-axis and is forced to oscillate in heave.
Along the y-axis there is only a vertical velocity component. This means
the velocity potential is a constant along the y-axis. By setting this
constant equal to zero, we see from (4.8) that the source density has to be
antisymmetric about the y-axis in order for the velocity potential to be
zero along the y-axis.

By using symmetry and antisymmetry properties we have been able to
reduce equation system (4.8) from a 16 X 16 system to a 4 X 4 equation
system. Even if we only satisfy the boundary condition for four points,
we must remember to calculate the influence of all 16 segments on each
of the four points when we set up the equation system.

In the problem studied above it is not necessary to use a source
technique. The velocity potential is well known and can be written as

2

R
¢ = |n3| @ cos wt—r—cose 4.17)

However, analytical solutions cannot be found for general body shapes
and numerical methods are then necessary.

One may wonder how equations (4.5) and (4.17) could represent the
same solution. For instance, when r— o, ¢— 0 according to equation
(4.17). It is not evident that equation (4.5) has a similar behaviour.
However, this can be shown by using the fact that the source density is

SOURCE TECHNIQUE 109

antisymmetric about the y-axis and that the distance away from the body
is large compared with the cylinder radius. Let us show this by
considering two source elements on a body that is symmetric about the
y-axis. We can write their contribution to the velocity potential as

q(s) dsflog((y — n(s))* + (z — E(s)*
—log((y = n()* + (= + LD (4.18)

The term in brackets can be expanded in a Taylor expansion about
n =0, { =0 by considering the field point (y, 2) to be fixed and n and ¢
to be variables. We find the following expression

[log(y* + 2%)t — log(y* + 22)7]

-y -y -z 2 ]
+ ————— —— e
n[y2+zz yz+z2]+c[y2+z2 2+ 22
+...==228/(*+2H+ ...

Since r = (y* + %)} is assumed large and ¢ is small relative to 7, the rest
of the terms in the Taylor expansion are negligible relative to
—238/(y* + 3%). By.using 3 = —r cos 6, we find that (4.18) can be written
cos 0
r

28(s)q(s) ds
This is of the same form as (4.17).

Three-dimensional source technique with wave effects
We will show how source technique can be used to analyse linear
wave-induced motions and loads on large-volume structures. A ship will
be used as an example, and we will start out showing how to find the
added mass and damping in heave. It is assumed that the ship has zero
forward speed.
The velocity potential ¢ is determined from the following equations:

_81) N ﬁ 222 —0 in the fluid domain

= 4.19
x? 3yt 32 onz=0 (4.19)
9¢ outside the mean position

—? - 4.20

w¢tg dz 0 of the ship surface ( )
3¢ —n, dns; on the m‘ean position @.21)
on dt  of the ship surface
9 0 on z=-h for finite water depth
9z (4.22)

[Vo¢|—0 when z— —o for infinite water depth
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Radiation condition 4.23)

Equation (4.19) is the three-dimensional Laplace equation for the
velocity potential. Physically it means that the flow is incompressible and
irrotational. Equation (4.20) is the classical linear free-surface condition
for steady-state harmonic oscillatory motion of circular frequency w (see
equation (2.15)). Equation (4.21) is the body boundary condition which
ensures no flow through the body surface. The unit normal vector
n={(n,, n,, n3) to the ship surface is defined to be positive when pointing
into the fluid domain. The bottom condition (equation (4.22)) says that
there is no flow through the sea bed. The radiation condition (equation
(4.23)) has not been written in mathematical terms, but physically it is
necessary to ensure that the waves propagate away from the ship. It may
not be obvious a priori why we need a radiation condition. However, in
deriving the details of the mathematical solution we will find an ambiguity
if we do not enforce the radiation condition. Mathematically there is a
possibility both for outgoing and incident waves, but the latter is
impossible from a physical point of view. An example of an outgoing
wave system in three dimensions and deep water is

kz

¢ ~ % sin(kr — wt + €) (4.24)

Herer=(y?+2%}isa large horizontal distance from the body. If we had
written sin(kr + wt + €) instead of sin(kr — wt + €) we would have had a
circular incoming wave system. We note that ¢ and therefore also the
wave amplitude decays like 1/Vr far away.

It is possible to show that the solution to the boundary-value
problem can be represented by a distribution of sources over the mean
wetted hull surface. However, the source potential is not the same as we
used in infinite fluid, i.e. equation (4.1). The potential has to be
corrected so that (4.20), (4.22) and (4.23) are satisfied. Obviously the
correction has to satisfy the Laplace equation. The strength of the source
density is found by satisfying the body boundary condition (4.21).

For infinite water depth Havelock (1942, 1955) has shown that the
source potential can be written as the real part of

—iwt _ l _1_
G(x,y,Z, E; n, C)e _[R+Rl

Ko(kr)
B2+ 2

—ﬂfw[v cosk(z + &)~ ksink(z + &)] dk
T J

=2aver oY o(vr) + i27rvev(z+9]0(vr)]e““" 4.25)
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where i is the compléx unit and
R=((@x—=E+(—n)+(@— M
R'=(x=&*+(—n)+@=+ M
r=((x— & +(y—nH

wZ

=2
g

We should note that the expression is the same if we simultaneously

interchange x with &, y with n and 2z with £.

Further, ¥, is the Bessel function of the first kind of zero order; Y, is
the Bessel function of the second kind of zero order; X, is the modified
Bessel function of zero order, (see Abramowitz & Stegun, 1964). Other
ways of writing the source potential can be found in Wehausen &
Laitone (1960: pp. 475-9), together with expressions valid for finite
water depth. Efficient ways of calculating these sources have been
derived by Newman (1985). We can show that equation (4.25) satisfies
the radiation condition in the form (4.24) by using asymptotic expansions
for Bessel functions for large r-values (see Abramowitz & Stegun, 1964).
We can write

Re{(—Yo(vr) + ifo(vr))e ™}
PYRE
A

() sin(om—a-3)
= —|—] sin|vr— wt ——
avr 4

where Re denotes the real part. This term is order of magnitude r~# (i.e.
O(r"%)) for large values of r. We easily see that the two first terms in the
brackets in equation (4.25) are O(r™") for large values of r. Since K|, is
exponentially small for large r and the integrand is always finite, the third
term in the brackets can be shown to be negligible compared with the
last two terms. This means we have shown that the source potential
represents outgoing waves far away from the source point. It is als'o
possible to show that the free-surface condition (equation (4.20)) is
satisfied. Fig. 4.4 shows a picture of the wave system caused by a source.
It is possible to show from equation (4.25) that

Ge—iau_> [Flé +I%’_]e—iwz when w—0 (4.26)
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and
G —iwt 1 1 —iwe
e " — E——k;]e when w-—o (4.27)

The latter means that the integral in (4.25) approaches —2/R' when
W — o,

Equation (4.26) expresses the source potential as a combination of a
source in infinite fluid and an image source above the free-surface when
w—0. (To be precise 1/R is actually a sink with density 47 (see
equation (4.1)). However, we use the word ‘source’ for 1/R in this
context.) This confirms that the velocity potential satisfies the rigid wall
condition 3¢/3z =0 on z =0 when the frequency of oscillation goes to
zero. This is illustrated in Fig. 4.5.

Equation (4.27) expresses the fact that the source potential is a
combination of a source in infinite fluid and an image sink above the
free-surface when w— . This expression satisfies the free-surface
condition ¢ =0 on z = 0. This is illustrated in Fig. 4.6. The solution of
the velocity potential for the forced heave problem can be written as a
distribution of sources over the mean wetted hull surface Sg as

PCy, 25 6= Re{ f f dsQ()G (x, 3, 25 §(), n(s), C(s))e‘i"”}
Sy
(4.28)

where the source function Ge™"** is given by equation (4.25) for the

Fig. 4.4. Picture of the wave field caused by a harmonically oscillating source
with zero mean speed.
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infinite water depth problem. Ge™'** is also called Green function. The
source density Q(s) is complex with a real and an imaginary part and is
found by satisfying the body boundary condition. This is done by first
introducing a normalized source density O(s) so that

Q)™ = () [ns] e7* (4.29)

The purpose of the normalization is, as before, to separate out the time
dependence and the unknown heave motion. The body boundary
condition leads to an integral equation for Q(s) which in general we are
not able to solve analytically. What we do is to discretize the problem by
dividing the hull surface into elements, over which we assume the source
density is constant. Fig. 4.7 shows an example of how a ship hull surface

*IMAGE SOURCE
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~

///\J .
e
xSOURCE

Fig. 4.5. Illustration that a wave source satisfies the rigid wall condition on the
free-surface when the frequency of oscillation w— 0. The wave
source consists of a source in infinite fluid and an image source. The
field point is in the mean free-surface. The solid line that is in the
same direction as the dashed line from the source point shows the
velocity vector due to the source. The velocity vector due to the
image source is illustrated in a similar way. The vertical solid lines
are the vertical components of the velocity vectors.
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Fig. 4.6. Illustration that a wave source satisfies the zero potential condition
on the free-surface when the frequency of oscillation @ — . The
wave source consists of a source in infinite fluid and an image sink.
The field point is in the mean free-surface. The solid line that is in
the same direction as the dashed line from the source point shows
the velocity vector due to the source. The velocity vector due to the
image sink is illustrated in a similar way. The horizontal and vertical
solid lines are respectively the horizontal and vertical components of
the velocity vectors. The total horizontal velocity is zero on the
free-surface, which means the velocity potential is a constant on the
free-surface. The constant is chosen to be zero.
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can be approximated by plane quadrilateral elements. The number of
-elements N is 810 in this case. The discretization of the problem leads to
a linear equation system for the unknown source density in a similar way
to the forced heave problem for a circular cylinder in infinite fluid. The
differences, which we will point out, are

1. The source density is complex in the wave problem.
Physically it means that the source density is generally not
in-phase or 180° out-of-phase with the heave velocity as it is
in an infinite fluid problem (see equation (4.7)). This means
there are N real and N imaginary unknowns or N complex
unknowns if the body is approximated by N elements and no
symmetry and antisymmetry properties are accounted for.
Symmetry and antisymmetry properties can be accounted for
in a similar way to the two-dimensional problem. This means
the equation systems written in complex variables are reduced
o N/2X N/2 or N/4 X N /4 with respectively one or two
symmetry planes.

2. The source expression is far more complicated to compute
numerically in a wave problem compared with an infinite
fluid problem (see equation (4.25) compared to equation
4.1).

3. The normal velocity induced on an element by a source
distribution over the same element is different in a two-
dimensional and a three-dimensional problem (see exercise
4.1). We find

B RO OO L
=2 (4.30)

Here (%;, ¥;, 2;) is the geometrical area centre of element S;.
4. A solution may not exist for all frequencies if the potential is
represented as a distribution of wave sources over the body
surface, For a surface piercing body there exist an infinite
number of discrete frequencies (érregular frequencies) that
cause the three-dimensional source technique to break down
(John, 1950). The assumption in John’s analysis is that no
point of the immersed surface would be outside a cylinder

quadrilateral elements. Total number of elements is 810.
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drawn vertically downward from the intersection of the body
with the free-surface, and that the free-surface would be
intersected orthogonally by the body in its mean or rest
position. A ship without a bulbous bow will for instance
normally satisfy this assumption. However, it is possible that
John’s analysis applies to a broader class of bodies than he
restricted himself to. John shows that the lowest irregular
circular frequency w, satisfies w,(D/g)? = 1.0, where D is the
draught of the structure. If we translate this to a ship at zero
forward speed it means that we are sure there are no irregular
frequencies when A/L > 2z D/L where L is the ship length.
In practice the irregular frequencies do not represent a serious
problem for analysis of ship motions at zero forward speed.
The wavelengths of importance in predicting ship motions are
not in a range where irregular frequencies occur. For a
vertical cylinder standing on the sea bed and penetrating the
free-surface, the wavelength corresponding to the lowest
irregular frequency for surge and heave is respectively 0.82D
and 1.31D with D being the diameter. In practice, the
solution will also.be unsatisfactory in the neighbourhood of
the irregular frequencies.

We must emphasize that the irregular frequencies are not
caused by any physical phenomenon. Therefore if a different
technique is used, a solution may be found at the irregular
frequencies for the source technique. An example of a
different technique is a purely analytical solution. This exists
in very special cases, for instance to calculate the wave loads
on a fixed vertical cylinder standing on the sea bed and
penetrating the free-surface (McCamy & Fuchs, 1954).

Irregular frequencies in the source technique represent
eigenfrequencies for a fictitious fluid motion inside the body
with the same free-surface condition as outside the body and
the body boundary condition ¢ = 0. In general it is difficult
to find the eigenfrequencies analytically before one solves the
exterior physical problem. The word fictitious for the interior
flow is stressed. The flow is not a physical ‘sloshing’ motion.
In the sloshing case the body boundary condition would be
d¢/n = 0. However, to get an idea what the irregular
frequencies might be we should have the sloshing modes in
mind. For a submerged body no irregular frequencies exist.

What is happening mathematically at an irregular
frequency is that the determinant of the coefficient matrix in
the linear equation system for the unknown source densities
goes to zero when the number of unknowns goes to infinity.
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Lee & Sclavounos (1989) have presented a practical way to
avoid the problem of irregular frequencies. If no attempts are
made to get rid of the irregular frequencies, they may be
difficult to detect if few frequencies are used in the
calculations. Even if many frequencies are used, the irregular
frequencies may be difficult to detect in special cases. An
example of this is calculation of added mass and damping for
a catamaran. In this case the strong physical interaction
effects between the hulls can be mixed up with irregular
frequency behaviour.

. Panelling of the hull surface

The panelling of the hull surface is often done by plane
quadrilateral elements in three-dimensional problems. Details
of how to create plane quadrilateral elements mathematically
have been presented by Hess & Smith (1962). Dependent on
the body shape the panels may create ‘leaks’ through the body
surface. The reason is that the panels do not fit together. This
may disturb a practical maritime person, but has no serious
consequences for the physical description of the fluid. The
condition of no flow through the hull surface is satisfied at the
geometrical area centre of each panel and nothing is required
about the fluid behaviour at the edges of elements where
geometrical ‘leaks’ between the elements may appear.

There is no unique way to approximate the hull surface by
elements. However, one should keep in mind that one
assumes the source density and the fluid pressure to be
constant over each element, Therefore one should keep
smaller elements in areas where the flow changes more
rapidly. An example of the latter is in the vicinity of sharp
corners. It should be realized that the numerical solution for
velocities never is satisfactory on the element closest to a
sharp corner. The reason is that the potential flow solution
has a singularity there, and that this is inconsistent with
assuming the source density and velocity potential to be
constant over an element. In reality the flow will separate at a
sharp corner. This effect is not included in the method. In the
wave zone the element size should be small compared to the
wavelength. A characteristic length of an element ought to be
at most & of the wavelength. Around a vertical column with a
circular cross-section there ought to be 15~20 circumferential
elements at any height. If there is a conflict between these two
recommendations, the more conservative is required.

The body boundary condition is often satisfied on the
geometrical mid-point. The elements must not be selected so
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that any element mid-points are very close to the edges of
another element. The reason is that induced velocities from
an element are singular at its edges (see similar discussion of
induced velocity from a source element in two-dimensional
flow). Problems like this may happen for very thin bodies or
for small gap problems.

Typical values for the total number of elements may vary
from 500 to 1500. However, Fig. 4.1 shows an example
where 12 608 panels were used. This requires iterative
solutions of the linear equation systems for the source
densities in order to be within practical limits of CPU time on
available computer hardware. The best way to find a sufficient
number of elements, is to do calculations with increasing
numbers of elements and check convergence of the results.

The solution procedure that we have set up can be generalized to any
modes of motion, i.e. to surge, sway, roll, pitch and yaw motion (see for
instance Faltinsen & Michelsen, 1974). This means we can find the
added mass and damping matrix. We may also solve the diffraction
problem by using the body boundary condition d¢/dn = —(3¢"/an)
where ¢! is incident wave- potential. This enables us to find the wave
excitation loads, i.e. wave excitation forces in surge, sway and heave as
well as wave excitation moments in roll, pitch and yaw. We can then set
up the equation system for solving motions in six degrees of freedom (see
equation (3.47)). When the motions are found, we may calculate flow
details by using the expression for the velocity potential in terms of a
three-dimensional source distribution. The free-surface elevation can be
evaluated by using the free-surface condition

¢

+.__._
gt 3 |

=0 4.31)

By Bernoulli’s equation it follows that the dynamic pressure is
p = —p 3¢/ 3t at the mean position of the body. When we calculate the
dynamic pressure at the hull for one particular time instant, we should
include the hydrostatic pressure —pgz and take into account that z is
changed due to the vertical rigid body motion of the hull. Note,
however, that it is consistent with linear theory to evaluate d¢/ 3t at the
mean position in the calculation of the pressure. Care should be shown in
evaluating velocities close to the body. One reason is that the velocities
are singular at the edges of the element. Experience has shown that one
has to be of the order of a characteristic element length outside the body
in order to always obtain satisfactory estimations of fluid velocities.
Further, the velocity potential should not be evaluated at places on the
element other than at the geometrical area centre.
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Source methods have been used in practical calculations of wave loads
on large volume offshore structures for about twenty years. However,
recent comparative studies performed by ISSC and ITTC have shown
large variations in results by different computer programs with the same
theoretical foundation. Causes of differences can be grid shape, size and
distribution, geometry approximation, singularity density distribution
over each panel, Green function calculation, and how singularities are
integrated over panels. However, a well documented source method
represents a valuable tool in engineering analysis of offshore structures.

ALTERNATIVE SOLUTION PROCEDURES
It is not necessary to use plane quadrilateral elements and assume

constant source density over each element. A different procedure is to
use triangular elements and assume a linear variation over each element
(Bai & Yeung, 1974). This has the advantage of obtaining a better
approximation of the hull surface. The body boundary conditions are
satisfied at the vertices of the elements, which requires special care.

There exist panel methods other than the source technique. One
method uses Green’s second identity which states

”f(‘l’vz"’ ‘/"724’)‘1"” (w———«p ) (4.32)

where S is the surface enclosing the fluid volume Q. It is necessary that
¢ and v have continuous derivatives of first and second order in Q. The
normal direction 7 is into the fluid region.

Example 1
If V% =0 and V¢ =0 everywhere in the fluid domain it follows from

equation (4.32) that

[[(+32-o 2o

Example 2
If V2¢ =0 everywhere in the fluid domain,

w<x,y,z X191 20 = {@& —x, 2 + (v — 3,2+ (2 — 2)")
(4.34)

and the point (x;,y;,2,) is inside the fluid volume (see Fig. 4.8), we
have to be careful how we handle the singular point (x;,%;,2) in
equation (4.32). We note that y is the velocity potential for a source of
strength —4s with a source at point (xy,y;,2,). Outside the singular
point 1 satisfies the Laplace equation. Equation (4.33) applies therefore
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if we integrate over-S +8,, ie.

”( Yo" ”’)d =0 (4.35)

S5+5,

where S, is the surface of a sphere with small radius r enclosing the point
(%1, %1, 21). At S, we can write 3y/on = 3y/dr=—1/r%, i.e.

_fj¢%%dsz4nr2(—%)¢(x,,yl,zl) | \‘ (4.36)
o

ff—wd8~ (4.37)

That means we can write the velocity potential in three-dimensional flow

as
amgei v 2= [ [ [0 2 (%) —%-a—‘gf—)] & (438)
S

Here S has to be a closed surface. If we apply the formula to the wave
load problem, the surface S consists of the mean body surface Sy, a
vertical circular cylindrical surface S, away from the body, the mean free
surface Sg and sea bottom S, inside S.. (see Fig. 4.9). Equation (4.38)
states that the velocity potential can be represented by a distribution of
sources R™! (also called Rankine sources) and dipoles (8/8n)(1/R) over
the closed surface S =Sg+Sp+S.+So. In the differentiation
(8/8nX1/R) = 8/3n[(x — x>+ (y —y)* + (z — 2)]77 it is x, y and 2
that are considered as variables. The dipole density on § is given by
¢(s) and the source density is given by 3¢/on.

0\(?/09 Y1.2y)
S

1

Fig. 4.8. Integration surfaces used in applying Green’s second identity.
((x,, ¥, 2;) = singular point of equation (4.34).)
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One has to be careful when (x,,¥;,2;) is at the boundary S. The
“reason is the integration (8/8n)(1/R) in the vicinity of (x;, ¥, 2;). One

often sees that the factor 4 on the left hand side of equation (4.38) is
replaced by 27 when (x,,¥;,2;) is on S. This takes care of the
contribution of the integration of (8/8n)(1/R) in the close vicinity of
(X1, 315 21)-

Equation (4.38) is a formal representation of the velocity potential. In
addition boundary conditions and radiation conditions have to be
imposed (see for instance equations (4.20) to (4.23)).

The infinite fluid source 1/R and dipole (3/dn)(1/R) in equation
(4.38) can be replaced by a source and a dipole satisfying the free-surface
condition (equation (4.20)), the bottom condition (equation (4.22)) and
the radiation condition. The source expression in infinite water depth is
given by equation (4.25). If this is done it is possible to show that
equation (4.38) is reduced to a distribution over the body surface Sg.

SF

. -

S0

Fig. 4.9. Integration surfaces used in connection with a Green’s second
identity representation of the velocity potential in terms of a
distribution of Rankine (infinite fluid) sources and dipoles. The
surfaces are the mean wetted body surface Sy, a vertical cylindrical
control surface S.. extending from the mean free surface to the sea
bottom, the mean free surface Sy and sea bottom S, inside S..
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We can show this for deep water by defining
Y, ¥, 2%, 51,20 = { [ =%+ (v =y +(z— z))1]7
+f(x;y) 23%15Y15 zl)}e—iwt

=Gx,y,25%1, 51, 21)e

where the source potential is given by equation (4.25). We start out with
equation (4.35). Since f is regular everywhere in the fluid, it does not
contribute to the integral over S, when r— 0. This means

1) .
[[ 5% s = gt 31, 206

On the mean free-surface Sy we can write

[[(622-52)am [ (1202

—%21!<w¢—¢w>ds=o

We have here used the fact that ¢ and ¢ satisfy the same free-surface
condition. '

On S.. far away from the body both ¢ and v represent outgoing waves
as in equation (4.24). We can then show that the integral over S.
disappears. At the surface S, far down in the fluid there is no disturbance
and therefore no contribution from the integration over S,. The total
result is that we can write

1 3 '
¢(xl:yl:zl)=E;J'J' (¢‘ég_Gz_i)>dS (439)
Sp
This type of representation of the velocity potential is used by Newman
& Sclavounos (1988) where more details about the solution procedure of
the unknown velocity potential on the body surface may be found.

The representation of the velocity potential in terms of infinite fluid
sources and dipoles has a great advantage when the free-surface
condition is so complicated that it is not possible to find an analytical
expression for the wave source that satisfies the free-surface condition.
An example of this is if the completely non-linear free-surface conditions
are used. However, a disadvantage with having a representation like
equation (4.38) with unknown velocity potential distribution over Sg,
Sk, Sw and Sy is that it will lead to a large equation system for solution of
the unknown potential distribution. A better way is to use a hybrid
technique, where an analytical expression is used outside S., and S is
kept as close as possible to the body surface. This was used by Zhao et
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al. (1988) in studying wave—current interaction on large volume
structures. In this case it was not possible to find an expression for a
wave source that satisfied the free-surface condition close to the body.

We have only mentioned boundary element methods above. A
different approach is to use a finite element method in combination with
the analytical representation outside S, (Mei, 1983). Yeung (1982) has
given a review article on numerical methods applicable to wave—body
interaction problems.

FORWARD SPEED AND CURRENT EFFECTS
When a ship has forward speed or there is a current present around a
structure, the free-surface condition (4.20) does not apply. We will
derive the correct form in the following text.

The velocity potential ¢ can be separated into two parts; one is the
time-independent steady contribution due to the forward motion of the
structure and the other the time-dependent part associated with the
incident wave system and the unsteady body motion. We will use a
reference frame moving with the forward speed of the structure. It is
assumed the incident wave amplitudes are sufficiently small so that linear
theory applies for the unsteady wave effects. We can formally write

D(x, v, 23 1) = [Ux + ¢po(x, 3, 2)] + pr(x, 3, 2)e 7 (4.40)

Here Ux + ¢, is the steady contribution with U being the forward speed
of the ship. Physically, Ux + ¢, describe the steady flow including the
steady wave pattern created around a ship. Further, ¢t is the complex
amplitude of the unsteady potential, and w, is the circular frequency of
encounter in the moving reference frame. It is understood that the real
part is to be taken in expressions involving e ™.

The free-surface conditions state that the pressure is equal to
atmospheric pressure on the free-surface and that a particle on the
free-surface remains on the free-surface (see chapter 2), Bernoulli’s
equation (see equation (2.4)) is used to calculate the pressure p, i.e.

e 5[5+ (5) +(B)]-
p+p8[+pgz+2 m + o + % =C  (4.41)

The constant C in the equation is chosen as the value of the left hand side
far away from the body, where there is no free-surface elevation and
O = Ux, i.e.

c=Lur+p, ' (4.42)

Nlb

By neglecting the interactions with the steady velocity potential ¢, we
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can write the linearized dynamic and kinematic free surface conditions as

gc—lwe¢T+UJ’——o on z2=0 (4.43)

35 3¢T

Of+U=2-—"L=0 on z=0 (4.44)

Here Ze™i*¢ is the unsteady wave elevation. Equations (4.43) and (4.44)
can be combined to

[<—ia) +U—§>2 8] 0 o 0 4.45
e ax 82 ¢T— n z= ( . )

A wave source satisfying equation (4.45) and the radiation condition
give a wave picture that is strongly influenced by the forward speed. In

. the zero speed case there is only one wave system generated by the

source (see Fig. 4.4). The wave system generated by a source at forward
speed is more complicated than in the zero-speed case. There are several
different wave systems. Let us show this with two examples for the deep
water case. One case is for T = w.U/g <} and the other case is for 7>}
(see Figs 4.10 and 4.11). When 7>} there is no far-field wave effect
straight ahead of a translatory harmonic oscillating source. Mathematical
expressions for the sources may be found in Wehausen & Laitone (1960:
pp. 490-5). Figs. 4.10 and 4.11 give crest numbers associated with the
different wave systems AA, D1, D2. There are two crest numbers given
and two ‘crests’ shown for each wave system. What we call ‘crests’ are
of course only real crests for specific time instants with periodic intervals.
The difference between the two wave crest numbers for each wave
system gives how many ‘crests’ there are between the two ‘crests’ which
we have shown for each wave system AA, D1, D2. For instance, in Fig.
4.10 there are (138 — 92) = 46 ‘crests’ between the two ‘crests’ shown for
the wave system AA. For each wave system we may have both divergent
and transverse waves. The latter notation is commonly used for the two
types of waves we see behind a ship in steady forward motion in calm
sea. Fig. 4.12 shows an example of numerical calculated diffraction
waves at one time instant around a restrained ship in head sea waves
when 7> 3. It should be noted that the incident waves should be added
to give the total wave picture around the ship. The reason why the waves
are left downstream of a ship when 7>} can be understood in terms of
the group velocity or the energy propagation velocity of the different
wave systems. If we regard the problem from an earth-fixed coordinate
system, all the waves have a smaller group velocity than the ship speed U
when 7 >3 and can therefore not propagate ahead of the ship. At t =3
the group velocities of parts of the unsteady ship-generated waves are
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precisely equal to U. For 7 <3} some of the waves can propagate out
ahead of the ship. In the two-dimensional flow case this is discussed in
more detail in exercise 4.4(b). The two-dimensional case is also
discussed by Grue & Palm (1985).

The effect of current on a structure is similar to the effect of forward
speed on a ship. However, practical cases often occur for 7= w.U/g < 3.
The t-value is so small that the free-surface condition (4.45) can be
approximated by

. ¢t 9t
—wlpr— 2w, U——+g——= = :
w Pt — 2w, U Em g 3 0 on z=0 (4.46)

A consequence of using (4.46) in combination with the radiation
condition is that there is only one wave system present. This is illustrated
in Fig. 4.13. We note that the wavelength becomes longest when the
local wave propagation direction coincides with the current direction and
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Fig. 4.10. Picture of the wave field caused by a harmonically oscillating source
with mean forward speed U in deep water when t <1, (1= 0. U/g,
w, = circular frequency of oscillation). The crest numbers shown for
wave system AA are 92 and 138, for wave system D1, 168 and 252
and for wave system D2, 2 and 3. (Bgrresen, 1984.)
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shortest when the local wave propagation direction is opposite to the
current direction. It should be noted that the analysis is based on
7= w.U/g being small and below 1.

Analysis of wave—current interaction on offshore structures is pre-
sented by Zhao et al. (1988b). Satisfactory agreement between experi-
mental and numerical values was documented. In the forward motion
problem of ships at 7>>1} there are still many unsolved problems and
three-dimensional panel methods with combined forward speed and
wave effects do not give any better agreement with experimental values
for vertical ship motions than strip theories. To make further im-
provements in ship motion predictions at moderate and high Froude
number it is felt that one first has to study the steady wave potential
problem in more detail. This is referred to as the wave resistance
problem in ship hydrodynamics and is known to be a difficult numerical
and physical problem. It is fair to say that there exists at present no
general practical numerical method for the wave resistance problem.

DEEP WATER
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Fig. 4.11. Picture of the wave field caused by a harmonically oscillating source
with mean forward speed in deep water when t > {. For notation see
Fig. 4.10. The crest numbers shown for wave system AA are 2 and
3, for wave system D1 34 and 51 and for wave system D2 2 and 3.
(Bgrresen, 1984.)
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Fig. 4.12. Diffraction waves at one time instant around a restrained ship in
head sea waves. Deep water. F, = U/V(Lg)=0.2, A/L=0.5,
t=1.212. (L = ship length, A = incident wavelength, U = forward
speed, T = w.U/g, w. = circular frequency of oscillation (encounter
frequency).) (Ohkusu & Iwashita, 1987.)
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Fig. 4.13. Picture of the wave field caused by a harmonically oscillating source
with mean forward speed U satisfying the free-surface condition
(4.46) and valid for T < § and deep water. (t = w. U /g, @, = circular
frequency of oscillation.)
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EXERCISES

4.1 Induced velocities by a three-dimensional source element
Consider a source distribution over a plane circular element of radius R
(see Fig. 4.14). Assume the fluid has infinite extent and the source
density is constant and equal to one. Show that the vertical velocity V, at
a point p on the z-axis (see Fig. 4.14) induced by the source distribution
can be written as

2 2
S Y

(R*+2%: |zl
Discuss the velocity behaviour close to the circular element both for
negative and positive z-values. What is the behaviour like far away from

the source element?

4.2 Motions and loads on a barge
Consider the barge presented in Fig. 3.25. By means of three-
dimensional source technique we want to find wave-induced motions and
loads when the forward speed is zero and there is no current present.

A4

Fig. 4.14. Definition of the source element used in exercise 4.1.
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(a) What are the irregular frequencies if the barge has infinite
length? (Hint: Solve the interior problem as in exercise 2.1,
but with the body boundary condition ¢ =0.)

2 .
w° . D .
Answer: L = —coth(—-), =1,2,...
. B B J

(b) Will irregular frequencies represent a problem?

(¢) Discuss and show how to select panels for a three-
dimensional source analysis.

(d) How many symmetry planes can we benefit from in the
hydrodynamic calculations?

4.3 Green’s second identity
(a) Show for two-dimensional flow that the velocity potential ¢
can be written as

1 3 8¢
Pxy,y0) = o s <¢ anlogr F™ logr> ds (4.47)

where ¥ = ((y = y,)* + (z — 2,))1, S is a surface enclosing a
fluid volume and (y,, 2,) is a point inside the fluid volume.
Further, (¥(s), 2(s)) are points on surface S and

8/9n =n, 3/3y + ny 3/ 3z where the unit normal vector
n=(0,n,,n;) 0 S is defined to have positive direction into
the fluid domain.

(b) Consider a two-dimensional body near a plane wall. Start out
with Green’s second identity and show how the velocity
potential can be written as a distribution of sources and
dipoles over the body surface only.

" (c¢) Consider the problem of finding the velocity potential for
forced linear heave motion of a two-dimensional surface
piercing body when the frequency of oscillation goes to zero.
Use the result from question (b) and show that the dominant
behaviour far away from the body is source-like. What is the
source strength? (Hint: Use the Taylor expansion of
8/9n(log r) and log r with y and z as variables.)

4.4 Forward speed effects on wave systems in 2D flow
Consider an infinitely long horizontal cylinder in a steady incident flow
and a beam sea with regular waves in deep water. Potential flow theory is
assumed. The cylinder is restrained from drifting. Due to interaction
between the incident waves and the body, the body will generate waves.
The steady incident velocity potential far away from the body is written
as in equation (4.40) with ¢, = 0. This means it represents a steady flow
with constant velocity along the positive x-axis. The time dependence of
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the oscillatory flow.is expressed as e™*“<, At some distance from the body
the time dependent velocity potential satisfies the free-surface condition
(equation (4.45)). The body will generate different wave systems far away
from the body. The velocity potential of these wave systems has to be of
the form

Preiv = Aghetibiion (4.48)

where A is constant, in order that the two-dimensional Laplace equation
should be satisfied. The k-value is real and positive in order for the flow
to vanish far down in the fluid and for the velocity potential to represent
waves at large positive or negative x-values.

(a) Show that

g 1
bia=ge (1= 20 £ (1= 40))
when ¢ is proportional to e ™ ~i®¢ and T = @, U/g <%, and
that

ks =24f]—2(1 +2r (1 +40))

when ¢ is proportional to e i<,

(b) Consider the problem from a relative frame of reference
system x’ = x — Ut. In this coordinate system the body moves
with a velocity U in the negative x’'-direction. Consider the
different wave systems in this coordinate system. The group
velocity (energy propagation velocity) of the different wave
systems can be written as

_1. /e
Cg"z\/k

If the group velocity is less than U in the direction of forward
motion, it means the wave system has to be on the
downstream side of the object. Discuss what wave systems are
upstream or downstream of the body. What happens when

(c) Assume that the wave numbers &, k,, k; and k4 can be used
as an approximation for estimating the wavelengths of the
wave systems along the track of a three-dimensional
harmonically oscillating source with mean forward speed in
deep water. Determine how this agrees with the results in
Figs. 4.10 and 4.11. Discuss the phase velocity direction of
the transverse wave systems and check if this agrees with the
arrows in Figs. 4.10 and 4.11.
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(@)
(e)

Derive asymptotic expressions for k,, %, k5 and k, when

“t— 0. Discuss the results.

What are the values of &, k,, k3 and &, when w.=0and U is
finite? What does this say about the wavelength of the wave
system along the track of a three-dimensional steady source
with mean forward speed in deep water and with free-surface
effects?

5 SECOND-ORDER NON-LINEAR
PROBLEMS

The most common way to solve non-linear wave-structure problems in
ship and offshore hydrodynamics is to use perturbation analysis with the
wave amplitude as a small parameter. Potential theory is assumed and
the problem is solved to second-order in. incident wave amplitude. This
is a powerful method that gives a solution for several practical problems.

The first-order solution is the linear solution which we have described
in chapters 2, 3 and 4. In the linear solution, both the free-surface
condition and the body boundary condition are satisfied on the mean
position of the free-surface and the submerged hull surface respectively.
Further, the fluid pressure and the velocity of fluid particles on the
free-surface are linearized. What we do in a second-order theory is to
account more properly for the zero-normal flow condition through the
body at the instantaneous position of the body, to approximate more
accurately the fluid pressure being equal to atmospheric pressure on the
instantaneous position of the free-surface and to account more properly
for non-linearities in the velocity of fluid particles on the free-surface.
However, we are not solving the problem exactly. In a second-order
theory we keep all terms in the velocity potential, fluid _pressure and
wavg_‘_lagg_g:_ixs that are elther lmear 1__th the wave amplitude or proportional
to the square - of the wave ampiitude. The solution of the second-order
problem results in mean forces, and forces oscillating with difference
frequency and sum frequenc1es in addition to the linear solution. With a
difference or a sum frequency we mean either the difference or the sum
of two frequencies used in describing the wave spectrum.

Mean and slowly-varying wave loads (difference frequency loads) are
of importance in several contexts for marine structures. Examples are in
the design of mooring and thruster systems, analysis of offshore loading
systems, evaluation of towing of large gravity platforms from the
fabrication site to the operation site, added resistance of ships in waves,
performance of submarines close to the free-surface and analysis of
slowly oscillating heave, pitch and roll of large-volume structures with
low waterplane area. Sum frequency forces can excite resonant oscilla-
tions of TLPs in heave, pitch and roll. This is referred to as ‘springing’
in the literature and can contribute to fatigue of tethers.
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The order of magnitude of mean wave forces relative to linear
first-order wave forces can be exemplified by results presented by Zhao
et al. (1988) for a hemisphere floating in the free-surface. Incident
regular waves with wave amplitude {, were studied in a limited
frequency range. By translating the results to a full-scale diameter of
50 m we find the linear wave excitation forces to be about 10%£, (kN)
while the horizontal drift force is about 10°¢,> (kN). For a wave
amplitude of 1 m the linear wave excitation forces are 100 times larger,
and for a wave amplitude of 10 m the first-order force is about 10 times
larger, than the mean wave forces. Since mean wave forces and moments
are small, a high degree of accuracy is needed both in the calculations
and in the experiments. The results are sensitive to wave headmg, body
form,- body motion, wavelength and wave height. In irregular seas the
second-order loads are also sensitive to the width of the wave spectrum,
i.e. the wave frequency range with significant wave energy.

In a potential flow model wave drift forces are due to a structure’s

ability to cause waves. The consequence of this is that drift forces are
small in a potential flow model when mass forces dominate. This occurs
for semi-submersibles. However, viscous effects may also contribute to
drift forces. This is a third-order effect that will briefly be discussed later
in the chapter. Let us try to give a simple explanation of why we get a
mean wave force on a structure in regular incident harmonically
oscillating waves. For a surface piercing body a major contribution to the
horizontal mean wave force is due to the relative vertical motion between
the structure and the waves. This causes some of the body surface to be
part of the time in the water and part of the time out of the water.
Examining the pressure in one of the points in this surface zone, it is
obvious from Fig. 5.1 that the result is a non-zero mean pressure even in
regular harmonically oscillating waves. If the relative vertical motion
differs around the waterline, the result is a non-zero mean force. This
occurs for large-volume structures where the incident waves are modified
by the structure. However, there are also other contributions. We get
one of them by averaging the quadratic term in Bernoulli’s equation.

Pressure

Partly in
or out
of water Non-zero
= mean force
<+  Time
Out of the
water

Fig. 5.1. Horizontal mean wave force contribution due to pressure forces on
the free-surface zone of a structure.
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A simple way to. illustrate the presence of non-linear wave effects is to
consider the quadratic velocity term in Bernoulli’s equation for the fluid
pressure. We can write this term as

~Lwievievid= -Liver (5.1)

where V= (V,, V,, V3) is the fluid velocity vector. We emphasize that
equation (5.1) provides only one of the non-linear effects. Other
contributions may be equally important.

Consider an idealized sea state consisting of two wave components of
circular frequencies @, and w,. An approximation for the x-component
of the velocity can be written formally as

V,=A,cos(w;t + €,) + A, cos(w, + €) (5.2)
By algebra it now follows that

va

—35 V1

5 +—1COS(20)1t+261)

2 2 2

[Al AP A2
2

A2
+ > cosQuw,t + 2€,)

+A1A2 COS[(CU] - Cl)z)t + € — 62]

+ AA; cos[(w, + wy)t + €, + ez]] (5.3)

This means that we have the presence of a constant term represented by
—0.5p (A,%/2+A,%/2) and a pressure term which oscillates with the
difference frequency w,— . For a more realistic representation of the
seaway, and considering the wave as the sum of N components of
different circular frequencies w;, we will find pressure terms with
difference frequencies w; — wy, (k,7 =1, N). These non-linear interac-
tion terms produce slowly—varymg excitation forces and moments which
may cause resonance oscillations in the’ surge, sway, and yaw motions of
a moored structure. Typical resonance periods are 1-2 minutes.

Equation (5.3) also tells us that non-linear effects can create excitation
forces with frequencies hlgher than the dominant frequency components
in a wave spectrum. This is due to terms oscillating with frequencies
Za)l, 2w, and (w,+ w,). These may be important for exciting the
resonance oscillations in the heave, pitch and roll for TLPs. Typical
resonance periods are 2—4 s. The restoring forces for the TLP are due to
the tethers and the mass forces due to the structure. In the following text
we will start by discussing mean wave loads.
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MEAN WAVE (DRIFT) FORCES AND MOMENTS
When calculating the mean wave loads on a structure it is not necessary
to solve the second-order problem. We will explain this in the case
where there is no current and the structure has no forward speed. We
will assume incident regular waves with amplitude &, and circular
frequency w. Let ¢, be the velocity potential for the second-order

_potential. This means ¢, is proportional to the square of the incident

wave amplitude. We can show that the time dependence of ¢, can be
expressed as A + B cosCwt + €), where A and B are independent of
time. The reason is that the second-order problem involves solving a
boundary value problem where the boundary conditions are expressed as
the product of two terms. Each of the terms is from the first-order
solution and are harmonically oscillating with frequency w. The product
of the terms will give one term that is time independent and one term
that is oscillating with frequency 2w. The second-order potential will
have the same time dependence as the boundary conditions for the
problem. The pressure associated with the second-order potential can be
found from Bernoulli’s equation. By keeping terms that are proportional
to &, the pressure can be written —p 8¢/3t = p2wB sinQwt + €). The
mean value over one period of oscillation of this pressure part is zero.
This means the second-order potential does not result in mean wave
loads. All information that we need can be found from the linear
first-order solution. Results in an irregular sea can be obtained by
adding results from regular waves. We will therefore start with discuss-
ing the effect in regular waves.

One way to obtain expressions for mean wave forces in regular waves
is to use the equations for conservation of momentum M(:) in the fluid.
Let S be a closed surface. The momentum inside S can be written as

M@) = ”f pVdr (5.4)

where V=(V,,V,, V;) is the fluid velocity. The enclosing surface S
does not need to follow the fluid motion. By using the definition of a
derivative and noting that both the volume and the velocity may change
with time, it follows that (see Fig. 5.2)

flf%’dr+pJ;JVUnds (5.5)

Here U, is the normal component of the velocity of the surface S. Note
that we have defined here the positive normal direction to be out of the
fluid. The last integral is the effect of integrating over the shaded area in
Fig. 5.2 and letting At be small (i.e. go to zero). The volume integral in
equation (5.5) can be rewritten by expressing dV/3t by Euler’s equation.
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This can, for an incompressible fluid, be written as

v
VW= —v(p +gz>
The volume integral can be reduced to a surface integral by using vector
algebra and a generalized Gauss theorem which states that

fffvonr=ffn°de 5.6)
Q S

Here X may be a scalar, vector or tensor and o denotes a dot or cross or
an ordinary multiplication or nothing. It is assumed that X has
continuous derivatives in Q. We can then show that

_-_p”[( +ge )+ V(V, - U] .7

Here V,=3¢/3n is the normal component of the fluid velocity at the
surface S.

This is a general formula which we will apply to the wave-drift force
problem We let the closed surface S consist of the body surface Sg, a
non-moving vertical circular cylindrical surface S. away from the body,
the free-surface Sg and the sea bottom S, inside S.. (see Fig. 5.3). We
should note that S.. does not need to be far away from the body. We can
write

U,=V, on S;and Sg
: (5.8)
U,=0 onS.and S,

Sit+at)

FLUID
VOLUME
Qi)

Fig. 5.2. Illustration of how the control volume Q(¢) changes in a time
increment At. (U, = normalcomponentofthe velocity of the surface S).
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The force F = (F,, FF,, I;) on the body is [s, pnds. On the free-surface
the pressure is equal to the atmospheric pressure p,. However, since
Jfsponds =0 we could just as well define p in equation (5.7) to be the
difference between pressure in the fluid and the atmospheric pressure.
This implies that we can set p =0 on Sy. The term p [ [ gzn ds gives no
horizontal component. By time averaging equation (5.7) over one period
of oscillation and noting that the time average of dM/dt is zero, we find
that

F = _” [pn,+ pV,V.]ds  i=1,2 (5.9)
S»

When calculating F; by equation (5.9) we can use Bernoulli’s equation to
calculate the pressure. We should realize that the wetted area of S, is
time-dependent due to the time-varying wave elevation at S.. In
evaluating equation (5.9) correctly to second-order in wave amplitude, it
is only necessary to know the first-order velocity potential (see the
discussion in the beginning of the chapter). The first-order potential can
for instance be calculated by the numerical methods described in chapter
4. If we want to use equation (5.7) for conservation of momentum to
calculate the mean vertical force, we note from equation (5.7) that we do
not get rid of the pgz-term in the integrand and have to include this
contribution from an integral over the free-surface.

Equation (5.9) was derived by Maruo (1960). Newman (1967) derived
a similar formula for the mean wave-drift yaw moment. He started out
.by using the fluid angular momentum

K(t)=pjjj(r><V)dr (5.10)
Q

‘_Un"'o

— S.. S ™™
So Un=0

l J

Fig. 5.3. Control surfaces used in evaluating expressions for mean wave loads
and illustrations of how the normal velocity U, of the control
surfaces relates to the normal velocity of the fluid.
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where r is the position vector relative to the origin of the coordinate
system (x, ¥, £), which is fixed in space. The derivation is similar to that
shown for equation (5.7). If we define ng and V4 from rXV=
V4, Vs, V) and r X n = (ny, ns, ng), the result is that equation (5.9) is
also valid for the yaw moment with i = 6.

Equation (5.9) also applies in two dimensions. In that case we write S..
for the sum of S,, and S_.., where S, and S_,, are vertical control surfaces
for positive and negative horizontal coordinates respectively. The control
surface can be any distance away from the body even if the subscript ‘e’
indicates that the control surfaces S. and S_. are far away from the
body.

Maruo’s formula
Maruo (1960) used equation (5.9) to derive a useful formula for drift
forces on a two-dimensional body in incident regular deep-water waves.
The body may be fixed or freely floating oscillating around a mean
position. There is no current and the body has no constant speed.
The velocity potential for the incident waves is written as (see Fig. 5.4)

$o= %e’“’ cos(wt — ky) (5.11)

with &, being the amplitude of the waves. Due to the presence of the
body there will be generated waves. The velocity potential of the

z
INCIDENT REFLECTED TRANSMITTED
WAVES WAVES WAVES

waveg L ! HAVES

Sw

Fig. 5.4. Definition of control surfaces and wave systems in the analysis of
drift forces on a two-dimensional body.
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reflected waves is written as
" .
or = %‘ekz cos(wt + ky + €) (5.12)

where the wave amplitude Ar and phase angle € are functions of the
body form and motion. The velocity potential of the transmitted waves is
written as

A
%T e* cos(wt — ky + &) (5.13)

¢r=
¢ is a combination of the incident waves and the waves generated at
y——>°0 by the body.

When the two-dimensional version of equatlon (5.9) is used to find the
horizontal drift-force F,, it is convenient to divide S, into two parts.
One part S,” is from the mean free-surface level 2 =0 to the instan-
taneous position . of the free-surface (see Fig. 5.4). Since {. is a
first-order quantity and we are evaluating the integral correctly to second
order in wave amplitude, it is only necessary to evaluate the integrand
correctly to first order when we integrate along S,”. This means the term
pV 5% can be neglected and the pressure p approximated by

¢
— ppg — p 22T
PP |
along S,”. The result is a contribution —$pgf. 2= — LpgA,>.

In the integration from & = — to 2 = 0 we have to keep second-order
terms in the integrand. The linear terms give a zero mean value. The
hydrostatic pressure —pgz will result in a force contribution that is
balanced out by a similar contribution at the control surface at y = —
The integration along S_. is performed in a similar way as the
integration over S.. The total result is

Fo=P2100 + Ax - A7) (5.14)

Longuet-Higgins (1977) has generalized equation (5.14) to finite water
depth. The right hand side should then be multiplied by
(1 + 2kh/sinh 2kh), where h is the water depth.

Maruo’s formula follows by assuming the average energy flux is zero
through Sg. This means

£ = A+ Ay (5.15)

We can show this by using equation (3.21) and noting that there is no
work done on the body during one period of oscillation. This means
IJs; (0 —po)U,ds=0. By using dE/dt=0, it follows from equation

MEAN WAVE (DRIFT) FORCES AND MOMENTS 139

(3.22) that [[s_.s_. (8¢/3t)(3¢/n)ds= 0. From this condition we can
show equation (5.15) by using equations (5.11), (5.12) and (5.13).
Equation (5.14) can then be written as

Fr=Bag (5.16)

According to the formula the wave-drift force will always act in the wave
propagation direction. Due to condition . 15) Maruo’s formula (equa-

tion (5.16)) is not valid if the body is an active wave power device.

Equation (5.16) shows that wave-drift forces are connected with a
structure’s ability to cause waves. The waves due to the body are the sum
of (a) the radiating waves when the body is forced to oscillate in each
mode of motion, and (4) the diffraction waves when the body is
restrained from oscillating and subject to incident waves. For long
wavelengths relative to the cross-sectional dimensions the body will not
disturb the wave field. This means the reflected wave amplitude A and
the wave drift force become negligible.

When the wavelengths are very short, the incident waves are totally
reflected from a surface-piercing body with vertical hull surface in the
wave zone. This means Ar={, and F,=(pg/2){,2. According to
equation (5.15) the reflected wave amplitude can never be larger than Z,.
This means the wave-drift force can never be larger than (pg/2)E,>%.

When the body motions are large, for instance due to heave resonance,
Ag is likely to be large. This means that the wave-drift force may show a
peak in a frequency range around the resonance frequency. This can be
seen in Fig. 5.5.

For a submerged body Ay will go to zero when the wavelength goes to
zero. In the special case of a submerged circular cylinder that is either
restrained from oscillating or whose centre follows a circular orbit
Ogilvie (1963) showed that Ay is zero for all frequencies and all depths of
submergence.

The order of magnitude of ‘wave-drift forces F, on a free-surface-
p1ercmg two—dxmensxonal body relative to current forces F. on the same
structure when there are no waves present can be estimated by

Fz_ 0.5pgAR’ _ gAR’

F. 0.5pCpDU2 CpDUZ2

Here Cp, is the drag coefficient for the current flow, D is the draught and
U. is the current velocity. For instance, in a current velocity of 1ms™, a
draught D = 10 m and Cp = 1.0 the ratio is simply Ag’ in square metres.
This illustrates the importance of wave-drift forces on large volume
structures Ilke ShlpS However, one must not be misled by this

discussion into believing that the effect of current and waves can be
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superposed. The combined effect of waves and current. have an effect on
the wave field and therefore on the wave-drift forces. Further, the
combined effect of waves and current influences the occurrence of
flow-separation and the drag coefficient Cp,.

Maruo (1960) has also derived a formula similar to equation (5.16) for
drift-forces on a three-dimensional structure in incident regular_waves,
with no current present, which can be written in the form

Fy= %gL " A%(6)(cos f — cos 6)dB (5.17)

j . %gj " A%(6)(sin f — sin 6) dO (5.18)
0

Here § is the wave propagation direction relative to the x-axis and
A(8)/r? is the wave amplitude generated by the body far away at large
horizontal radial distance r = (x* + %) from the body. These waves are
the sum of radiation waves when the body is oscillating in six degrees of
freedom and the diffraction waves when the body is restrained from
oscillating and subject to incident waves. The angle 6 is defined as
x =rcos 8, ¥y =rsin 6. Equations (5.17) and (5.18) are derived on the

F,
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Fig. 5.5. Example of behaviour of wave drift force F, on a two-dimensional
free-surface piercing body Lewis form section with B/D = 2.0,
A =0.95BD. Beam seas waves. Infinite water depth. (B = Beam,
D = Draught, A = submerged cross-sectional area, §, = wave
amplitude of the incident waves, w = circular frequency of
oscillations.)
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assumption that energy is conserved. For example, if viscous forces
matter these expressions are not valid. Equations (5.17) and (5.18) also
demonstrate that wave drift forces in a potential flow model are due to a
structure’s ability to cause waves. If we apply equations (5.17) and (5.18)
to head sea waves incident on a ship, we find that the wave-drift force is
always in the wave propagation direction. For a general wave heading,
the resulting drift force may not necessarily coincide with the wave
propagation direction. We cannot see from equations (5.17) and (5.18)
what wave directions give largest wave-drift forces on a ship. To
illustrate the wave heading dependence of drift forces let us present two
examples of calculations by Faltinsen ez al. (1979) (see Fig. 5.6). For the
smallest wavelength the transverse drift force is largest for beam sea
waves, while for the larger wavelength it is practically zero for beam sea
and largest for wave headings around 45° and 135°. The reason is that the
ship follows the waves best at 90° so that the generated wave amplitudes
are small.

By interference between waves generated from different parts of the
structure, the generated waves may become small for certain wavelengths
and headings and result in small drift forces. This is typical for a TLP.
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Fig. 5.6. Transverse drift force F, on a ship as a function of wave heading f
for two wavelengths A. Infinite water depth. (L = ship length, 8 =0°
in head seas, &, = wave amplitude of the incident waves.) (Faltinsen
etal., 1979.)
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As a first approximation one may imagine the columns of a TLP as
independent wave generators. Dependent on the wavelength and heading
the wave fields generated by each column may either tend to enforce or
cancel each other.

If a roll resonance occurs, equations (5.16), (5.17) and (5.18) are not
expected to give satisfactory results for ship hulls. The reason is that
viscous effects are important in calculating roll resonance amplitudes (see
chapter 3) whereas the formula is based on potential flow theory.

Direct pressure integration method

Another way to obtain mean wave forces and moments is to use the
direct pressure integration method (Pinkster & van Qortmerssen, 1977).
This means one starts out with Bernoulli’s equation for the pressure and
formally writes forces and moments on the hull correctly to second order
in wave amplltude All three force components and three moment
components can be obtained. However, to avoid inaccuracies care should
be taken in using the method. For instance, if a boundary element
method is used to calculate the linear flow motion and one assumes
constant velocity potential over each element, one has implicitly said that
the tangential velocity is zero over the element. This means error in the
calculation of the quadratic velocity term in Bernoulli’s equation, in
particular close to sharp corners. There are ways to avoid this difficulty,
for instance by extrapolatm[g calculated values of fluid velocities from
points along the normal to the element that are further away than a
characteristic length of the element.

We will exemplify the method by analysing incident regular deep-
water waves on a two-dimensional free-surface-piercing body. We
assume the wavelength is very small and that the surface of the cylinder
is vertical at the intersection with the free-surface. Since the wavelength
is small, the cylinder will not oscillate in the waves. Further, the effect of
the waves is only felt in the free-surface zone on the ¢ upstream’ side. On
the ‘downstream’ side there is a shadow region. From a hydrodynamlc
point of view this means that we could just as well study 'incident waves
on a vertical wall (see Fig. 5.7). The linear solution of th1s problem can
be written

gCa ek cos wt cos ky

¢ =
Physically this represents standing waves. The maximum wave elevation
at the wall is twice the incident wave amplitude. If we calculate the lmear
hydrodynamic force, we find

el

|
= - 14
Y dz 2ng,k sin @

y=0
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This is a harmonically oscillating force, which cannot explain the
drift-forces. We have to include higher-order terms in our analysis. This

use the complete Bernoulli’s equauon "Further, we have to solve the
hydrodynamic problem to higher-order in wave amplitude. However, it
can be shown as discussed earlier that the contribution from the
second-order potential to the mean force is zero in regular waves. Let us
start out with Bernoulli’s equation

oL (2)) e

We will calculate the force correct to second order in wave amplitude and

exclude the hydrostatic force.
The contribution from the two first terms in equation (5.19) can be

written as

—pg f sdz—p 21| = pat? (5.20)

z=0

Here C 2§, sin wt is the wave amplitude at the wall. The third term in

equation (5.19) results in the following contribution

2 _w{(aa(il> (3;;,) }dz

pJ'° 14g° Ca

St ke de = ~pge,)?

SHflehy
The total sum is (pg/2)Z,. This is the correct asymptotic value for small
wavelengths according to Maruo’s formula. We can generalize the
asymptotic formula to any structure as long as the structure has vertical

X2 7';;.;)".', >

Fig. 5.7. Incident waves and drift forces on a vertical wall.
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sides at the waterplane. We can write

2
ja =Bg—fif sin( + B) n, di (5.21)
1

1
Here F, is the drift-force component in the x-direction, F, is the
drift-force component in the y-direction and F is the yaw-drift moment

with respect to the z-axis (see Fig. 5.8 for definitions).
Further

n, = sin 8
n, =cos 6
Ng = X C0S 8 — y,sin @

The integration in equation (5.21) is along the non-shadow part L, of the
waterplane curve, i.e. from A to B. Further, 8 is the wave propagation
direction and the angle 6 is defined in Fig. 5.8.

We have worked out three special cases below

Example 1
Infinitely long horizontal cylinder

=~ _P§ . . -~ .
F,=0, F2=—2—Cazsm[3|8m Bl,  F¢=0/(per unit length)

Example 2
Structure with circular waterplane area of radius r

F=3pgtlrcos B, F,= = $pg&.’rsin B, Fe=0

Y Shadow region

wave
propagation
direction

Fig. 5.8. Definition of ship and wave parameters used in equation (5.21).
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Example 3
Structure with waterplane area consisting of two circular ends of radius

and a parallel part of length 2! (see Fig. 5.9). We find that
Fi=3pgtircosB,  Fy=pgt. GrsinB+1sin B sin B)

It should be noted that the angular dependences shown in the formula
above are, strictly speaking, only valid for small wavelengths. For other
wavelengths quite different angular dependence may occur (Faltinsen et
1979).
>

Added resistance of ships in waves
Equation (5.21) does not take into account current or the forward motion

of a structure. Faltinsen et al. (1980) have derived a formula for added

resistance, Raw, of a ship in small wavelengths Added resistance is the

same as the longltudmal drift-force component, The formula is assumed
to be valid for small Froude numbers, i.e. F,<=0.2, and blunt ship
forms. All wave headings are considered. For head sea we can write

ﬂ=12pg(1+2“"’U>f sin?6n, dl (5.22)
& 7L _
Here w, is the « circular frequency of osc1llat10n of the waves and U is the
forward speed he sh1p L, is the non- -shadow part of the waterplane
curve (see Fig. 5.8). The formula is not restrlcted toa ship and may for
instance be used in connection ‘with towing of marine structures in
waves. Equatlon (5 22) is sensitive to the geometric form in the bow
region. This is illustrated in Fig. 5.10 for a ship, where F, means a
reference value for the added resistance.

To illustrate the effect of forward speed, we see that equation (5.22)

21

Fig. 5.9. Definition of parameters.



I46 SECOND-ORDER NON-LINEAR PROBLEMS

shows that

Added resistance (Fn #0) 1+ 2w,U
Added resistance (Fn =0) B g

If we set A/L =0.5, the ratio becomes 1+ 7 - Fn, which means a strong
forward speed dependence. The formula also indicates that the effect of
current cannot be neglected. This was confirmed by Zhao et al. (1988);
who pointed out that current velocities of 1ms™ may very well
represent a 50% increase in drift forces on large volume structures. This
was based on both numerical and experimental investigations. Qualita-
tively-one can understand that current must have an effect on mean wave
forces if one considers that drift forces are due to a structure’s ability to
cause waves and the fact that current has an influence on the wave field
(see Fig. 4.13).

A typical curve for the added resistance Ry of a ship at a moderate
Froude number in head sea regular waves is presented in Fig. 5.11.
There are two main features in the figure.

(a) For small wavelengths (A/L < 0.5) the added resistance is
mainly due to reflection of waves from the bow of the ship.
This effect is described by equation (5.22).

(b) For large wavelengths the added resistance has a maximum
when A is of the order of the ship length. This maximum
occurs when the relative vertical motion between the ship and
the waves is large. For moderate Froude numbers below 0.3
the maximum value of 0w = Raw/(pgt,2B?/L) is normally
below 20. For a high speed hull form at Fn = 0.8 Strom-
Tejsen et al. (1973) reported values of oy close to 35.

Gemtsma & Beukelman (1972) have derived a w1de1y-used formula for

Fig. 5.10. Influence of bow form on added resistance for small wave lengths.
(F, = reference value for added resistance.) Head sea waves.
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strip-theory approximation and shows that

d
Raw=5o | (B4 UL Al 6.23)

The integration is along the length of the ship and V,(x) is the
amplitude of the. relative vertical velocity between the ship and the
waves. The formula demonstrates that added resistance depends strongly
on the relative vertical motion between the ship and the waves. The
quality of the predictions by the formula is sensitive to the accuracy of
the calculation of relative vertical velocity. The formula should be used
with care for unconventional ship forms and fishing vessels. It is also
questionable in the small wavelength range for blunt ship forms. One
reason is that the formula is based on slender body (strip) theory and
neglects the effect of reflection of waves from the bow of the ship.

We can obtain a crude approximation for the added resistance of a ship
in the ‘ship- motlori range by starting out with a formula proposed by
Faltinsen et al. (1980). Thls formula was derived by a direct pressure

integration _approach and is vahd for regular sinusoidal incident waves.

When the added resistance is at its maximum, a dommant conmbutlon

/in the formula is the relative motion term

Due to bow ! 1  Due to
wave reflection; | shipmotions |
! |
| ]
1 T
0.5 1.0 AL

Fig. 5.11. Typical wavelength dependence of added resistance Raw of a ship at
moderate Froude number in regular head sea waves. (£, = wave
amplitude of incident waves, A = wavelength, L = ship length,

B =beam of the ship.)
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where the integration is with respect to the waterline curve, ¢, n, is the
longitudinal component of the outward normal to c, CR is the relative
verncal motion along c.

In the case of a ship with a constant cross-section, we can re-express
this formula in the form

Fy =5 Bas ~ Tna?) (5.24)

where B is the beam of the ship and {rp and {xa are the relative vertical
motions at the bow and the stern respecuvely This formula does not
1mp1y that the added resistance is linearly dependent on B, since the
relative motion {y is also dependent on B (see discussion in chapter 3).
Equation (5.24) can be used to discuss how the added resistance in the
‘ship motion’ range depends on main hull characteristics (see exerc1se
5.3).

Irregular sea calculations
When the results of mean wave loads in regular waves are known, it is

easy to obtain results in an irregular sea. We will show a formula for the
loads. We assume long-crested seas that can be described by a sea
spectrum S(w). In deep water we can write the velocity potential of the
incident waves correctly to first order in wave amplitude as

N
=2 %4’ e cos(w;t — kx cos B — k;y sin B + ¢€,) (5.25)
j=1 0
Here B is the angle between the wave propagation direction and the
x-axis, «; the circular frequency of oscillation and k; the wave number of
wave component number j, w; and k; are connected through the
dispersion- relationship ®;’/g =k;. The phase angles ¢, may be con-
sidered as random phase angles and the amplitudes A; may be
determined by the wave spectrum S(w) characterizing the sea state. If
the major part of the wave energy is concentrated between the circular
frequencies @, 10 Wl We divide the frequency interval @ ;, 10 Wy
into N equal sub-intervals and call the mid-points of the jth interval w;
(see Fig. 5.12). A, is then determined by

A 2 Wmax — Wmin
= S() e (5.26)
In principle we should let N— «, wg,;,— 0 and @n,x— * so that the
sum in equation (5.25) becomes an integral. If N is kept finite and we
want to use equation (5.25) to simulate an irregular sea, the signal repeats
itself after a period 27N /(@ .y — @Wmin). To avoid this we can choose w;
randomly in each sub-interval Aw; in Fig. 5.12.
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Let us now imagine that we want to find the mean wave loads on the
structure by using the direct pressure integration method. One part of
the procedure is to study the effect of the quadratic velocity term in
Bernoulli’s equation, i.e. equation (5.1). In equations (5.2) and (5 3) we
studied the consequence of using an idealized sea state with two wave
components. The results in equation (5.3) show that we can linearly add
together the mean force contribution from each wave component. This
may be surprising since we talk about a system that is non-linear in the
wave amplitude. The same would have happened if we had used N wave
components. Similar summation can be done for the other contributions
to the mean wave loads. What we now say is that the mean wave load can

be written-as..

X, F(a),ﬁ') .
Z}( ) ), i=1,...,6 (5.27)
)
15-00
1125+
‘\E 750
3
wn
3754
o]

wlrad s

Fig. 5.12. Illustration of how the energy in a wave spectrum S(w) can be
distributed into energy of regular wave components of circular
frequency w. (ISSC-spectrum, Hy =8 m, T, = 10 5, number of
wave components N = 22.) See also Fig. 2.5.
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Here F{w ;5 B) is the ith mean wave load component in regular incident
waves of c1rcular frequency w;, wave amplitude A; and wave propagation
direction B. Further, Fi(w;; B) is divided by the wave amplitude square,
ie. &2, so that F, (w;5 B)/ Caz is independent of the wave amplitude. In
integral form we can write equation (5.27) as

.—2f S(w )( (Z 'B))dw i=1,...,6 (5.28)

Let us illustrate the use of equation (5.28) by applying the equation to
the added resistance of a ship in head sea waves and use equation (5.22)
to calculate F,/¢,%. This means we assume the wavelengths of the wave
components of practical importance are small relative to the ship length.
By using equation (5.22) we will be able to integrate equation (5.28)
analytically. However, this sets certain limitations on the form of the sea
spectrum. We must require there to be no significant wave energy for
wavelengths larger than half the ship length. For a Pierson—Moskowitz
spectrum with two parameters Hy and T, (see equation (2.24)), we can

v tentatively state that there is no significant wave energy for

CDTZ
<0.
2 0.5

Here Hj is the s1gmﬁcant wave height and T, is the mean period defined
by the second moment of the wave spectrum. By using the dispersion
relationship for deep water waves and the two requirements mentioned
above, we find that we can only combine equation (5.22) with equation
(5.28) when

T,<0. 9(L/g)7 (5.29)

P

For oceangoing vessels thlS means the ship length has to be large for the
formula to be of any significant practical use.
By evaluating equation (5.28) we find that

©

2
Fi HL( az é)f 2
Fy=pg 16 1+FnT1 p Llsm On,dl (5.30)

We have used here

Hy=4Vm, where m= f S(w)dw
0

and (5.31)

T,=22" where m.=f 0S(w)dw
m, 0

For a Pierson-Moskowitz spectrum we may write
T,=1.086T, (5.32)
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For a one-parameter Pierson—Moskowitz spectrum we should note that
condition (5.29) means that Hy; <0.0065L. For a 300 m long ship this
means Hy <1.95m. In the North Atlantic this occurs about 40% of the
time. For a 100 m long ship it means Hy < 0.65 m, which occurs less than
4% of the time in the North Atlantic.

It is worth pointing out that added. resistance of a sh1p is sensitive to
the mean wave period. This is evident from the study by Strom-Tejsen ez
al. WThe reason can be seen from Fig. 5.11. The added resistance
curve has a very distinct peak around heave and pitch resonance for a
ship at finite Froude number. When multiplying this result with the
wave spectrum and integrating over all frequencies (see equation (5.28)),
the result is sensitive to how the peak period of the sea spectrum is

- located relative to the peak period of the added resistance curve. Type of

wave spectrum will also influence the magnitude of the added resistance.
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Fig. 5.13. Wave drift forces 15,-, j =1, 2 for long-crested irregular waves
incident on a tanker. The forward speed and current are zero.
Infinite water depth. (H} = significant wave height, 7, = mean wave
period, L = ship length, 8 = wave heading with 8 = 0° being head
sea.)
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Examples of wave drift forces and moments on a tanker in an irregular
sea of different wave headings and mean wave periods are presented in
non-dimensionalized form in Figs. 5.13 and 5.14. The ship speed is
zero. A JONSWAP spectrum was used in the calculations. Further,
B = 0° corresponds to a head sea. A negative yaw moment means that the
moment tends to rotate the ship to a position with a larger wave heading
angle. The effect of mean wave period is not so pronounced in the results
presented in Fig. 5.13 and 5.14 as Strom-Tejsen et al. (1973) showed for
added resistance of a ship at forward speed.

! ' Viscous effects on mean wave forces
5‘ When wave drift forces become small, viscous effects may contribute to

drift forces. This happens for semi-submersibles when the incident wave
amplitude is large relative to cross-sectional dimensions of hull com-
( 8lesl  \"2 _
; — 7, 7} sign (F)
¥ PgLEHY3 e
l{
i
- 010 1
o Bz=0°
a a Bs4s5®
D\ o B=90°
-0.08 - N
- )
-0.06 - J \
\ "
(o]
\a
-0.04 4 \G
-0.02 4
“A—e —o—9 s
1.5 19 2.2 26 TVg/l
Fig. 5.14. Wave drift yaw moment F for long-crested irregular waves incident

on a tanker. Notation as in Fig. 5.13. Positive yaw moment implies
rotation of the ship towards smaller 8-angles. Moment is with
i respect to the vertical axis through the centre of gravity of the ship.
The forward speed and current are zero. Infinite water depth.
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ponents. The effect is of third order which means it is proportional to the
Me Wﬁv&amplxtude in. regular waves. There are several reasons
why viscous effects contribute to mean drift forces. By using a simple
cross-flow principle for the flow around the pontoons and columns of a
semi-submersible, decomposing the forces into components along an
earth fixed coordinate system and averaging the forces over one wave
period, we will find non-zero mean wave loads that are proportional to
the third power of the wave amplitude. Let us show this in more detail.
We will refer to Fig. 5.15 and write the incident wave potential as

w

P = cos(wt — kx) (5.33)

This means the vertical incident fluid velocity can be written as
w = wf,e" cos(wt — kx) (5.34)
The drag force normal to the pontoon in the N-direction can be written

as

)
FN=—2f CDbVRIVR|dx (5.35)

12 2

Here Vy is the relative velocity in the N-direction between a strip of the

platform and the incident wave field. It can be written approximately as

d7I3 dTIs
V= ar dt —w (5.36)

This results in a longitudinal force

Fe=Fyns (5.37)
z 7’5
¢ b b

Fig. 5.15. Definition of parameters for calculation of the viscous drift force
contribution from the pontoons of a semi-submersible.
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where the wave amplitudes A;, wave frequencies w;, random phase
angles ¢; and number of wave components N are explained by equation
(5.25). Further, F,%Y, F,°Y and F;%V are respectively x-, y-, and
z-components of the slow-drift force and F, 5V, F8V and FSV are
moments about the x-, y- and z-axes. The coefficients Tk‘c and T, can
be interpreted as sécond-order transfer functions for the difference
frequency loads. The word ‘transfer function’ implies that T and Tj"

- are independent of the wave amplitudes, but are functions of w, and

Surge (m)

Air gap (m)

;. They can be calculated independently of the sea state. This is similar
to the familiar transfer functions for linear wave-induced motions and
loads. There is an ambiguity in defining 7}, and T},*, which is easily
seen if we consider two wave components and analyse the results in
equation (5.3). According to equation (5.39) there is one component with
frequency w,— w, and one component with frequency w,— w,.
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Fig. 5.17. Illustration of horizontal slow-drift surge motion of a tension leg
platform. The data are from model tests and show simultaneous
recording of air gap (i.e. relative vertical motion between the
underside of platform deck and the waves). The latter has a similar
dependence as the incident wave field. (Hy=7m, Ty=125.)
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However, there is. only one component with frequency w,— w, in
equation (5.3) which comes out of the analysis. We are free to divide the

result into components with frequencies @, — @, and w, — w;.
In this context we will follow a definition used by Newman (1974), viz.
T;_kic = Tkjic’ T.kis [ Tkjis (540)

J

value over ‘a long period of any oscﬂlaung terms in equation (5 39) is
zero. The only time independent terms occur when & =j. The result is

N

= > AT (5.41)

=1
i.e. sxmllar to equauon (5.27). This means AT} is the mean wave load
in direction ¢ due to incident regular waves of amplltude A; and circular
frequency w;.

Figs 5.18 and 5.19 show examples of calculated values of T and T}
as functions of w; and w,. The functional value of T} along the line
w; = w, is the same as mean wave load component ; divided by wave
amplitude squared in regular wave component j (or &).

Newman’s approximation
Newman (1974) proposed that T} and T;" can be approximated by
T, Tw', T;® and Ty.*. This reduces the computer time significantly.
Another desirable consequence is that we do not need to calculate the
second-order velocity potential. The reason why Newman’s approxima-
tion often gives satisfactory results is that T},'° and T}/ generally do not
change very much with frequency and that we are interested in the result

~of Tk and Y}k’s when w; is close to w,. A large frequency difference

; — w, gives a smaller oscxllanon period which is further away from the
resonance period of the structure., This means we can approximate T},
and T3° with its values along the line w; = w,. This is obviously less
good if a T},'° shows pronounced maxima or minima in the vicinity of the
line w; = w,. Pronounced maxima occur for instance along the line
w; = wy, if w; is close to the natural frequency of heave motion and the
heave damping is low. The reason for this is that the mean wave force
Tjjicé‘az depends strongly on the linear wave-induced motions. This was
discussed earlier in connection with Fig. 5.5. Newman’s approximation
implies that

Tpic =Ty = 0.5 (T + T (5.42)

J
T_;-kis = Tkjis =0 (5.43)

The direct summation of equation (5.39) is still relatively time
consuming. Newman (1974) proposed to approximate equation (5.39)
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fur_ther by'approximating the double summation by the square of a single
series. This implies that only N terms should be added together at each

time step compared to N? terms by equation (5.39). The formula can be
written as

N o 2
FSV= z(zI A(T;) cos(a;t + e,-)) (5.44)
o

This equation includes high-frequency effects that have no physical
background. In studying the slow-drift response these terms have no
influence. Obviously equation (5.44) requires 7, to be positive. A
modification can be done if some of the T**-values are zero.

The selection of the number of wave components N requires some

30

11

09 R

T 08 w; ’ g

07 '

Fig. 5.18. Calculated values of the second-order transfer function 7}, (see
equation (5.39)) for the difference frequency horizontal force on a
two-dimensional circular cross-section with an axis in the mean
free-surface and radius R. No effect of roll. Infinite water depth.
The data are presented as a function of the circular frequencies w;
and w,. (Faltinsen & Zhao, 1989.)
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care. We must require that (®ya — @min)/N is a small fraction of the
natural frequency of the response we want to excite. To avoid the signal
repeating itself too soon, it is necessary to choose A; at random values of
w; (see discussion following equation (5.25)).

Instead of writing the slow-drift excitation force in a time series, it
may be convenient to write it in spectral form. According to Pinkster
(1975) we may calculate the spectral density of the low frequency part as

2
(A
Srw=38 [ @@ +w\ —r— ) do (5.45)
0 : a
where Fy(w + u/2) is the mean wave load in direction ¢ for frequency

w+u/2.

Let us now study the response to the slow-drift excitation force and
assume that the slow-drift response x can be described by a mass—spring
system with linear damping, i.e. D

mx + bk + cx = F(t) (5.46)
The slow-drift excitation force F(t) is a random time process. The
variable x could for instance be the surge motion. We can write the mean
square value of x as

2_ r Se(u)du
o (¢ —mp®) +b’u’

(5.47)
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Fig. 5.19. Calculated values of the second-order transfer function T, (see
equation (5.39)) for the difference frequency horizontal force on a
two-dimensional circular cross-section with an axis in the mean free
surface and radius R. No effect of roll. Infinite water depth. The
data are presented as a function of the circular frequencies w; and
w,,. (Faltinsen & Zhao, 1989.)
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The mean square values give a useful measure of the extreme values.
Typically o, will be 3 to 1 of the extreme values.

Let i, = V(c/m). Then in case of small damping we may approximate
equation (5.47) by

du
_ mul)l + quZ

0.2 = Se(i) f v

=Sr(n) Z—JZ—b (5.48)

The reason why we can set Sg(u,) outside the integral sign is that the
major contribution to the integral in equation (5.47) comes from the
vicinity of u = u,, when b is small.

This demonstrates that small damping b means large motions and that
the magnitude of response depends on how much slow-drift excitation
energy exists at u = u,,. By small damping we mean small relative to the
critical damping 2mu,,.

We will now use the formula for o, to discuss the standard deviation of
the slow-drift surge motion of a moored tanker. The slow-drift spectrum
Sk for surge can be calculated when we know the longitudinal drift forces
in regular waves. The slow-drift spectrum will be wave heading
dependent. The drift forces can for instance be calculated by using
three-dimensional source technique (see chapter 4) and the equation for
conservation of momentum in the fluid (see equation (5.9)). The
restoring coefficient ¢ follows by the mooring characteristics and the
natural circular frequency by u, = \/(c/(M + A1), where M and A, are
the mass and the added mass in surge of the ship. The added mass in
surge can be calculated by a three-dimensional source technique. It will
amount to 10-20% of the mass of the ship. The damping b is due to hull
damping and anchor line damping. The hull damping is caused by
skin friction, eddy-making and wave-drift damping (Wichers, 1982).
Due to the low frequency of oscillation wave radiation damping can be
neglected. For higher sea states the wave-drift damping is the dominant
hull damping component. As an example, for a 235m long ship the
wave-drift damping amounted to 85% of the total damping for Hy=
8.1 m, while the wave-drift damping was negligible for Hy = 2.8 m. The
anchor line may also contribute significantly to the damping (Huse,
1986). This is not accounted for in the present discussion.

For slow-drift oscillations of a TLP or slow-drift oscillations in sway
of a ship both eddy-making damping and wave-drift damping have to be
included.
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Wave-drift damping
Wave-drift damping is caused by the waves and can be seen by
comparing free-decay model tests of a ship in still water and in regular
waves (see Fig. 5.20). We can try to explain the wave-drift damping in
surge by interpreting the slow-drift surge motion as a quasi-steady
forward and backward speed. It is well known that the added resistance
of a ship in waves is speed dependent. This is for instance evident from

Motion decay surge. Calm water
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Fig. 5.20. Influence of wave-drift damping demonstrated by free decay tests in
surge of a tension leg platform both in calm water and in regular
waves. (Wave period T = 12 5, wave height H = 8§ m).
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equation (5.22) which is valid in the non-zero speed case when the
wavelength relative to the ship length is small. We can now interpret the
term that is proportional to the ship speed as a damping term. This
means we can write the wave-drift damping theoretically for small
wavelengths in head sea as

BHWD = prCaZJ’ Sil’lz 0 n, dl (5.49)
Ly

By using th.e numerical method outlined by Zhao et al. (1988) it is
possible to calculate the wave-drift damping for any wavelength.

A
B wD L
._11__2_9 o Mean experimental value (Faltinsen et al.,1986)
B
PBL. ~—-= Experiments (Wichers, 1982 )
—— Asymptotic theory (equation (5.49),
15 4 Faltinsen et al.,1986)
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Fig. 5.21. Examples of wave-drift damping B, %" in surge for head sea regular
waves incident on a ship. (B = ship beam, L = ship length,
&, = wave amplitude of incident waves, @ = circular frequency of
oscillations). The results by Faltinsen ez al. (1986) and by Wichers
(1982) are for different ships.
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Experimental results for wave-drift damping in surge for two ship
hulls in head sea regular waves are presented in Fig. 5.21. Experimental
results can easily show large scatter, which means that high accuracy is
needed in the experimental technique. An example of numerical results
for a vertical circular cylinder is presented in Fig. 5.22. To obtgin the
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Fig. 5.22. Wave-drift force F, and wave-drift damping B, in surge for a
vertical circular cylinder that is free to surge in linear motions.
Incident regular waves. Infinite water depth. Draught = 3R. The
lower figure is obtained from the results in the upper figure.
(&, = wave amplitude of the incident waves, w, = circular frequency
of oscillations of incident waves, U = current velocity. Positive
current direction is in the wave propagation direction, D =
diameter.)
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wave-drift damping in an irregular sea we can proceed as for the mean
force, i.e. we can use an equation similar to (5.28). From this we find
that the wave-drift damping is proportional to Hiz in an irregular sea.
Going back to the formula for the standard deviation (equation (5.48))
and noting that Sy is proportional to Hy* we see that the standard
deviation of the slow-drift surge motion is proportional to Hy for higher

‘sea states. This is a somewhat unexpected result when we talk about a

second-order quantity, but experiments show the same tendency.

Faltinsen & Zhao (1989) argued that there also ought to be a
slowly-varying wave-drift damping if there is a slowly-varying excitation
force. This is a consequence of considering the slow-drift velocity to be
quasi-steady. Zhao & Faltinsen (1988) showed that the slowly-varying
wave-drift damping had little influence on the standard deviation of the
motions while it had a significant effect on the extreme values. The
results from the simulations showed that the extreme values of the
motions tended to follow a Rayleigh distribution if slowly-varying
wave-drift damping was included. This means the most probable largest
value x., in a storm of time duration ¢ can be written as

3
X max = O, (2 log TN> (5.50)

where Ty is the natural period of the slow-drift response variable. For a
storm of duration 10 hours and 7= 100s this means x.., = 3.430,.
However, more work is needed both hydrodynamically and statistically
to achieve more accurate and reliable estimates of extreme values for
slow-drift motions. Equation (5.50) should be understood as a rough
estimate.

To get good estimates of extreme values of slow-drift motions from
model tests or numerical simulations a long simulation time is needed.
Fig. 5.23 presents results from numerical simulations. (Transient effects
have been excluded.) Each record simulates the response of the same
system in the same sea state. The differences in the results from one time
series to another are due to random selection of phase angles and wave
amplitudes in equation (5.25). The standard deviations are nearly the
same, while it is obvious that the extreme values differ. About 20
realizations of the same sea state were used to get good estimates of the
most probable largest slow-drift motion amplitude.

If eddy-making damping is important and a frequency domain
soluuon is applied (see equation (5.47)), the equivalent linearization
technique can be used to approximate the eddy-making damping term.
This will be illustrated by studying slow-drift sway motion of a moored
ship. For simplicity we will neglect the coupling with yaw and the

SLOW DRIFT MOTIONS IN TRREGULAR WAVES 165

wave-drift damping in sway. The equation of motion can be written as

(M + A0 +Bpy Pl +Chpy=F% (5.51)

Here A,, is added mass in sway, C,, is restoring coefficient in sway due
to the mooring system, F,3V is the slow-drift excitation force in sway.
The slow-drift sway motion is denoted by y. The coefficient By, can be
expressed as 0.50CpA where p is the mass density of the water, Cp, is a
drag coefficient, and A is the frontal area of the submerged structure
against the motion. The problem of finding Cp will be addressed in

Slow drift motion

T 1 T
[¢] 25010 50020 75030 10004-0
Time (s) —

Fig. 5.23. Identical simulations of slow-drift motions of a moored two-
dimensional body. The differences in the results are due to random
selection of phase angles and wave amplitudes.
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chapter 7. We have excluded the relative velocity between the slow-drift
motion and the linear relative motion. This could influence the result.

The slow-drift sway is not strictly Gaussian; however, by assuming a
Gaussian response, we can write an equivalent damping B¢ as (see Price
& Bishop, 1974)

40;
B =B~ .
D) (5.52)
We can use equation (5.48) to find that
27)z
~ u2S S ) 2T .
0% = o’ S¥thn) 52 2C, Be = pn Se(p )SszBDGy- (5.53)
This means
(., 2 n(2m)? >i
0y = (ma"Seln) g - (5.5

where o;= u,0,

This equation shows that the standard deviation in sway is propor-
tional to Bp~}, where Bp is like a drag force damping coefficient. This
implies low sensitivity between o, and Bp. A 100% increase in Bp
means only a 20% reduction in o,. In equation (5.54) it is only the
slow-drift spectrum in sway that depends on the significant wave height.
This means the standard deviation of slow-drift sway motion is
proportional to His

SLOWLY-VARYING OSCILLATIONS DUE TO
WIND
Wind can also produce slowly-varying oscillations of marine structures
with high natural periods. This is caused by wind gusts with significant
energy at periods of the order of magnitude of a minute. In chapter 2 we
discussed how to evaluate the gust spectral density S(f) of horizontal
wind speeds (f = frequency in hertz).

In calculating the response to the wind gusts we need first to find an
expression for the wind gust force spectrum. We will follow Davenport’s
(1978) description. We will first consider a structure of frontal area A
against the wind, and assume that the structure is sufficiently small so
that there is no important variation in the wind over the structure. We
can write the horizontal force on the body in the wind direction as

FD=&L'29—[3AU2(t) (5.55)

The mass density of the air py is 1.21kgm™ at 20°C. Further,
U(t)=U +u' where U is the mean wind velocity and »’ is the gust
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velocity. The mean drag force is

Fo=P ‘";CDAUZ - (5.56)

Mean wind loads may be of equal importance as the mean wave-drift
force. By ignoring terms of order (u'/U)? the fluctuating drag forces can
be written as

Fp'(t) = CpAp. Uu'(t) (5.57)

We note that the fluctuating drag force is linearly dependent on the gust
velocity. The power spectrum of Fp'(¢) is then related to the gust
velocity spectrum by

S(f) = (CpAp.UYS() (5.58)

If the size of the structure is not small from a wind field point of view,
Davenport introduces an ‘aerodynamic admittance function’ as a correc-
tion of the result. (For more details see Davenport, 1978).

In analysing the response of the structure we can now proceed as we
did for the slow-drift oscillations caused by waves. For instance, if we
consider head wind the mean square value of the surge motion is

2_o W T
O _SF (wn) 2ch (559)

The index W means wind. The relation between gust spectrum ex-
pressed respectively by circular frequency w and frequency f in hertz is

Se¥(w)do =S df, w=2af

This means
1
Se¥(w)= 'Z—SF(D (5.60)
i1

The relation between the standard deviation o, of the slowly varying
oscillations due to wind gust and the mean offset x due to steady wind
can be expressed in a simple way by equations (5.59) and (5.36). By
using the Harris wind spectrum (see equation (2.40)), we find

o, (0.038f)t 1

= 5.61

2 @HhoF Vb G-oD
Here fN fN1800/ U,o (with dimensions given in meters and seconds),
U,o=U and p is the fraction between the damping b and critical

damping 2 mwy (see equation (5.48)). If for instance Ui =40ms™},
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Tn=100s and the damping b is 10% of the critical damping it means
that o, is 30% of the mean offset %.

SUM-FREQUENCY EFFECTS

It follows from the discussion of equation (5.3) that there are non-linear
effects due to the quadratic velocity term in Bernoulli’s equation that can
create excitation forces with higher frequencies than the dominant
frequency components in a wave spectrum. This is due to terms
oscillating with frequencies 2w;, 2w, and (w,+ w,). These may be
important for exciting the resonance oscillations in the heave, pitch and
roll of a tension leg platform. However, it can be shown that the
contribution from the quadratic velocity term in Bernoulli’s equation to
the sum-frequency heave forces for a tension leg platform is normally
small at the natural heave period in heave. This follows from the
exponential depth decay of this term, together with the fact that it is the
pontoons and the bottom of the columns that normally contribute to the
vertical force on a TLP and that the natural periods are from 2 to 4s.
The most important contribution to the vertical sum-frequency force on
a TLP comes from the second-harmonic part of the second-order
potential (Kim & Yue, 1988). The second-order potential ¢, follows
from solving a boundary value problem with the inhomogeneous
free-surface condition

I
D2 + 8P2. = — EY (12 + 1,2 + 91D

1 3
+-¢,, — =
p o 3¥ W (prut+gp) on 2=0 (5.62)

where the index | denotes first-order potential. The effect of current is
neglected in equation (5.62). Equation (5.62) expresses the fact that the
first-order potential ¢, gives an effect on ¢, which can be interpreted
physically as an imposed pressure on the free-surface. The existence of
second-harmonic pressure at large depth has been explained by Newman
(1990). A similar phenomenon exists for the second-order oscillatory
wave field when there are two linear long-crested wave fields propagating
in opposite directions, We will show this by writing the linear
(first-order) potential as

¢, =& ke (0t~ kx + 6;)
@,
+ 822 ez o5 (w0t — Akyx + 8)) (5.63)

(0}]

where A = +1 depending on the propagation direction of the second
wave in equation (5.63). A particular solution that satisfies equation
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(5.62), the deep water conditions and the Laplace equation can be

written
¢, = 2a,a,0,0,(w, — ®,) e®i R gin[(w, — w,)t
— (0, — 0 + gk — ki

—(ky—k)x+6,~8;] for A=1 (5.64)

and:
b, = zalazwla’zz(wl + w,) eli=kale
—(w; + w2)* +g |k — ks

—(kRy—kRx+8,+8,] for A=-1 (5.65)

sin[(w,; + wy)t

Equations (5.64) and (5.65) show that it is only when the waves
propagate in opposite directions that there are sum-frequency effects.

If the two frequencies @, and @, are equal, we note that the
second-harmonic term does not vary with x and z. This interesting result
was discussed by Longuet-Higgins (1953). When w, is close to w,, we
note that the sum-frequency effects decay slowly with depth. The
consequence of the small depth decay is that the resulting fluid velocities
are negligible. It-is the pressure that is of importance. However, since
resulting pressure gradients are small, there are small forces on a
completely submerged body.

In the case of regular waves incident on a two-dimensional body, the
reflected waves will interact with the incident waves in the way
represented by equation (5.65). In this case w, = w,. For the transmitted
wave system, the linear waves generated by the body propagate in the
same direction as the incident waves and there is no effect from the
second-order potential in the far-field. For a three-dimensional flow
problem the waves generated by the body along a ray opposite to the
incident wave direction create a similar second-order depth effect to that

.in the two-dimensional case with the reflected wave system. Since the

interaction along the ray opposite to the incident wave direction is
affected by interaction along other oblique rays, the second-order effects
are not equal in the two-dimensional and the three-dimensional cases.
By assuming that the dominant contribution to the second-order velocity
potential is from the far-field part of the forcing function in the
free-surface boundary condition, Newman (1990) showed that the
second-order harmonic potential is inversely proportional to the depth
and not exponentially decaying for large depth. This is in agreement with
Kim & Yue’s numerical results. In the case of two linear frequency
components ®, and w,, the 2w,- and 2w,-terms decay inversely
proportional to the depth. The (@, + w,)-term decays inversely propor-
tional to the depth if the two frequency components are close to each
other.
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Table 5.1. Main characteristics of a TLP
presented in Fig. 3.15

Water depth, m 600
Displacement, tonnes 52.000
Distribution, tonnes
Deck structures 6.000
Facilities 10.000
Ballast 1.000
Hull 16.000
{Subtotal) (33.000)
Top tension
= Risers 2.000
3 Tethers 17.000
Dimensions, m
Length overall 87
Column spacing 70
Draught 32
Under deck clearance 25
Column diameter 17
Natural period, s
Sway, surge 107
Heave 2.2
Pitch, roll 2.4
Yaw 87
EXERCISES

5.1 Tension leg platform

A tension leg platform is shown in Fig. 3.15. Main characteristics are

given in Table 5.1.
(a) Show that the natural periods of surge and heave motion of a
tension leg platform can be approximated as

3 M+A”>i
Ta= 2n<—P0/l
~ M+A33>¥'
T“3'2”< EA/l

where P, is the pre-tension in the tethers, [ the length of the
tethers and A is the cross-sectional dimensions of the tethers.
(b) Consider incident regular waves propagating in the positive
x-direction. The mean wave-drift forces in surge are given in
Fig. 5.24 as a function of @. Viscous effects are excluded.
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Discuss the behaviour of the wave-drift forces, particularly
asymptotic values and cancellation effects. Compare with the
asymptotic formulas for small wavelengths.

(c) Discuss in a qualitative way the importance of viscous effects
on the mean wave-drift forces.

(d) Calculate the standard deviation of the slow-drift surge
motion due to wind when the wind speed is 40 ms™'. Make
your own choices when necessary data are not given. Give an
explanation of your choices. You may assume that the
damping is due to drag forces.

(e) Discuss in a qualitative sense the importance of wave-drift
damping on slow-drift surge motion due to wind.

5.2 Moored ship
Consider a moored ship of length L in long-crested head sea waves that
can be described by a wave spectrum S(w). In the following calculations
use

-1 le
S(w) 32n)~' 0.5<—<1.5
= 2n
0 for other frequencies

+—

06 06 08 10 12 14 W (rad s

Fig. 5.24. Wave-drift force F, of the TLP described in Fig. 3.15 and Table
5.1. 0° wave heading. (@ = circular frequency of oscillations,
¢. = wave amplitude of the incident waves.)
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Assume the longitudinal wave drift force F, in regular head sea waves of
wavelength A and wave amplitude &, can be written in the simplistic

form

(@)

b

(@)

pglt?

Show that the mean longitudinal wave force in an irregular
sea can be written as

Fl = 00006ngH§2T1(wmax - wmin)

F, [0.03 0<A/L<0.5
0 for other wavelengths

where @ ma. = 37/T, and q;, the largest value of 2Vng/L
and z/T, whenever those values are less than @ ..
Otherwise @, = Wmax-

Use equation (5.48) to calculate the standard deviation o, of
the slow-drift surge motion. Show that the slow-drift
excitation spectrum Sg(u,,) can be expressed as

Sr(ttn) = 2(0.0006pgLH*T ) (w; ~ w1)

and explain the meaning of @, and w,. Assume the slow-drift
damping is only due to wave-drift damping. Express the
slow-drift damping coefficient B;;¥® in regular waves in the
following simplistic way

B, Y° [0.7 0<A/L<0.5
pLg)itr L0 for other wavelengths

Show that the slow-drift damping B,,¥P in irregular seas can
be written as

B, Y0 = 0.014p(Lg):Hy*T |(®max — Drmin)

Show that

pT (L (w,— w,) ]*
(M + All)(wmax - wmin)

where T, = 2n/u, and M and A,, are respectively the mass of
the ship and the added mass in surge of the ship.

o= 0.0014T,1H§[

5.3 Added resistance of ships in waves

Equation (5.24) is a crude approximation for the added
resistance of a ship in the ‘ship motion’ range. Use this
formula to discuss how the added resistance depends on main
hull characteristics. (Hint: See relevant discussion of heave
and pitch motion in chapter 3.)
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(b) The added resistance Ry of a ship is normally non-

dimensionalized as R ow/(pg&.2B%/L). Another way of non-
-dimensionalizing R oy is to divide Raw by pg&.2B. Which of
the two non-dimensionalized values of added resistance will
show least sensitivity to main hull characteristics?

(¢) Equation (5.28) can be used to calculate the added resistance

of a ship in a short-term sea state where the waves are
long-crested. Consider situations where the ‘ship motion’
range of the added resistance contributes most to the integral
in equation (5.28). Approximate the integral as

Fi=25(w,) f (%"Z—ﬁ)) do (5.66)

where F (o, B) only contains the ship-motion part of the
added resistance. This means the bow-wave reflection part of
added resistance for small wavelengths is excluded. In this
way the integral in equation (5.66) converges. @, in equation
(5.66) is the frequency where the non-dimensionalized added
resistance in regular waves has a peak value (see Fig. 5.11).
Assume a modified Pierson—Moskowitz spectrum with two
parameters Hy and T, (see equation (2.24)) and head sea
waves. Select a value of w,. Discuss for what ship length and
ship speed your choice of w, is realistic. Use Table 2.2 for
the joint frequency of significant wave height and spectral
peak period representative for the northern North Sea.
Assume the integral in equation (5.66) is known. Discuss how
much the added resistance for a ship can vary for realistic
combinations of Hyand T',.

(d) Consider an infinitely long horizontal cylinder of arbitrary

cross-section in beam sea regular waves. Assume the cylinder
has no mean velocity and the current velocity is zero. Use
Gerritsma & Beukelman’s formula (equation (5.23)) and show
that it can be written in the same form as Maruo’s formula
(equation (5.16)). (Hint: Use equation (3.26).) What effects
are included in Maruo’s formula, but not in Gerritsma &
Beukelman’s formula?
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6 CURRENT AND WIND LOADS

Analyses of current and mean wind loads have many similarities even
though water and air have different physical properties and typical
current and wind velocities differ significantly in magnitude (see Table
6.1).

The main factors influencing the flow can be characterized in terms of
the Reynolds number Rn= UD/v (U = characteristic free-stream velo-
city, D = characteristic length of the body, v =kinematic viscosity
coefficient), and the roughness number = k/D (k = characteristic dimen-
sion of the roughness on the body surface). Also important are body form,
free-surface effects, sea floor effects, nature and direction of ambient flow
relative to the structure’s orientation, and reduced velocity (=U/(f,D) for an
elastically mounted cylinder with natural frequency f,,). With nature of
ambient flow we mean, for instance, that the turbulence level in the
incident flow can affect the forces on the body. .

All full-scale cases of practical interest for our purpose are high
Reynolds number flow. For instance, the Reynolds number for current
flow with velocity 1 ms™ past a column of a semi-submersible with
diameter 15m is 1.4 - 107 at 20 °C. The Reynolds number for wind flow
with velocity 40 ms™' past a structural part with characteristic length
20 m is 5.3+ 107 at 20°C.

It is difficult to predict theoretically current and wind loads with

- sufficient accuracy. This is often true for three-dimensional flow and in
-turbulent incoming flow. The latter occurs for instance for pipelines close

to the sea floor and for structures in the wake of other structures like
jackets and flare towers.

In the following text we will summarize the important physical
characteristics of separated flow around structures in incident steady
flow. In chapter 7 we will discuss the effect of unsteady ambient flow.
We begin by examining steady incident flow past a circular cylinder.

STEADY INCIDENT FLOW PAST A CIRCULAR
CYLINDER
A classic problem in non-separated potential theory is steady flow past a
fixed circular cylinder. The tangential velocity U, around the cylinder
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Table 6.1. Mass density (p) and kinematic viscosity (v) of water and air

Salt water
Fresh water (salinity 3.5%) Dry air
P v - 10° P v+ 10° P v-10°
Temperature (kgm™) (m’s™Y) (kgm™}) (m’s™") (kgm™>) (m’s7)
0°C 999.8 1.79 1028.0 1.83 1.29 13.2
5°C 1000.0 1.52 1027.6 1.56 1.27 13.6
10°C 999.7 1.31 1026.9 1.35 1.25 14.1
15°C 999.1 1.14 1025.9 1.19 1.23 14.5
20°C 998.2 1.00 1024.7 1.05 1.21 15.0

o | [T~

Fig. 6.1. Definition of steady incident flow past a circular cylinder.

surface is then v
U.=2U,sin 6 AT (6.1)

where U., is the incident flow velocity and € is an angular coordinate
with 6 = 0 corresponding to the forward stagnation point on the cylinder
surface (see Fig. 6.1). The pressure p on the body follows from
Bernoulli’s equation, i.e.

p+ipUl=po+ LU 6.2)

where p, is the ambient pressure. The resulting pressure coefficient C,
can be written as

P — Do .2
=1-4sin“ 0 . (6.3)
P 3pUS
This is shown in Fig. 6.2, where experimental data for three different
Reynolds numbers are also plotted. In reality the problem is unstea.dy.
This means the experimental pressure values in Fig.- 6.2 are time
averaged data. The data are only presented for 6-values between 0 and
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180°. However, the pressure values for a negative 8-value between 0 and
~180° are symmetric about 6 = 0. This means there is no mean force on
the cylinder in the lift direction, i.e. orthogonal to the current direction.
It is evident from Fig. 6.2 that non-separated potential theory is a poor
approximation to the real flow. The figure shows that the pressure
coefficient and therefore also the drag coefficient Cp, is strongly Reynolds
number dependent. We note that the experlmental pressure is nearly
_constant over a ma)or part of the lee side of the cylinder. We can use ‘this
observation to express the force on the cylinder in terms of a ‘base
};ﬂcje_rpressure coefficient

P~ Do
lpUOOZ

where pg is a constant ‘base pressure’. This can be done approximately
by assuming potential flow on the upstream side of the cylinder, i.e. for
0 between —7/2 and &/2. For all other 6-values we assume a constant
pressure pp. This is obviously in error for 6-values in the vicinity of

i

Q= (6.4)

/' ?'.:' + )
_ P-Pg .
Co = 05p Uoo?
1
A\ :
\ Rn=
0 \ Je1%105
\ /(Flthsburf)
Rin=
\ INER
-1 /- (Roshko)

1
I
7 e
11x105
} Fuqe&Fnlkner)

; \
¥
\ /(*Pofenhul flow

-3 N
0 200 40" 60" 80T 100° IZO 140 160 180°

g ——

Fig. 6.2. Average pressure distribution p around a smooth circular cylinder in
steady incident flow. (Rn = U..D/v, D = cylinder diameter, U., =
incident flow velocity, 8 defined in Fig. 6.1, po = ambient pressure.)
(Roshko, 1961.)
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+/2. However, the major contribution to the drag force comes from
integrating pressure forces in the vicinity of 6 =0 and || = z. Further
shear forces can be neglected relative to pressure forces. Achenbach
(1968) showed that shear forces on a circular cylinder were between 1 and
3% of the pressure forces. The drag force F,, i.e. the force in the
incident flow direction, can be written approximately as

/2
=1pU., j (1 —4sin® ) cos R d6

n/2

3r/2
+f (P — o) cos 6 R dO (6.5)
/2
This means the drag coefficient C, can be written as
F,
Co=p = (-2 (6.6)

From Fig. 6.2 we note that Q = —1.25 when Rn=1.1-10°. From
equation (6.6) it means Cp = 0.92. This is in qualitative agreement with
accepted experrmental values. If ‘we had used potential theory also on the
(D’Alemberts paradox)

Fig. 6.3 shows experimental values for Cp over a broad range of
Reynolds number. The effect of surface roughness is included. In
practice surface roughness due to marine growth in the North Sea may
represent a thickness of 10 cm down to 40 m below mean water level. For

larger depths a “thickness of 5 cm is a more representative value.

¢, 1.2
1.0 N \:\1_‘5 % — O P e
Nl ]
0.8 >\ ?@/ A —
20001072 ] el
9001073 /
0.6 700 -107 g
I —— v
400107 5
0.4 200107 P
50:107 5
0.2 Rn
2:10° & 6 8 10° 2 4 6 8 10° 2 4

Fig. 6.3. Drag coefficient Cp, of rough circular cylinders in steady incident
flow for different surface roughness values k/D (k = average height
of surface roughness, D = cylinder diameter, Rn=U.D/v, U..=
incident flow velocity.) A, /D =110 - 107, O, k/D =450 107%;
O, k/D =900 - 10~°;, ——, Fage & Warsap (1929), (Achenbach,
1971).
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In the ﬁgure we note a very distinct drop in Cp-values in a erta1n
Reynolds number range. This is referred to as the critical flow regime
and is particularly marked for flow around a smooth cylinder. It is
common practice to divide this dependence on Reynolds number into
different flow regimes. However, there are many different definitions in
the literature. We will refer to the following four different flow regimes:
subcritical flow, critical flow, supercritical flow and transcritical flow.
For flow around a smooth circular cylinder the subcritical flow regime is
for Reynolds number less then =2 - 10°. The critical flow _regime is for
~2-10°<Rn <=5 - 10°. The supercritical flow regime is for ~5 - 10° <
Rn< =~3-10° and the transcritical flow is for Reynolds numbers larger
than 3 - 10°. In the subcritical flow the boundary layer is always laminar,
while in supercritical and transcritical flow the boundary layer is
‘turbulent upstream of the separation point.

BOUNDARY LAYERS

We will give a short description of boundary layer flow and flow
separation.

- According to the 1nv1sc1d theory for an ideal fluid we can write the
'/ tangential velocity around the cylinder surface in the form of equation
~ (6.1). For O-values between —u/4 and x/4 and for all Reynolds
numbers of practical interest this is a good approximation at a small
distance from the cylinder surface. However, it cannot be valid in the
immediate vicinity of the body surface. The physical tangential velocity
has to be zero on the cylinder surface. This means there is @ ‘boundary
layer along the cylinder surface. Viscous forces are important in this part
of the fluid. Let us study the boundary layer in more detail and assume
the boundary layer to be laminar, i.e. ‘well organized’. As an exercise we
will first say that the flow does not separate. That means we will assume
equation (6.1) to be valid outside the boundary layer. If we now solve the
boundary layer equations (see for instance Schlichting, 1979) we will find
a tangential velocity distribution within the boundary layer as shown in
Fig. 6.4. This figure gives information on how thick the boundary layer
is. However, there are different definitions of boundary layer thickness.
One deﬁnrtlon is, the normal distance from the wall to the point where
flow theory is valid, the local free stream velocity is given by equation
(6.1). From Fig. 6.4 we see that for 8 = 80° the tangential velocity is 99%
of the potential flow velocity when

y UL,,,R>’L’~
R( v 2

Here y is a coordinate normal to the body surface with y = 0 at the body.

(6.7)

b

/

BOUNDARY LAYERS 179

For Rn = 10° this means that the boundary layer thickness is about 1% of

the radius.

From the tangential velocity distribution in the boundary layer we can
determine where the flow separates. Flow separation means that the flow
breaks strongly away from the body. It occurs at a point S on the
cylinder surface where there is backflow in the boundary layer on the
downstream Slde of S and no backﬂow on the upstream side of S. This
means

L
Sy
on the body surface at the separation pomt If laminar boundary layer
flow is assumed and the velocity distribution given by equation (6.1) is
valid outside the boundary layer, it follows that the flow around a
circular cylinder will separate at angles approximately equal to +£110°
(Schlichting, 1979). However, this is not what happens in reality for

(6.8)’

8=80°

NG 10 u/U©)

Fig. 6.4. Example of tangential velocity distribution u inside a steady laminar
boundary layer flow around a circular cylinder. The results are for
one angular position 8 and are presented as a function of the
y-coordinate normal to the body surface (y = 0 is at the. body
surface). U,(6) = tangential potential flow velocity just outside the
boundary layer at the same angular position 6.
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laminar boundary layer flow past a circular cylinder. The correct
separation angles are approximately +80°. This shows that equation (6.1)
derived from non-separated potential theory does not represent the
velocity field and pressure field outside the boundary layer along the
whole cylinder surface. This was also evident from Fig. 6.2. If we had
used the experimental pressure distribution in the boundary layer
calculations we would have ended up with the correct separation points.
~ The boundary layer flow will only be laminar up to a certain Reynolds

number, beyond which transition to turbulence occurs. In order to
illustrate this let us define a local Reynolds number Rn, = U.x/v, where

x is the distance along the cylinder surface from the forward stagnation

point. At a certain value of Rn, = Rn,;, the flow will become unstable.
Downstream of this point small disturbances will be amplified. Fig. 6.5
shows where the point of instability occurs for flow past a circular
cylinder. This is based on calculations. However, we should note that the
flow outside the boundary layer has been represented by equation (6.1).
This is the reason why the separation point S is not correct. The figure
tells us that the point of instability for Reynolds number 10* is slightly
ahead of the separation point. We note that with increasing Reynolds
number the point of instability occurs further upstream on the cylinder,
However, the ﬂow will not become turbulent 1mmed1ately downstream of
becomies turbulent. The distance from the point of instability to the
point where the turbulent flow starts has to be experlmentally
determined.

7 6
Rn=1¢’ Rn=10 05
Rn=10° Rn=18
~

SEPARATION
POINT

Fig. 6.5. Position of points of instability against the Reynolds number Rn for
steady incident flow past a circular cylinder. (Adapted from
Schlichting, 1979.)
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The separation points for turbulent boundary layer flow differs from
laminar boundary layer. For supercritical and transcritical flow where the
boundary layer is always turbulent upstream of the separation points, the
separation angles are about i120° From this one sees that the ﬂow_

__layer ﬂow “This is a charactertsttc for any body shape

WAKE BEHAVIOUR //’
Up to now we have concentrated on what is happemng on the cylinder

surface. Only the time-averaged flow has been discussed. In reality the
ﬁow is unsteady and eddies are alternatively shed from each side of the

7{J;:reated in the boundary layer of the body 7,;:_‘”, . ;"

Fage & Johansen (1928) studied experimentally the vorticity distribu-
tion in the separated flow close to the separation points. The vorticity was
found to be concentrated in thin sheets leaving the separation points. At
some distance behind the body, the sheets were observed to break up
, into trails of discrete vortices. Most details were presented for cross-flow

“past_a flat plate The vorticity was estimated by measuring the flow

velocity and estimating the vorticity from. the two-dimensional definition
of vorticity, i.e. by

W, == (6.9)
(see equation (2.2)). The area of vorticity close to the flat plate and

outside the boundary layer is presented in Fig. 6.6. An example of the
velocity and vorticity distribution across the vortex sheet, i.e. the area of

_fLAT FLATE

09 Ynb= 065m?s’ _

Area of vorticity
is shaded

o, Q@ Y

uo.bl
X

Fig. 6.6. Area of vorticity close to an edge of a flat plate in cross-flow.
(Adapted from Fage & Johansen, 1928.)
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U
Vo Lis
F.2
+1.0
Horizontal velocity
£=0034
0 . y/b
05 06 v
-100
Wb
U
® | f-003p
Vorticity
-50
0 .
0.5 0.6 y/b

Fig. 6.7. Example of horizontal velocity («) and vorticity {(w,) distribution
across the area of vorticity in Fig. 6.6. w, is defined by equation

(6.9). Notation defined in Fig. 6.6. (Adapted from Fage & Johansen, '

1928.)
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vorticity, is presented in Fig. 6.7. It is evident that the velocity has a
strong gradient across the vortex sheet and that the flow velocity is small
on the back side of the body.

The amount of vorticity passing a section of the sheet per unit time can
be estimated by

K=J (%_%> dy (6.10)

where ¥, and y, are y-coordinates outside the vortex sheet on the upper
and lower s1ge,_r§:spect1vely

When the vortex sheet is thin, we can neglect v/3x relative to du/dy.
This means equation (6.10) can be written

Y1 Qu
K=— —udy——-z(Ul —Uz) (6.11)

Here U, and U, are respecnvely velocities at the outer and inner
boundarles of the vortex sheet. Equation (6.11) applies also in the.
boundary layer In this case y means the coordmate normal to the
cylinder surface and u is the velocity component tangential to the
cylinder surface. If equation (6.11) is applied at the separation point, we
can write it as

K=-1U2 (6.12)

e e

where U, is the tangential velocity just outside the boundary layer on the

local upstream side.

"If we imagine the vorticity stays concentrated in a vortex sheet leaving
each separation point, we can relate U to the rate of change of
circulation 8I'/8t around the vortex sheet. The circulation I' can be

written as
I‘=4;V-ds (6.13)
(o)

where V is the fluid velocity and ds is an element of C. The integration
curve C has to be closed, intersect the separation point and otherwise be
outside the analysed vortex sheet and not intersect other vortex sheets.
This is illustrated in Fig. 6.8, where we for simplicity have assumed that
the vortex sheet (free-shear layer) is infinitely thin. The integration
direction in equation (6.13) is in the counter-clockwise direction. Then
for the vortex sheets leaving the two separation points A and B in Fig.
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6.8 we can write

ar,
Fra —-3U.’ (6.14)
aT.
=, = s (6.15)

The circulation in a sheet leaving points A and B follows from an
integration of equations (6.14) and (6.15), respectively, with respect to
time. In a flow which starts from rest and with no initial vorticity in the
flow both T, and T, are initially zero.

It should be noted that the circulation around a curve that cir-
cumscribes the cylinder and does not intersect the vortex sheets, has to
be zero according to Kelvin’s theorem (Newman, 1977).

Free-shear layers easily become unstable and turbulent. If the flow is
laminar at the separation point, it will take only a short distance from the
separation point before it becomes unstable and turbulent. This means
wakes are turbulent even if the boundary layer flow is laminar.

VORTEX SHEDDING
In the starting process of separated flow around a circular cylinder a
symmetric wake picture develops, but due to instabilities asymmetry will
soon occur. The consequence is that vortices are alternatively shed from
each side of the cylinder.
Von Karman (see Lamb, 1945: pp. 224--9) has studied the stability of

Separation point ) Free shear
layer

//\ Integration curve
\ - for calculating
————— circulation TBin

free shear layer
leaving separation
point B
Fig. 6.8. Example of a curve used to calculate the circulation I" of a free shear
layer leaving a separation point.
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idealized vortex streets. He investigated the stability of certain geometri-
cal configurations of the eddies created behind a two-dimensional bluff
body. Each eddy was mathematically represented as a point vortex of
strength magnitude |T|. The eddies were situated in two parallel rows.
The directions of rotation of the eddies in one row are uniform and
opposite to the rotation in the other row. Von Karman found that only
two different arrangements are possible. The eddies in one row are either
placed exactly opposite those of the other row or they are symmetrically
staggered (Fig. 6.9). The stability investigation lead to the result that the
first arrangement is unstable, The second arrangement is generally

unstable, but become stable for a very definite ratio between the vortex

street w1dth h and dlstance 1 between two adjacent vortices in the same
row, i.e.

1
=—cosh™ '\/z 028 (6.16)

If we use a coordmate system ﬁxed to the body, the vortices will move
with a velocity

1Nl§~
’:\

r
l\/8

Here U, is the mc1dent velocity far upstream.
We can use von Karman’s idealized vortex street to get an estimate of
the vortex shedding period T',. From Fig. 6.9 we find

E(Um l\/8> (6.18)

Un— (6.17)

It should be noted T agg ! cannot be estimated from von Karman’s
theory. The reason is that there is no body geometry involved. Von
Karman’s theory is not limited to a a circular cylinder. For 31mp11c1ty let
us set & =D where D is the cylinder diameter and let us approximate the
vortex velocities by U.. We may write

D

T,U.,= 0 28 (6.19)

The non-dlmensmnal vortex shedding frequency may be represented by

D
l/2—>14——l———-ul

Fig. 6.9. Arrangement of vortices in a von Karman vortex street.
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the Strouhal number (St) and defined by

fvD
er

where f, = 1/T,. We then find St=0.28. This is a reasonable value for
transcritical flow. However it does not agree with experimental values for
subcritical flow. Better agreement is found if we use h=1.2D and

U..—T/(1V8)~0.85U.. This leads to St=0.2. This is a reasonable
value for subcritical flow.

We should note that we do not always see a vortex street behind the
body neither is there always a single vortex shedding frequency. In
critical and supercritical flow there is a spectrum of vortex shedding
frequencxes

In subcritical flow past a circular cylinder we may divide the wake into
three parts. The first is the so-called formation region (I <=5R); the
second, the stable region where the vortices exhibit the characteristics of
a fairly uniform vortex street (SR <[, < 12R) and the third, the unstable
region extending beyond 12R. The lateral spacing of the vortex cores
gradually increases within the stable region and like the longitudinal
spacing depends on the Reynolds number. Experimental values of the
mean relative spacing A/I vary from 0.19 to 0.3.

The vortex shedding results in oscillatory forces on the body both in
the drag and lift direction. If there is a single vortex shedding frequency
the force Fy in the lift direction can be approximated as

FL@)=|F,)cosQaf,t + @) (6.21)

where « is a phase angle. The lift force amplitude [F.| is normally
expressed in terms of a lift coefficient Cy, which for a circular cylinder is
defined as

St=

(6.20)

_|Fy)
CL—%pU 5 | (6.22)

There is large scatter in experlmentally determined lift coeﬂicwnts
The largest Cp-value reported by Sarpkaya & Isaacson (1981) was 1.35

for subcritical flow past a fixed circular cylinder. It should be noted that

the vortex shedding is more or less uncorrelated along the cylinder axis.
For subcritical flow past a fixed circular cylinder the correlation length is
smaller than 5 times the diameter and for transcritical flow it may not be
more than 1-2 times the diameter. The consequence of this is that the
phase angle a in equation (6.21) varies along the cylinder axis. This
means that the integrated lift force along the length of a cylinder will be
small due to cancellation of force contrlbutlons from dlﬂ'erent Cross-
sectlons of the cylinder.
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If there is a single vortex shedding frequency the force in the drag
direction can be approximated as
FD(t) FD +Ap cos(4ztf,t + B) (6.23)

Here F p is U] tlme mdependent and is_the_basis for_the normally defined
drag coeﬁic;_ents (see for instance Fig. 6.3). The ,amphtude Ap of the
oscillatory part of the drag force is typically 20% of Fp. We note from
equations (6.21) and (6.23) that the oscillation frequency of the
oscillatory part of the drag force is twice the oscillation frequency of the
vortex shedding frequency and the lift force. The reason why the
oscillation frequency is 2f, is that a vortex is shed from the cylinder with
a period T,/2. The fact that this occurs from alternate sides does not

matter for the drag force. However, for the lift force the force direction is

influenced by which side of the cylinder the vortex is shed. Therefore the

period of the lift force is T,. Due to lack of correlation of vortex
shedding along the cylinder axis, the phase angle § in equation (6.23)
will vary strongly along the cylinder axis in the same way as « in
equation (6.21).

The oscillatory forces due to vortex shedding may cause resonance
oscillations of structures. This will be discussed later in the chapter.

CURRENT LOADS ON SHIPS S

Empirical formulas are often used to calculate current forces and
moments on a ship. The drag force F;° on the ship in the longitudinal
direction will be mainly due to frictional forces. In the calculation of
F* one may generalize procedures - followed in the estimation of
ship resistance of a ship in still water. The Froude number
Fn=U /(Lg)%(U = current velocity, L =ship length) is so small that
wave resistance can be totally neglected relative to viscous resistance.
The following approximate formula may be used:

. 0.075
e Uz 6.24
F\*= fogeRa —2 1SS o0 Bleos (6.24)

Here B is the angle between the current velocrty and the longitudinal

x-axis. (The posmve x-direction is in the aft drrectron) S is the wetted

surface of the ship and

U_ L |cos S|
v

Rn = (6.25).

An alternative is to use a generalized Hughes (1954) formula. That

/(log;o Rn — 2. 03»)2 where kbﬂrs a form factor found from experlments
“Typical values vary between 0.2 and 04 when B=0. If the flow

separates in the stern, k2 may be up to 0. 8.
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To evaluate the transverse viscous current force and current yaw
moment on the ship one can use the cross-flow principle as long as the
current direction is not close to the longitudinal axis of the ship. The
cross-flow principle assumes that the flow separates due to cross-flow
past the ship, that the longitudinal current components do not influence
the transverse forces on a cross-section, and that the transverse force on
a cross-section is mainly due to separated flow effects on the pressure
distribution around the ship. This means we write the transverse current
force F,° on the ship as

Fyf= %p[L dxCD(x)D(x)] U2 sin B |sin B (6.26)

where the integration is over the length L of the ship. Further, Cp(x) is
the drag coefficient for cross-flow past an infinitely long cylinder with
the cross-sectional area of the ship at the longitudinal coordinate x, D(x)
is the sectional draught.

The yaw moment F¢° due to current flow is the sum of the Munk
moment and the viscous yaw moment due to cross-flow. We can write

F&= %p[L dxCD(x)D(x)x] U sin B |sin B|

+1UXAz — Ay sin 28 6.27)
where A,;, A,, are added mass in surge and sway, respectively. The last
term is the Munk moment and can be derived from non-separated
potential theory. We will show the derivation of the Munk moment later
by using a strip theory approach. The Munk moment is valid for any
body shape.

We may note that the Munk moment and the viscous current moment
have different angular dependence. This is illustrated in Fig. 6.10. The
angular dependence of the transverse current force and the yaw moment
predicted by equations (6.26) and (6.27) agrees reasonably well with
experiment values in the vicinity of § =90°. Fig. 6.11 presents theoreti-
cal and experimental values for transverse current force. “Theoretical’ is
an ambitious word in this context. What we have done in the vicinity of
90° is to fit equation (6.26) to agree with the experimental value at
B =90°. However, we note that the angular dependence predicted by
(6.26) is reasonable in the vicinity of 90°. For small angles of attack, i.e.
B close to 0°, the transverse forces are estimated by considering the ship
hull and the rudder to be lifting surfaces. (For more details about the
physics see Newman, 1977.)

The results for the yaw moment are presented in Fig. 6.13. The
moment is with respect to the z-axis defined in Fig. 3.2. A positive yaw
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Fig. 6.10. Angular dependence of viscous yaw moment and Munk moment.
(B = 0° means current direction towards the stern of the ship.)
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Fig. 6.11. Transverse current force F,° on the ship presented in Table 6.2 and
Fig. 6.12. (U, = current velocity, L = ship length, D = draught,
B = current angle relative to the longitudinal direction of the ship.
B = 0° means current direction towards the stern.) (Faltinsen et al.,
1979.)
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Table 6.2. Main particulars of a 130 000 DWT (dead weight tonne)

ship

Condition
Parameter Unit Ballast Loaded
Length between
perpendiculars m 285.60 285.60
Beam m 46.71 46.71
Depth m 20.35 20.35
Draught fore m 4.84 13.82
Draught aft m 7.04 13.82
Draught mean m 5.94 13.82
Displacement tonnes 61754.00 154 980.00

Centre of gravity,

longitudinally from

midships, positive aft m 2.10 6.46
Centre of gravity,

vertically from

baseline m 9.73 11.03
Metacentric height m 21.50 8.97
Pitch/yaw radius

of gyration m 71.40 71.40
Roll radius of

gyration m 16.35 16.35
Natural pitch period s 9.80 9.80
Natural roll period s 9.40 12.80

moment means the current tends to rotate the ship to a smaller angle 8.
Again we have fitted the ‘theory’, i.e. equation {(6.27), to agree with the
experimental results at § =90°. The angular dependence is now more
complicated than for the transverse force, but we see a good agreement
between - ‘theory’ and experiments in the vicinity of 90°. The figure
illustrates that the Munk moment and the viscous yaw moment are of
equal importance. One way to see this is by noting the magnitude of the
yaw moment at 8 = 90°. This is only due to viscous drag effects. This can
be compared with the yaw moment at 8 = 45°, where the Munk moment
has its maximum value and the viscous yaw moment is 1/V/2 times the
value at 8 = 90° according to the ‘cross-flow’ principle.

Cp-values for ship sections
In order to improve the predictions by equations (6.26) and (6.27) we
need to know more about Cp-values. It is difficult to do this by
theoretical means only. We will in the following text discuss what are the
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important parameters influencing Cp. Important, parameters are for

instance free-surface effects, beam—draught ratio, bilge radius, bilge keel - [

dimensions, Reynolds number and three-dimensional effects.

Free-surface effects
The free-surface tends to act as an infinitely long splitter plate. Hoerner
(1965) refers to Cp-values for bodies with splitter plates of finite length

in steady incident flow. The splitter plate causes a clear reduction of the

drag coefficient.
A simple explanation of why the free-surface has an effect on the drag

T
O Eﬁ ———
AP. FP.
i) —
AP FP

BODY PLAN

Body plan of tanker model

Fig. 6.12. Body plan of tanker model described in Table 6.2. F.P. = forward
perpendicular. A.P. = aft perpendicular. The numbering of sections
on the bottom part follows a standard numbering of ship cross-
sections; it starts with section 1 on the aft part of the ship and ends
with section 20 on the forward part of the ship. The figure shows
only half of a cross-section. The other part is symmetric about the
centre-line.
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coefficient can partly be given by means of Fig. 6.14. The shed vorticity
is represented by one single vortex of strength I', which is a function of
time. To account for the free-surface effect one has to introduce an image
vortex. This ensures zero normal velocity on the free-surface. If the
splitter plate (free-surface) had not been there, instabilities would cause a
Karman vortex street to develop behind the double body. The image
vortex illustrated in Fig. 6.14 has a stronger effect on the motion of the
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Fig. 6.13. Current yaw moment [7¢° on the ship presented in Table 6.2 and
Fig. 6.12. Notation defined in Fig. 6.11. Positive yaw moment
implies rotation of the ship towards smaller S-angles. Moment is
with respect to vertical axis through the centre of gravity of the ship.
(Faltinsen et al., 1979.)
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Fig. 6.14, Simple vortex system with an image flow above the free-surface so
that the rigid free-surface condition is satisfied.
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real vortex than the vortices in a Karman vortex street.behind the double
body have on each other. Since there is a connection between the
velocities of the shed vortices and the force on the body we can
understand why the free-surface influences the drag coefficient. In the
case of oscillating flow at low amplitudes, which has relevance for
eddy-making slow-drift damping, the eddies will stay symmetric for the
double body without a splitter plate. This means the free-surface has
little effect in this case.

Beam-—draught ratio effects
Experimental results by Tanaka et al. (1982) show little effect of the .
height—length ratio_on the drag coefficient for two-dimensional cross-
sections of rectangular forms. One exception was for small height—length
ratios. If one translates the results to midship cross-sections, it implies
that the beam—draught B/D has small influence on the drag coefficient
when B/D >0.8.

Bilge radius effects
Experimental results by Tanaka et al. (1982) show a strong effect of the
bilge radius r on the drag coefficient. Increasing the bilge radius means
decreasing the drag coefficient. What we mean by strong effects can be
seen by writing Cp = C,e™™? + C,, where C, and C, are constants of
similar magnitude and D is the draught. As an example 2 may be 6.

Effect of laminar or turbulent flow

The classical results for a circular cylinder show that there is a critical
Reynolds number. Below the critical Reynolds number the boundary
layer is laminar. In the supércritical and transcritical range the boundary
Tayér is turbulent. The consequence of this is quite different separation in
the “subcritical and_transcritical Reynolds number ranges. A further
consequence is a difference in drag coefficient. For a smooth cylinder the
critical Reynolds number is at 2 - 10°. By increasing the roughness of the
cylinder surface, the critical Reynolds number will decrease. For marine
structures one often has the situation that model tests have to be
performed in the subcritical range, while the full-scale situation is in the
transcritical range. However, when the separation occurs from sharp
corners one would expect less severe scale effects.

Aarsnes (1984) (see also Aarsnes et al. 19835) has shown that the drag
coefficient may be substantially different depending on laminar or
turbulent separation. This is also evident from Delany & Sorensen’s
(1953) results. Aarsnes’ results were for ship cross-sectional forms. The
ship body plan is shown in Fig. 6.15. The results are presented in Fig.
6.16, both for subcritical and transcritical flow. Estimates for the drag
coefficients for other cross-sections along the ship in subcritical flow are
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also shown in Fig. 6.16. In general there is a significant difference
between the drag coefficient in subcritical and transcritical flow. The
reason is that the flow separates more easily in subcritical low. This is
illustrated in Figs. 6.17 and 6.18 for the midship cross-section. In
subcritical flow where the boundary layer flow is laminar, the flow
separates at the ‘leading’ bilge. However, a turbulent boundary layer
which occur in transcritical flow, can sustain a larger adverse pressure
gradient without separating. This is the reason why there is no separation
at the ‘leading’ bilge for transcritical flow. If separation occurs at both
corners it seems as if the drag coefficient is roughly speaking twice the
value compared to the case when separation occurs only at one corner.

12-40M (CWL)

10-16

7-10 .
Base line

Fig. 6.15. Body plan of the ship examined in Fig. 6.16 (see also Table 6.3).
Numbering of sections explained in Fig. 6.12.
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Fig. 6.16. Calculated and estimated drag coefficients Cp, for two-dimensional
cross-flow past cross-sections along the ship presented in Fig. 6.15.
(Adapted from Aarsnes et al., 1985.)
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. Bilge keel effects

One important effect of bilge keels is that the separation points are fixed
along the bilge keel and are not scale dependent. The length of bilge keels
is typically half the ship length. A consequence of this is probably that
ships with a bilge keel avoid the serious problems associated with scaling
of transverse current force from model scale to full scale. Since the bilge
keels are centered midships, we are more uncertain about the scaling of
yaw current moment. The drag coefficient is not very sensitive to the
breadth of the bilge keel.

i

Table 6.3. Main qurticulars of ship presented in Fig. 6.15

Symbol  Unit Model

Length between perpendiculars L, m 5.785
Beam B m 0.794
Draught D . m 0.305
Block coefficient Cs 0.84

Wetted surface area S m> 7.096

Length scale ratio of ship to model: 40.62.

t*=0.8

Fig. 6.17. Wake development for cross-section 10 of the ship presented in Fig.
6.15 (subcritical). The calculations are shown for different time
instants ¢ and are based on numerical calculations by Aarsnes (1984)
with a thin free shear layer model. (t* = U t/D, U, = current
velocity, ¢t = 0 corresponds to start time of the calculations, D =
draught.) (Aarsnes, 1984.)
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Three-dimensional effects
Aarsnes (1984) pointed out that three-dimensional effects at the ship
ends will reduce the drag force compared to a pure strip theory
approach. One way of taking this into account would be to use a reduced
effective incident flow at ship ends as predicted in a qualitative way by
Aarsnes. Physically, the reduced inflow velocity is due to the eddies at
the ship ends (see Fig. 6.19). The effective reduced inflow can be
translated into a reduction factor of the two-dimensional drag

t*=0.8

t“=24

e

Fig. 6.18. Wake development for cross-section 10 of the ship presented in Fig.

6‘.)15 (transcritical flow) (See also explanation to Fig. 6.17). (Aarsnes,
1984.)
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Fig. 6.19. Sketch of the vertical vortex system at ship ends present in
cross-flow past the ship.
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coefficients. The reason is that the forces on a cross-section are
proportional to the square of the local inflow velocity, i.e. »2, and that
the drag coefficient is normalized by the square of the current velocity,
i.e. U2. The reduction factor is simply »°/U.*. This reduction factor is
presented in Fig. 6.20 and should be multiplied by the .two-dimensional
results in Fig. 6.16 to obtain the correct local two-dimensional solution.
The local two-dimensional results can be added together by a strip-
theory approach to find the three-dimensional results.

Munk moment
We will now derive the strip theory version of the Munk moment

presented in equation (6.27). We write the velocity potential for
non-separated flow as

®=Uxcos+U,ysinf+¢ (6.28)

The perturbation potential ¢ due to the presence of the body satisfies the
three-dimensional Laplace equation, the body boundary condition
] .
——?= —n,U.cos B —n,U,.sin B _ (6.29)
on
and the rigid free-surface condition. Here n is the normal to the ship
surface with positive direction into the fluid. We can write

n=(n,, ny, n3) (6.30)

If we use the strip theory concept we will neglect x-derivatives relative to
y- and z-derivatives in the Laplace equation. This means ¢ satisfies
a two-dimensional Laplace equation in the cross-sectional plane. The
body boundary condition can be written as

o¢

—L = —n,U,sin B (6.31)
N ¢
A 3-D Reduction
factor
05+
T T 7 T 1 T T T T T T T T T T T T I)V
AP 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 18 FF

Fig. 6.20. Three-dimensional reduction factor of local drag coefficient due to
the vertical vortex system at ship ends desctibed in Fig. 6.19.
(Adapted from Aarsnes et al., 1985.)
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where N is the two-dimensional normal in the cross-sectional plane. We
can write

¢=—Ue.sinB ¢, (6.32)

where ¢, is the normalized two-dimensional sway velocity potential at
zero-frequency. By ‘zero’-frequency we mean a very small frequency.
Due to the zero-frequency assumption ¢, will satisfy the rigid free-
“surface condition. From ¢, we can derive the added mass in sway. The
‘zero-frequency’ two-dimensional sway added mass for one cross-section
can be written as

AR®P(x)=—p ¢on,y ds (6.33)
C(x)
where C(x) is the wetted cross-sectional surface.
Let us now pursue the calculation of the current yaw moment. The
pressure follows from Bernoulli’s equation and can be written as
(hydrostatic pressure is excluded)

AL (2 (oo o
P 2 1\ ax 3y 22 =pot2pU; (6.34)
Since the constant ambient pressure p, does not contribute to the force,
we simply set it equal to zero in the following text. This means

_ - 9% _ v sing2®
p=—pU.cos B P pU.sin B %
4G+ () +(3)]
2 [( ox + Sy * oz
. o¢ . 3
=§Ucz sin 2[3-(—9-x—2+ pUZ sin’ [3{%—% W¢2|2} (6.35)
The yaw moment can be written as

3
F6=£Uczsin2,6’fdxxf 9%z, ds
2 L C(x) ax

. 3
+ pU2sin? B f dxxj {-&——% |V¢2|2}n2 ds (6.36)
L cx L Ay
This expression can be further simplified. We will illustrate this by an
example where the sum of the ship and the ‘image’ hull above the
free-surface has circular cross-sections with radius R(x) (see Fig. 6.21).
The velocity potential ¢, can be written
R’(x)

p2= ——, cos 0 (6.37)
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This expression satisfies the body boundary condition 3¢,/ON =n,
which can be written 8¢,/dr = cos 6. Further, it satisfies the rigid
free-surface condition 3¢,/3z2=0 on 2=0 and the two-dimensional
Laplace equation for each cross-section of the ship. In evaluating the
pressure on the body (see equation (6.35)) we need to know 3¢,/ 3x,
3¢,/3y and |V¢,2, as follows

ax dx r
3
——?2 =cos 28
Y lr=r@

dR 2
|V¢2l12'=R(x) = 4(;1‘;‘) COS2 g+ 1

When calculating the yaw moment we need to evaluate

A 1 2)
— =3IV n,ds
[ (G-twei)n

27 1 dR 2
= L (cos 20 -3 (1 + 4(5) cos? 9)) cos 8R d8

Since both 3¢,/3y and 3 |V¢,|* are symmetric about the z-axis and #, is
antisymmetric about the 2-axis, it follows that the integral is zero. This is
true for any cross-sectional surface that is symmetric about the z-axis.
Hence the last term in equation (6.36) is zero.

For a ship with circular cross-section we can write the integral over

v ™~ "Imuge"hull

™ Hull

Fig. 6.21. Cross-section of a ship hull and image hull above the free-surface.
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C(x) in the first term of equation (6.36) as

] dRZ 25 2
f &nzds=‘_'(i)f cos29d9=—dR ()7
C(x) dx £14

ox dx 2

By integrating by parts and using the fact that the cross-sectional area is
zero at the ship ends it follows that

Fo=05U2sin2f | dx pJ—ZTRZ(x) =0.5U2sin2B A, (6.38)
L

This result can be derived in a similar way for other cross-sectional
shapes. According to slender body theory (strip theory) the added mass
in surge A, can be neglected relative to the added mass in sway A,,. Our
result for the Munk moment is therefore consistent with the result in
equation (6.27). We note that the result is independent of the origin of
the coordinate system. The reason is that the derivation is based on
potential theory and that there is no force acting on a body in infinite,
inviscid and irrotational fluid (ID’Alemberts paradox). In our case the
fluid is not infinite in all directions. However, due to the rigid
free-surface condition the problem of studying the flow around a ship in
incident horizontal current is equivalent to studying the flow around a
double-body in infinite fluid. The double-body consists of the ship hull
and its mirror image above the free surface.

What we have shown in the derivation above is that the Munk moment
part of the current yaw moment on a ship is due to the pressure part
p=—pU_cos B3¢/0x where ¢ is the velocity potential —U,sin B ¢,
due to the cross-flow past the ship.

We note from the derivation that the effect of flow separation is
neglected. Strictly speaking this is incorrect. What we have done is to
account for flow separation in only one part of the expression of the
current yaw moment (see equation (6.27)). The reason why this viscous
part is not sufficient to describe the current yaw moment is that the
three-dimensional effects are not properly accounted for. The pressure
part —pU_.cos f3¢/3x that gives the Munk moment represents a
three-dimensional effect because it involves the variation of the velocity
potential ¢ in the longitudinal x-direction of the ship.

CURRENT LOADS ON OFFSHORE STRUCTURES
The Munk moment on a general body can be derived from a formula
presented by Newman (1977). For a body moving with a constant
translational velocity U= (U,, U,, U3) in an infinite, inviscid and
irrotational fluid we can express the moment M by

M= ~pU><” onds (6.39)

Sy
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(see equation (99) en p. 136 of Newman, 1977). The surface normal
direction n = (n,, n,, n3) on the body surface Sg is assumed positive out
of the fluid in Newman’s derivation. The velocity potential ¢ in equation
(6.39) can be written as

3
= Ui (6.40)
i=1
where ¢; satisfies the body boundary condition
%=ni i=1,2,30nSg (6.41)
an
By using the fact that the added ‘mass coefficient A_ can ‘be written
Aj[= P ff (;i),-nj ds (642)
SB

we can now wrlte equatlon (6. 39) as

i=1 Li=1
where ¢;, j=1,2,3 are ‘unit_vectors along the x-, y- and Z-axis,
respectively. By multiplying out the cross-product we find

3 3
M= —31<U2 E UAsi— Us E UiA2i>
i=1 i=1
3 3
- e2<U3 E UA,— U, E UiA3i>
i=1 i=1
3 3
~e(UL 3 Uy = U, 3, Udu) (6.44)
i=1 i=1

ship. Observed from the ship the translational velocity, , U, is the same as
an incident current velocity. Then we can write U, = U.cos B8, U,=
U,sin B, U; = 0. From equation (6.44) it follows that the yaw moment is

—€3 UCZ cos [3 sin [3 (AZZ - A“) (645)

This is the same as the Munk moment part in equation (6.27) if we
recognize that the x-, y- and z-directions defined here are opposite the
x-, y- and z-directions used in equation (6.44).

We can apply equation (6.44) to any offshore structure in a current.
However, we should realize that we have assumed infinite, inviscid-and
irrotational fluid. As pointed out in the last section this means that there
is no hydrodynamlc force on the body. This is the reason why equation
(6.44) does not depend on the position of the origin of the coordinate
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system. The added mass coefficients in equation (6.44) can for instance
be calculated by the source technique presented in chapter 4.

Another application of equation (6.44) could be to study the behaviour
of a submarine in steady forward motion in infinite fluid. This means
that U, = U; =0 and we find

M = er12A31 — €3 U12A2| (646)
Since a submarine has port—starboard symmetry it follows that A,; =0
and since A;; is generally non-zero it means that the submarine
experiences a pitching moment. The sign of the moment depends on the
sign of the coupled added mass coefficient A;; between heave and surge.
This effect is also important for SWATH (small water plane area twin
hulls) ships.

We can generalize the way viscous current loads were calculated for a

ship (see equations (6.26) and (6.27)) to offshore structures that consist of

slender structural parts. Examples of the latter are columns and pontoons
of semi-submersibles and of tension leg platforms (TLP). Other
examples would be risers or cables. This means we decompose the
current velocity into one component in the longitudinal direction and one
component in the cross-flow direction of a slender structural part. We
assume that the longitudinal current velocity component causes only
shear forces as shown in equation (6.24) for longitudinal drag forces on a
ship. The cross-flow component causes flow separation. The force on a
cross-section (strip) due to flow separation can be calculated in a similar
way to equation (6.26). Thus, the mean force per unit length can be
written as (see Fig. 6.22)

Fp= —g- CpDUY’ (6.47)

Fy= g C,DU? (6.48)

Here D is a characteristic cross-sectional length such as the diameter for
a circular cylinder. Further, Fp, is the mean force in the same direction

as the cross-flow component Uy of the current velocity and Fy is the.

mean force orthogonal to Fy, in the cross-flow plane. Fy is zero for a
smgle body in infinite fluid when the body is symmetric about an_axis
parallel to the direction of Uy. Based on equations (6.47) and (6.48) we
can calculate total current force and moment on the structure. This is
similar to that shown in equations (6.26) and (6.27) for a ship. The drag
and lift coefficients Cp and C; have to be empirically determined.
Important parameters influencing Cp, and Cy are discussed in the section
on current loads on ships. In addition it should be noted that there may
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be hydrodynamic interaction between structural parts. For instance, if a
cylinder is placed in the wake behind another cylinder it will experience
a smaller incident velocity and therefore a smaller drag coefficient if the
free stream is used to normalize the drag coefficient. This can be
illustrated by using a theoretical expression for the wake velocities far
behind a two-dimensional body. According to Schlichting (1979: pp.
742-3), we can write. the mean wake velocity component u in the

direction of the incident velocity as

2 -1-0. 95( )_% e~ (6.49)
u.=! CpD ‘
where .
n = (0. ozzchDx)-% (6.50)
Here U., is the mc1dent velocity.
H— =
C J
Ue
\_/ Un
VA 77 Y/, 4, 724
Un
—_—

Fig. 6.22. Definition of force components on a cross-section of a slender
structural member. (U, = incident current velocity.)
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The x-axis is assumed parallel to the incident flow velocity direction
and the y-axis is orthogonal to the x-axis. The origin of the coordinate
system is at the geometrical centre of the body. Further, Cp, is the drag
coefficient and D is the frontal area of the body per u/nitdl;igt_g projected
on the y-axis or another characteristic length used in describing the drag
forces (see equation (6.47)). The solution described by equation (6.49)
agrees very well with experimental data when x/(CpD) > 50. Below this
value it is not clear if equation (6.49) can be used for practical purposes.
However, it should be remembered that the velocity difference U, — u is

assumed to be small compared with the free stream velocity U... If we

consider two circular cylinders in tandem with a large distance I between
the centres of the cylinders (see Fig. 6.23) we can use equation (6.49) to
calculate the drag coefficient Cp® on the cylinder in the wake of the

other cylinder. The square of the incident velacity acting on the wake

cylinder is then approximately

4
ul =~ Uj(l -2 0.95[951’2]) (6.51)
Equation (6.51) gives the following result
£ coDu? .
CD == CD - 1.9CDZ<—I‘> (652)
Lup

If Cp = 1.0 we find from equation (6.52) that Cp,® is respectively 0.58,
0.7 and 0.81 for /D =20, 40 and 100. Strictly speaking we should not
apply the formula when 1/D =20 and 40.

The above procedure can be generalized to several bodies, where the
wake from one body influence other bodies. Zdravkovich (1985) has
given a survey of results for interaction of pipe clusters in steady incident
flow. We will refer to some of his results for two cylinders. He defines
three basic interference categories. That is proximity interference (P),
wake tnterference (W) and no tnterference. The first kind means that the
examined cylinder is not in the wake of the other cylinder. The different

PRCES R I

[ 1 e
I ) 1

Fig. 6.23. Definition of parameters for two cylinders arranged in tandem
position.
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regions are shown in Fig. 6.24(a). It is assumed that the two cylinders
have the same radius. Only one reference cylinder is shown. This
cylinder is for instance downstream of the other cylinder if x/D <0 in
Fig. 6.24(a).

Examples of the flow picture that occurs in the different regions are
shown in Fig. 6.24(b). For example, in a side by side arrangement we see
only one single vortex street when 1<y/D <1.1 to 1.2. When 2.7 <
y/D <4—75 we see that the two vortex streets mirror each other. One
way to estimate that there is little influence between two cylinders in a
side by side arrangement when y/D>=5 is to use the analytical

~ \\
/ LTAN % BISTABLE FLOW REGIONS
/ ¥/D \
3t ‘\\
pls . NO INTERFERENCE
PROXIMITY 2} INTERFERENCE
. _———__—:—" e
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f\ \ //////////////
Lo NN i - g
-2 -1 I 2 3 x/0
ta) \—j\m' b WIZ 4. wWT1&2
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Fig. 6.24 (a). Regions of flow interference categories, (b) interference flow
regimes (schematic). PSA, PSB and PSC are different parts of the
area described as PS in (@). WT1, WT2, WSD and WSG are
explained in (). (Zdravkovich, 1985.)
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potential flow solution around a circular cylinder at the position of the
other cylinder.

In a tandem arrangement we see that the vortex street behind the
cylinders is formed from the free-shear layer detached from the first
cylinder when 1<sx/D < 1.2-1.8. When 1.2-1.8=<x/D <3.4-3.8 the
free-shear layer that separates from the first cylinder, re-attaches to the
second cylinder. Fig. 6.25 shows a photo of vortex formation around two
vertical cylinders in a tandem arrangement in steady incident flow. The
cylinders were towed in a model basin. The visualization was done by
placing confetti on the free-surface and taking photographs. The photo
illustrates that a vortex from the upstream cylinder can be trapped
between the two cylinders.

Zdravkovich (1985) presented results for mean lift, drag and Strouhal
number both for the subcritical and supercritical flow regimes. If the
cylinders are close he shows that the drag may be negative on the second
cylinder in a tandem position. This may occur if x/D < =4. The results
are dependent on the Reynolds number, the roughness ratio and the
number of cylinders. The minimum drag coefficient that Zdravkovich
reports is =—0.6.

Fig. 6.25. Flow visualization of vortex formation around two cylinders in
tandem arrangement in steady incident flow. The photo illustrates
that a vortex from the upstream cylinder can be trapped between the
two cylinders.
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WIND LOADS
Wind loads can be estimated in a similar way to current loads. Empmcal
or experimental data is necessary. For instance, Isherwood (1973) has
presented drag coefficients for passenger ships, ferries, cargo ships,
tankers, ore carriers, stern trawlers and tugs, and Aquirre & Boyce

- (1974) have estimated wind forces on offshore drilling platforms.

VORTEX-INDUCED RESONANCE

OSCILLATIONS
The oscillatory forces due to vortex shedding may cause resonance
problems This is well known in many fields of engineering. We will
illustrate vortex-induced oscillations by two _examples.

One case is a moorgd Toading buoy in a uniform current of velocity U..

The buoy is a vertical cylinder of length L and diameter D, where
L/D>>1. The vortex-shedding period T, can be found from the

Strouhal number St_, i.e.

1 D

a2 6.5
T (6.53)

Let us assume the current direction to be parallel to the x-axis, D =20 m
and U, =1ms"". The corresponding Reynolds number is ~2 - 107. This
means St= 0.25 (see Fig. 6.26) and T, =80s. If T, is in the vicinity of
the natural period for sway oscillation, the consequence is large vortex-
induced sway oscillations and drag-forces. Both the resulting horizontal

05 -
st ] Vs f
0% - ! i ‘
03 |
"_\_\./ .:.-//Jx[‘ B

= .

02
1 1 l } i Rn

Fig. 6.26. Strouhal number St of rough circular cylinders in steady incident
flow for different surface roughness values k/D (k& = average height
of surface roughness, D = cylinder diameter, St=f,D/U.., f, =
vortex shedding frequency, U.. incident flow velocity, Rn =
U.D/v.) ,smooth; —+ + - —, k/D=7.5-10"% ——, k/D =
3.10"% —-—, k/D=9-10"% ———, k/D =3 - 1072, (Achenbach
& Heinecke, 1981.)
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S !
AL

“excursions of the anchor-lines and the drag-forces may be of importance
in the design of the mooring system.

Another example is a riser in a current. The vortex-induced oscilla-_

tions may cause elastic resonance oscillations. We will illustrate this with
an example and consider a family of risers for different water-depths up
to 2000 m (see Fig. 6.27). The top tension was kept constant equal to

1250 kN for all risers. For increased water depths the end geometries.

were unchanged while the buoyancy parts were increased with length.
The submerged weight of this part of the riser. was close to zero. The
natural periods for different eigenmodes are shown as_a function of water.
depth in Fig. 6.28. Let us as an example consider a current velocity of
0.8ms™"'. For the buoyancy part D =1m. This means a Reynolds
number of =8 - 10°. For a smooth cylinder this implies the supercritical
flow regime, where there is a vortex-shedding frequency spectrum.
However, in reality there is likely to be marine growth. The higher the
roughness ratio is, the lower the critical Reynolds number is (see Fig.
6.3). With a roughness height of 7 mm, the critical Reynolds number is
at =~6-10* and Rn=8-10° will mean transcritical flow. Let us for
simplicity set St=0.25. According to equation (6.53) T, =35 s. Depend-
ing on the water depth (see Fig. 6.28), this could correspond to an
eigenperiod and cause resonance oscillations. On the other hand if
T, =35s is not in the vicinity of an eigenperiod for one particular water
depth, a different realistic current velocity is likely to cause resonance
oscillations.

RISER DATA
4 1250 kN
£ 3n
53|m
1 =
Bomy
+
CROSS SECTION:
L ,~= BUOYANCY DIAMETER
h . (o Y095 M
~/ / RISER DIAMETER
W50 el 052M
_;&m H
i
12m {gop,

Fig. 6.27. Geometrical particular for riser.
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The hydroelastic oscillations have several peculiarities which do not
happen for a linear system. We will try to show this by referring to
experimental results by Feng (1968) with a lightly damped circular
cylinder in a current. Results for transverse oscillation amplitude 4,
vortex shedding frequency f, and cylinder frequency f. are presented in
Fig. 6.29 as a function of the teduced velocity Ug = Uc/(fouD). Here f, is
the natural frequency of oscillation of the cylinder. When the vortex
shedding frequency f,, for a stationary cylinder approaches the natural

frequency fo from below (Ur=5 in Fig. 6.29), the vortex shedding

frequency becomes nearly identical to .the natural frequency of the
cylrnder Furthermore, the frequency of oscillation of the cylinder, f.,
nearly coincides with its natural frequency. As Uy increases towards 6.2,
the amplitude of the transverse oscillation A increases rapidly Yvhrle folfa
and f./f, remain nearly constant at a value slightly less than unity. As Ug

increases further, the amplitude drops abruptly as 111us;rated in Fig.

6.29. For Ug = =7 the frequency of vortex shedding, f., jumps to its
‘stationary-cylinder’ value, i.e., f,=f,,. However, the cylinder con-
tinues to oscillate at the natural frequency with very small amplitudes.
The region 5= Ugr =<7 where lock-in of the vortex shedding_frequency

to the natural frequency of the cylinder occurs, is varrously referred to as
the” synchro 'zauon region, lock-in region, capture region, or srmply as

130 Tn(s)
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WATER DEPTH
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Fig. 6.28. Natural periods T, for different eigenmodes ‘n’ of riser in Fig. 6.27.
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the resonant region. There does not exist any engineering tool based on
sound physical principles that can predict what is happening in the
lock-in region. However, Sarpkaya & Shoaff (1979) have presented
interesting results based on the discrete vortex method.

Let us mention some consequences of lock-in

A. Correlation length increases
B. Vortex strength increases
C. Vortex shedding frequency locks onto the natural frequency
D. Increasing amplitude means increasing the band width of
lock-in . T
E. g_]scillations are self-limiting (maximum relative amplitude
D=1) '

F. In-line drag force increases
One could argue that there is a connection between the increase in
correlation length (point A) and the vortex shedding frequency locking

onto the natural frequency (point C) by saying that the vortex shedding

I~
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Fig. 6.29. Experimental results for self-excited transverse oscillations of a
cylinder. (f, = natural frequency of oscillation of the cylinder,
f. = frequency of oscillation of the cylinder, f,, = vortex shedding
frequency for fixed cylinder, f, = vortex shedding frequency, U, =
current velocity, A = amplitude of cylinder oscillations —— f.o/fns
—— f/fas —— fo/fo). (Adapted from Feng, 1968.)
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must be correlated in phase with the cylinder oscillations and these
cannot vary rapidly along the length due to structural constraints.

There is also a connection between the increase in vortex strength
(point B) and the increase in drag forces (point F). Using the Blasius
theorem (Sarpkaya & Shoaff, 1979), we can show how the drag and lift
force are related to the vorticity and its velocity.

Blevins (1977), Griffin et al. (1975) and Sarpkaya (1978) have analysed
the maximum amplitude A, of transverse oscillation in the lock-in
range for both elastically-mounted and flexible cylinders. Sarpkaya wrote
the maximum amplitude for any mode shape as

(A/D)max = 0.327/[0.06 + A2}t (6.54)

in which v is given as
L
f Y (y)dy
¥ = Y ¥/ L) (6.55)
[[ve

Here L is the length of the cylinder and y(y) is the mode shape. The
reduced damping A, is defined by

Zmks
pD?
where £, is the fraction of the structural damping to critical damping, St
is the Strouhal number for the non-oscillating cylinder, p is the fluid
density and m is the sum of structural mass and added mass per unit
length.

For a spring-supported cylinder it follows that y = 1.0. By using
equation (6.54) and setting A, =0 we find that (A/D)pax = 1.31. If we
want to apply the above formulas to risers, we need to calculate the
natural frequencies and eigenmodes by a standard computer program or
use the simplified solutions of Sparks (1980). For marine applications A,
will have a small influence in equation (6.54). If we totally neglect it and
approximate the mode shape by a sinusoidal form we find that y =1.16
and (A/D)max = 1.51. Having determined the amplitude of oscillations of
the riser and the mode shape we can easily calculate stresses due to the
vortex-induced oscillations. '

A very important_consequence of the vortex-induced oscillations is
that the drag force increases. Skop et al. (1977) proposed an empirical
formula for a rigid circular cylinder. They write for Wg > 1

Cp/Cpo=1+1.16(Wxr — 1)06% (6.57)

A, = (27 Sty (6.56)

where
We=Q1+2A/D)fu/fw0 , (6.58)
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A cruder approximation is Cp/Cpo =1+ 2(A/D)nay. This formula can
be interpreted as saying that there is an apparent projected area D + 24
due to the oscillating cylinder.

We should be aware of the effect of roughness and Reynolds number
on vortex-induced oscillations. Transverse oscillations decay in the
critical region both for smooth and rough cylinders.

Griffin (1985) has discussed the effect of current shear on vortex
shedding. He says that moderate shear levels of practical importance
(B=0.01 to 0.03) do not seem to decrease the likelihood of vortex-
induced vibrations for flexible cylinders. Experience with long cables in
the ocean indicates that the vibration level is decreased. The ‘steepness’
parameter J3 is defined as

B= D dv (6.59)

Vref dz

Here dV/dz is the vertical velocity gradient, D is the cylinder diameter
for a circular cylinder and V. is a reference velocity, e.g. the mid-span
incident velocity.

All the cases we have discussed are due to steady incident flow.
However, vortex-induced oscillation may also occur in ambient har-
monic oscillatory flow. We should also note the possibility of in-line
oscillations. The reason is the oscillatory behaviour of the drag-force. In
subcritical flow the drag-force on a fixed, rigid cylinder consists of the
sum of mean drag-force and a harmonic oscillatory force of frequency
twice the vortex shedding frequency. The in-line oscillations are
significantly less than the transverse oscillations.

For a marine riser in waves and current we should note that the
lock-in cannot take place on the whole riser at the same time. This is due
to the attenuation of the waves with depth.

It is possible to suppress vortex-induced oscillations by various types
of spoilers or by increasing the damping. We may also try to avoid the
critical reduced velocities which cause vortex-induced oscillations. This
means the reduced velocity Ug = U /(f.D) should not be in a range
from five to seven. :

A common device for suppression of vortex-induced oscillations is a
helical strake (see Fig. 6.30). For a helical strake to be optimal it is said
that one should use three spirals, set the pitch equal to five times the
diameter (D) and choose a fin height of 0.1-0.12D.

Negative effects of the helical strakes are that marine growth reduces
the effect and the fins cause an increased drag (Cp = 1.3 at Rn=5 - 10°).
There may also be handling problems associated with them.

7,5 W GALLOPING
V"4~ Galloping is a different phenomenon from ‘lock-in’. ‘Lock-in’ happens
when the vortex shedding frequency is close to a natural frequency for
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the structure and can in a simplistic way be understood as resonance
oscillations. Galloping is instability oscillations of the structure that are
significant for higher reduced velocities Ug than those when lock-in
occurs. Let us explain how galloping can occur by considering an
éxg;ﬁple with a long cylinder of constant cross-section. We assume
two-dimensional flow in the cross-sectional plane. We define a coor-
dinate system (x,y) as in Fig. 6.31. The incident flow is steady with
velocity U, in the positive x-direction. The body is symmetric about the
y-axis and assumed to have a resonance frequency f, when it oscillates in
the y-direction. A fundamental assumption is that the fluid forces are

quasi-steady. Oscillating vortex shedding forces do not matter. This is
approximately correct if Ug > 10 (see Fig. 6.29). Galloping motion will
occur _if the hydrodynamic forges cause a sufficiently large ng_ggtjge
damping of the transverse oscillations. We will show this in more detail.
“The equation of motion for the transverse oscillation 7, of the cylinder

>

/
/

Y
/

4

Ld

Fig. 6.30. Helical strake used as a device for suppression of vortex-induced

oscillations.
LY
Uc
\m\j_ anp
U dt -

Fig. 6.31. Cross-sectional plane of a long cylinder used in discussion of
galloping motions. (U, = incident current velocity, U., = incidem
velocity seen from a reference frame following the motion 7, of the
cylinder.)
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can formally be written

o +A22) 24 26 (M + Ao,

where w, =2xf, = [CZZ/(M + Az is the natural circular frequency of
oscillation of the structure. The restoring force -Cun, may be due 10

+C227]2=Fy (660)

dgmpmg as a fraction of the crltlcal damping. The transverse force F F in
equation (6.60) is found by a quasi-steady approach. From a reference
frame fixed to the body one sees an incident flow with direction

B= —arctg[dd—?/U ] = —Slﬂg/U (6.61)

relative to the x-axis. Based on experimental data we assume that a drag
coefficient

c, =t

y

P2
= ULA
2

(6.62)

is given as a function of B. This is similar to the data presented in Fig.
6.11 for transverse current forces on a ship. U.. means the ambient fluid
velocity and A is the projected area of the body on the x-axis. By a
Taylor expansion about 3 =0 we find that

F,= U ’A
By substituting this into equation (6.60) we find that
d*n aC, dn.
M+A (2 M+ Ao, +2 )
( 22) g 22)Wy UAGB g0 dr

+Cypn=0 (6.63)

When the damping coefficient of this equation is negative, the 7, motion
will be unstable. This means that ‘a small initial disturbance of the 1e body
w1ll increase exponentrally with time. Unstable motions are what we call
gallopmg According to equation (6.63) this will occur if

3C,| _ _8uM+Ay)
3B lg=o Ur pAD

For a circular cylinder 8C,/38|3-0 = 0. This means that galloping does
not occur. In order to predict the amplitudes of galloping we have to
simulate equation (6.60) with F, as a function of the instantaneous value
of the transverse velocity dn,/dz. Parkinson (1985) gave a discussion as to
how to combine galloping predictions with vortex-induced oscillations.

g, (6.64)
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Overvik (1982) (see Fig. 6.32) saw galloping clearly in some of his tests
for riser bundles. It happened typically for Uy > 10. Galloping motions
may also occur for ships at a single point mooring system or for a ship
which is towed (see exercise 6.3).

The galloping motions are not self- limited as are ‘lock-in’ oscillations.
Actually at high velocmes the amplitude of oscillation 1s proportlonal to
(see Flg 6. 32) On the other hand there are llmltatlons on how large Ug
can be in Fig. 6.32 in practical cases. We will discuss this. Let us use
Fig. 6.28 which shows the natural periods for the structure shown in Fig.
6.27. Galloping will not occur for this riser, but let us use the natural
periods as indicative of the natural periods for a riser bundle where
problem may occur, We can write Ug=T,U./D and assume U =
Ims™! and D =1m. From Fig. 6.28 we note that the highest natural
period T, is less than 10s when the water depth is 100 m. This means
that Uy < 10. Experience shows that there will not be any large amplitude
due to galloping motion when Uy < 10. However, for 500 m water depth
the Ug-value corresponding to the first eigenmode is larger than 30. This
means the possibility of galloping should be considered.

EXERCISES

6.1 Current forces and flow through fishing nets
Fig. 6.33 shows a quadratic part of a cage. The netting panel has a mesh
size A = 0.02 m and a twine diameter D, = 0.002 m.

2A
Dc

20

1 L { i |
5 10 15 20 Ug

Fig. 6.32. Transverse double amplitude 2 - A versus reduced velocity Uy for
case C3, of Overvik’s (1982) model tests. (U = U./(foDo), U. =
current velocity, f, = natural frequency of oscﬂlanons of the
cylinder, D, is defined in the figure.)
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(a) Start with equation (6.49), that describes the velocity
distribution in the wake behind a cylinder. Show that the
x-component u of the velocity in the point (x, y, 2) behind the
netting panel in Fig. 6.33 can be approximated as

=y /N —(y—y)?
Z=10- 095(CDD) (;exp(m)

S (z—2y)°
+ ot
2 CXP( 0.0888CDDx)> (6.65)

(b) Confirm that the velocity is approximately constant in
transverse direction behind the netting panel.
Discuss how the current velocity will decay if there are
several netting panels placed after each other as shown in
Fig. 6.34.

(¢) The current force on a netting panel can be calculated by the
formula

FD = O.SpCDULZA
1

(Cp =0.204, A = 1 m?, upstream velocity U, =1 ms™!,
U, =local incident current-velocity ahead of a netting panel.)
Justify that the drag coefficient is the right order of

magnitude. Find the total current force on four equal netting

Fig. 6.33. Quadratic part of a cage used in exercise 6.1 (1 = mesh size,
D, = twine diameter).
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| 2m ale  2M Sle  2m
- T T |
ENNNE %
3 —
m 7 U

Fig. 6.34. Definition of n'etting panels used in exercise 6.1.

panels placed in the wake of each other. The distance between
each netting panel is 2 m (see Fig. 6.34). (Answer: 313.4 N)

6.2 Vortex induced oscillations of a riser in a current
Consider a vertical rigid riser. The differential equation that describes the
linear behaviour of a riser can be written as (Sparks, 1980)

d4 d y dy d2

2 g O+ An) 5 =1(x) (6.66)

E —-Young’s modulus of elasticity
I —Inertia (flexural)

y—Horizontal offset from vertical through riser foot

x - Height above riser foot

T —Effective tension (calculated from consideration of the apparent
weight of riser plus contents)

W -Linear apparent weight per unit length (riser plus contents). In
order to get the true weight of the contents one has to add the
weight of the content and pgV where V is the displaced volume of
the segment

m— Mass per unit length

Aj;~Added mass in direction y per unit length
f(x)-Lateral external load per unit length normally calculated by
Morison’s equation (see equation (3.34)).

Sparks show that rigidity has a negligible effect on riser curvature except
for limited zones close to the ends. We will therefore neglect it in the
following analysis.

Our purpose is to set up expressions for the eigenmodes and natural
frequencies. This means we shall set f(x)=0. The equation we shall
study is therefore

d%y dy 2y

T(x)—— + W/—-— —(m+ Azz) (6.67)
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We will consider a near vertical riser without buoyancy element. We can
then write

Tx)y=Tg+ Wx (6.68)

where Ty is effective tension at the riser foot. Sparks points out that the
second term in equation (6.67) is negligible. It would therefore not make
any significant difference if we write (6.67) as

2y

The eigenmodes and natural frequencies that satisfy equation (6.69) and
boundary conditions y =0 at x =0 and x =L (L = length of riser) are

Pa(x)eT I =sin(z, — zp)e”* n=1,2,... (6.70)
where
2, + Wx)]t (6.71)
2 +
7 =22 4 4L (m+ A 6.72)

w, n VT, +VTg

Here T, is the top tension. We should note that WL = (T, — Tg).

(a) Consider the riser presented in Fig. 6.27. Try to use equation
(6.72) as an approximate solution for the natural periods and
compare the results with Fig. 6.28.

(b) Assuming uniform current along a riser, use equations
(6.70)—(6.72) to describe the eigenmodes and natural periods.
Set up a formula for the maximum amplitude A, of
transverse oscillations due to vortex-induced oscillations (see
equation (6.54)). The expressions should be in terms of main
characteristics of the riser and the current velocity. Choose
dimensions and apply the formula.

(¢) Estimate the drag coefficient due to ‘lock-in’ by using a strip
theory approach.

6.3 Galloping motions (instabilities) of a ship moored to a
single point mooring system
Consider a ship moored to a single point mooring system (see Fig. 6.35).
When the ship is in its equilibrium position, the incident current is in the
longitudinal direction of the ship, i.e. along the positive x-axis. We will
neglect the effects of wind and waves (in principle it is straightforward to
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P

Fig. 6.35. Definition of parameters for analysis of stability of ships moored to
single point mooring system.

include them in the analysis). The effect of the buoy motion will be
neglected. According to Liapis (1985) this is a reasonable approximation.

We will study the stability of the sway and yaw motion of the ship.
Liapis (1985) used the following equations for analysis of stability of sway

and yaw motion

d2
My 3" a2 +Cw7’2+cyw7’6_0
(6.73)

d2n6 _

Cyynz+ myy di? +Cyyne=0
where
Fy
myy=M+A22, m |p=16+A66> ny=T
(a oF, a

Cyw:_(l I)FO—_B-'(; Cwy=_'ZFO,

a oM
Cyp = aFO(-l‘-*- l) —'a—w"

Here 7, is the sway motion of the centre of gravity, M is the mass, Ay
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the added mass in sway, /¢ the mass inertia moment in yaw and Age the
added mass moment in yaw for the ship. M /3y is the rate of change of
the current yaw moment on the ship with respect to the angle v at the
equilibrium angle v = 0 when the ship is rotating in positive yaw angle
direction. F, is the transverse current force. 3F,/3 can be explained in
a similar way to dM/3vy. F, is the tension in the bow hawser, [ is the
length of the bow hawser and —a is the x-coordinate of the fairlead. The
effect of the elasticity of the hawser is neglected. The restoring effect
from the hawser that is incorporated in equation (6.73) can be shown by
Fig. 6.36. From the figure we see that the variation in the angle Ay on
the bow hawser can be written as

Ay =(n;—ane)/l (6-74)‘

The transverse force from the bow hawser on the ship can therefore be
expressed as

~Fo(AY —16) (6.75)

Equations (6.74) and (6.75) explain the effect of the bow hawser in the
C,y and C,,, term. By taking the yaw moment of the force expressed by
(6.75), we obtain the bow hawser terms in C,, and C,,,,.

(a) What approximations are used in formulating equation
(6.73)?

Att achment point

fo buoy
oy
(
Attachment point to ship
11 ('ﬂ,nz-ﬂné'o)
pe—
a

Fig. 6.36. Illustration used in analysis of restoring effect of a bow hawser on the
sway and yaw motion of a ship.
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(b) Express the bow hawser tension F in terms of current loads

on the ship and thrust from the propellers.

(c) Assume the time dependence of 7, and 7, can be written as

e”. Show that o satisfies

a0t + a0 +ag=0 (6.76)
where

Ay = MyyMy,

oM F
a,= myy{aFo<g+ 1) - —-—} + My, TO

l Y
Fo /oM dF, . . .
ap= — TO <-éE +a 5;”) >0 (criterion for static stability)

(@) The sway and yaw motions are stable if the real part of all

solutions of o are negative. According to Routh (1955) this
means that a; > 2(a0a4)%. Show that this is equivalent to

F oM~ 3F\/Fo\t
e+ o) =2 =mom (S04 0 2 ()

+ myy<aF0 - %%) >0 (6.77)

(e) Show that:

If the tension in the bow hawser F o> F ., the ship is stable for
any length | of the bow hawser. If Fo<F ., the ship is stable for
1 <1, and unstable for 1> l,.

Here
2 OM _myy OF,
Fc,=——————aw My OV (6.78)
My | g2
myy ’
()
I.=F, Ty (6.79)

(-2l
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where

oF. M
A= —-a[m,w<F0+gj) +mwa<aF0—a—w)] (6.80)
(Hint: Consider the left hand side of equation (6.77) as a
second degree polynomial with independent variable ¢ =
(Fo/Dt and study the sign of this polynomial.)

(f) Choose a =~ L/2, m,,,/m,, = (L/4)* and set the propeller

thrust equal to zero. (L = ship length.) Show that equation
(6.79) can be written in the form
e C S
L (logioRn—2)? Ass (6.:81)
where S is the wetted area of the ship, Rn=U_L/v,
Aps= LD and D is the draught. Use Figs. 6.11 and 6.13 to
estimate typical values of M /3y and 8F, /3y and give
estimations of C in equation (6.81).

Calculate [, for a ship with L =300 m, S/A;s=4.0 and
when U, = 1.5 knots. Choose a reasonable value of C.

(g) Discuss how propeller thrust and ship hull geometry can

influence the stability.

7 VISCOUS WAVE LOADS AND
DAMPING

Viscous flow phenomena are of importance in several problems related to
wave loads on ships and offshore structures. Examples are wave loads on
jackets, risers, tethers and pipelines, roll damping of ships and barges,
slow-drift oscillation damping of moored structures in irregular sea and
wind, anchor line damping, and ‘springing’ damping of TLPs.
The main factors influencing the flow are:
Reynolds number Rn = UD /v (U = characteristic free stream
velocity, D = characteristic length of the body, v = kinematic
viscosity coefficient),
Roughness number = k/D (k = characteristic cross-sectional
dimension of the roughness on the body surface),
Keulegan—Carpenter number (KC) (=UyT'/D for ambient
oscillatory planar flow with velocity Uy sin((27/T)t + €) past
a fixed body),
Relative current number (=U /Uy when the current velocity
U. is in the same direction as the oscillatory flow velocity
Uy sin(Ra/T)t + €)),
Body form,
Free-surface effects,
Sea-floor effects,
Nature of ambient flow relative to the structure’s orientation,
Reduced velocity (Ug = U/(f,D) for an elastically mounted
cylinder with natural frequency fy,).

Sometimes 8 = Rn/KC = D?/(vT) is also used to characterize the flow.
Detailed discussions of many of the factors mentioned above can be
found in Sarpkaya & Isaacson (1981). For harmonically oscillating flow
around a fixed circular cylinder of diameter D, we may write KC=
27A/D, where A is the amplitude of oscillation of the fluid far away from
the body. We then see that KC expresses the distance a free stream fluid
particle moves relative to the body diameter.

MORISON’S EQUATION
Morison’s equation (Morison et al. 1950) is often used to calculate wave

loads on circular cylindrical structural members of fixed offshore
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structures when viscous forces matter. Morison’s equation tells us that
the horizontal force dF on a strip of length dz of a vertical rigid circular
cylinder (see Fig. 3.14) can be written as

nD?

+§CDDdz|u[u 7.1

Positive force direction is in the wave propagation direction. p is the
mass density of the water, D is the cylinder diameter, u and a; are the
horizontal undisturbed fluid velocity and acceleration at the midpoint of
the strip. The mass and drag coefficients Cy and Cp have to be
empirically determined and are dependent on the parameters mentioned
in the beginning of the chapter.

Considering deep water regular sinusoidal incident waves (see Table
2.1) and assuming Cy and Cy, to be constant with depth (which might
not be realistic), we may easily show that the mass-force decays with
depth like e*™* The drag force decays like e**** and is even more
concentrated in the free-surface zone. When there is a wave node at the
cylinder axis the mass-force will have a maximum absolute value and the
drag-force will then be zero. The drag-force on a submerged strip will
have a maximum absolute value when there is a wave crest or a wave
trough at the cylinder axis. If viscous effects are negligible, it is possible
to show analytically that Morison’s equation is the correct asymptotic
solution for large A/D-values (see discussion of equation (3.34)). The
Cpm-value should then be two for a circular cross-section. If fluid
acceleration can be neglected, Morison’s equation is a reasonable
empirical formulation for the time average force. Typical Cp- and
Cu-values for transcritical flow past a smooth circular cylinder at
KC> =40 are 0.7 and 1.8. A roughness number k/D of 0.02 can
represent more than 100% increase in Cp relative to the Cp-value for a
smooth circular cylinder (Sarpkaya, 1985). This means the effect of
roughness is more significant in oscillatory ambient flow than in steady
incident flow.

The application of Morison’s equation in the free-surface zone
requires accurate estimates of the undisturbed velocity distribution under
a wave crest. The prediction of the velocity distribution based on linear
wave theory was discussed in connection with Fig. 2.2. A straightforward
application of Morison’s equation implies that the absolute value of the
force per unit length is largest at the free-surface. This is unphysical
since the pressure is constant on the free-surface. This means the force
per unit length has to go to zero at the free-surface. It should also be
noted that the position of the free-surface at the cylinder is affected by
wave run up on the upstream side of the cylinder and a wave depression
on the downstream side. The vertical position of the maximum absolute
value of the local force has to be experimentallv determined. The order
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of magnitude of the position may be 25% of the wave amplitude down in
the fluid from the free-surface. We should note that Morison’s equation
cannot predict at all the oscillatory forces due to vortex shedding in the
lift direction, i.e. forces orthogonal to the wave propagation direction and
in the cross-sectional plane.

Morison’s equation can be modified in the case of a moving c1rcular
cylinder. Consider a vertical cylinder and denote the horizontal rigid
body motion of a strip of length dz by #,. We can write the horizontal
hydrodynamic force on the cylinder as

= 3pCpD dz(u — 9,) [u — 0|
7D
-p(Cu—1 4

2

DZ

dz i (7.2)

Dot stands for time derivative. Both u and a, are position-dependent. It
should be noted that the inertia term does not depend on the relative
acceleration term. The reason for this can be found by studying the
analytical solution in the potential flow case. The Froude-Kriloff force
(i.e. undisturbed wave pressure force) results in a horizontal force
p(wD?*/4)dz a; which is independent of the rigid body motion (see
chapter 3). The Cp- and Cy-values in equation (7.2) are not necessarily
the same as in equation (7.1).

Morison’s equation can also be applied to inclined members. To
demonstrate this let us consider a cylinder inclined in a plane parallel to
the wave propagation direction. The approach would be to decompose
the undisturbed velocity and acceleration into components normal to the
cylinder axis and components parallel to the cylinder axis, and then use
Morison’s equation with normal components of velocity and acceleration.
The force direction will be normal to the cylinder axis. In the potential
flow case, it can be proven that this is the correct expression. In the
viscous case it means that we use the ‘cross-flow’ principle (see chapter
6). Actually what we are proposing to do for an inclined cylinder is not
different from the vertical cylinder case. In the latter case there is also an
undisturbed tangential velocity and acceleration component in the fluid.
The effect of this was neglected in equation (7.1).

When the cylinder axis is not in the plane of the wave propagation
direction, there exist different possibilities for formulations. Let us
illustrate this using a submerged horizontal circular cylinder in waves
where the wave propagation direction is orthogonal to the cylinder axis.
A straightforward generalization of Morison’s equation would be to write
the horizontal and vertical force on a strip of length dy as

2

aF, = p ™2 +§CDD dy u(u? + wh) (7.3)
2

dF, = %D— dy Cumas + g CpD dy w(u® + w?)? (7.4)
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Here w and a; are vertical undisturbed fluid velocity and acceleration
components at the midpoint of the strip. Chaplin (1988) has shown that
improved correlation with experiments can be obtained if different Cy,
and Cp coefficients are assigned to the horizontal and vertical
components.

When waves and currents are acting simultaneously, the combined
effect should be considered. The normal approach is to add vectorially
the wave-induced velocity and the current velocity in the velocity term of
the Morison’s equation. As mentioned in the beginning of the chapter,
one should be aware that Cy- and Cp-values are also influenced by the
presence of a current.

The design wave approach is often used in combination with
Morison’s equation. This means one analyses the load effect of a regular
wave system. Often non-linear wave theories are used. A short term-
statistical approach may also be applied (Vinje, 1980). However, more
has to be learned about Cy- and Cp-values in this context. For instance,
is it right to use just one Cy- and one Cp-value to represent a sea state?
If so, is it then sufficient to use a characteristic Keulegan—Carpenter
number, Reynolds number, roughness ratio etc. to estimate the Cy- and
Cp-value? The answer is probably yes if the characteristic KC-number
is large and the flow is not in a critical flow regime. What we mean by a
large characteristic KC-number has to be precisely defined. In the case
of extreme wave loads on a strip of a vertical circular cylinder close to the
free surface wH ,../D is a characteristic KC-number, where H,, is the
most probable largest wave height. If 7#H ,./D > =40 we could consider
the KC-number to be large. A typical Cp-value for a smooth surface is
then 0.7. It is of course easy to criticize Morison’s equation. However,
there is nothing better from a practical point of view. The reason for this
is the very complicated flow picture that occurs for separated flow around
marine structures.

Many attempts have been made to solve separated flow around marine
structures numerically. Examples of methods used are

(a) Single vortex method (Brown & Michael, 1955; Faltinsen &
Sortland, 1987)

(b) Vortex sheet model (Faltinsen & Pettersen, 1987)

(¢) Discrete vortex method (Sarpkaya & Shoaff, 1979)

(d) Combination of Chorin’s method and vortex-in-cell method
(Chorin, 1973; Smith & Stansby, 1988)

(e) Navier—Stokes solvers (Lecointe & Piquet, 1985)

A general description of the state of the art is that the methods are
generally limited to two-dimensional flow, that the methods have
documented satisfactory agreement in some cases, but that they are
presently not robust enough to be applied with confidence in completely
new problems, where there is no guidance from experiments. Due to
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lack of proper turbulence modelling of wakes it is difficult to simulate the
flow around a cylinder in the near-wake of another cylinder. Except for
the single vortex method, the methods are often time consuming to apply
to practical problems. One can end up spending a lot of computer time
with numerical prediction methods for separated flow around offshore
structures without gaining further knowledge. The single vortex method
is limited to small KC-flow around bodies with sharp corners. The other
methods have more general applicability.

An example of the simulated wake picture by the vortex sheet model of
Faltinsen & Pettersen (1987) is presented in Fig. 7.1. The figure shows

&
&

Fig. 7.1. Free shear layer positions at different times for oscillatory crossflow
past a flat plate. KC = UyT/H = 5 (Uy = velocity amplitude of the
ambient flow, T = oscillation period, H = half the height of the
plate). Uyt/H =0.784, 1.584, 1.984, 2.384, 3.184, 3.984, 4.784,
5.584, 6.384, 6.984 (Faltinsen & Pettersen, 1987.)
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oscillatory crossflow past a flat plate at different time steps. The arrow
indicates the magnitude and direction of the instantaneous free-stream
velocity. It seems that one pair of vortices return to the body in the last
picture. This creates numerical problems. For larger amplitudes of
oscillation of the ambient fluid, i.e. KC>6-8, asymmetry develops in
the wake. From flow visualizations it is seen that this causes vortices to
pair and travel away from the plate.

In the following text we will base our discussion on viscous loads
written in terms of Morison’s equation. This means we will discuss how
Cp and Cy depend on the parameters mentioned in the beginning of the
chapter. In particular we will focus on the effect of body form and
KC-number. For small KC-numbers the results have relevance for
various damping problems. The results for large KC-numbers have
relevance for wave loads on a jacket platform in extreme wave conditions.
The structural members of a jacket have characteristic cross-dimensional
diameters D of about 1 m. In a regular design wave with a return period
of 100 years, the wave height /# may be 30 m. This means the maximum
KC-number in this case is KC= nH/D = 94.

Occurrence of flow separation strongly affects the drag forces. We will
start out by discussing this and later on in the text discuss results for
higher KC-numbers.

FLOW SEPARATION
When viscous effects matter for offshore structures, the flow will
generally separate. A consequence of separation is that pressure forces
due to viscous effects are more important than shear forces. There is
some confusion about what is precisely meant by separation in unsteady
flow. There is obviously no disagreement that the flow has separated if
vortices can be clearly observed in the fluid, but it is difficult to set a
precise limit on when one would call a flow separated or not separated.
There is a need for this if approximate analytical and numerical methods
are used for a description of the flow. Telionis (1981) has discussed
criteria for flow separation in unsteady flow. One definition is: ‘Unsteady
separation occurs when a singularity develops in the classical boundary-
layer equations’. Even if the boundary layer equations do not describe
the physical fluid behaviour exactly around a separation point, one might
argue that the occurrence of a singularity in the mathematical solution is
an indication that the flow breaks strongly away from the body. On the
other hand one might question if this is a sufficient description of
separation in unsteady flow. The flow may also be called separated if it
does not break strongly away from the body, for instance if there is a thin
recirculating wake close to the body. A necessary requirement for a
recirculating wake to be present in a two-dimensional flow is that the
shear stress is zero at a point on.the body surface, i.e. that the shear
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stress changes sign. This is the normal separation criteria for steady
incident flow. For unsteady flow Telionis prefers to call the point of zero
skin friction the ‘detachment’ point.

The flow around blunt-shaped marine structures with no sharp
corners will not separate in oscillatory fluid motion at very low
Keulegan—Carpenter numbers. On the other hand the flow around
blunt-shaped marine structures will always separate in a steady current.
In the case of combined incident current and oscillatory fluid motion
around a blunt-shaped marine structure with no sharp corners it
depends on the relative current number (see definition in the beginning
of the section) if there exists a limiting KC-number for the flow to
separate. Roughly speaking one may say there is a possibility that the
flow will not separate if the ambient flow velocity in the current direction
changes sign with time.

Sarpkaya (1986) has experimentally examined circular cylinders at low
KC-numbers for different Reynolds numbers. No current was present.
Sarpkaya reported separation occurring for KC-numbers as low as 1.25.

The fact that the flow separates does not mean that vortices or vortex
shedding are easily observed. For instance, Bearman (1985) states in a
paper, previous to Sarpkaya (1986), that nobody seems to have observed
vortices at KC-values less than three. However, observation of vortices
does not necessarily mean that vortices are convected away from the
vicinity of the body, i.e. that vortex shedding occurs. For instance,
Bearman et al. (1981) studied a flow around a circular cylinder at KC=4
where a pair of vortices generated during one half cycle did not survive
into the next half cycle. When the flow reversed and the vortices were
convected back to the cylinder, their circulations appeared to be
cancelled by vorticity of opposite sign in the boundary layer of the
cylinder. A systematic study of when vortex shedding starts has not been
attempted, but as an example, Williamson (1985) reported symmetric
vortex shedding occurring for a KC as low as four. By comparing this
case to Bearman et al.’s (1981) studies, it is obvious that it is not only KC
that determines when vortex shedding starts: for instance the Reynolds
number must also be an important parameter.

By analysing high Reynolds number laminar start-up flow around
bodies, we can determine in a qualitative way when flow separation
occurs for subcritical flows.

Consider a two-dimensional stationary body in a high Reynolds
number flow. Qutside the body the fluid domain extends to infinity. The
boundary layer on the body surface is assumed to be thin and laminar.
The ambient flow velocity U,, is written as

Ue,= Uy sin(wt — o)+ U. (7.5)

where Uy, U, are constants, ¢ is the time variable, w =2x/T is the
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circular frequency of oscillation and « is a phase angle. We will select «
so that U, is zero at ¢t = 0. This means a = sin”"'(U./Up). Initially, the
vorticity is zero. We will assume that U.,/Upy<1. This means the
ambient flow velocity changes direction with time.

The flow will be analysed until the ambient flow velocity reaches its
first maximum value, i.e. until wt = 7/2 + a (see Fig. 7.2). At that time
the free stream acceleration is zero. We will investigate for which
KC-value and U,./Up-ratios the flow separates during this initial time
period. The separation criterion to be used is that the shear stress
vanishes at a point on the body surface. This separation criterion is for
purpose of estimation. It is not generally accepted for unsteady flow. If
the flow has not separated when wt=m/2+ « i.e. when the force
according to Morison’s equation (see equation (7.1)) is only due to drag
forces, it is assumed that the flow separation has no influence on the drag
forces. This idea has no meaning if the ambient flow never changes
direction with time. The model is expected to behave better the smaller
the ratio U /Uy is.

Consider a coordinate system (x, y) where x and y are locally tangential
and normal to the body surface. The tangential fluid velocity u in the
boundary layer is approximated by

u(ny: t) = uO(ny) L) + ul(x:ya t) +... (76)
where u, and u, are first- and second-order approximations to #. From
Schlichting (1979: p. 410) it follows that the boundary layer equations
can be approximated by

%_ Y aZuO_ AU(x, t)

ot ay? ot
where U(x, t) is the tangential fluid velocity just outside the boundary
layer. The boundary conditions are

7.7

up=0aty=0and yo=U(x,t) aty =
Further
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Fig. 7.2. Ambient flow velocity used in start-up flow studies (see equation

7.5)).

FLOW SEPARATION 231

with boundary conditions

Ju,
—=0aty=0
3y Y

In equation (7.8) vy is the first-order approximation of the vertical
velocity in the boundary layer. When %, is known, it follows from the
continuity equation and body boundary conditions that

Y Qug

0 ox

u1=Oaty=0,

Vo= — 7.9
By solving a potential flow problem outside the boundary layer we can
determine U(x, t). We write

Ux, t) = (Up sin(wt — o) + U )P(x) (7.10)

The approximate solution (equation (7.6)) has validity only during an
initial phase when diffusion effects expressed by (equation (7.7)) domi-
nate over convection effects. However, it is difficult to know a priori how
large the values of wt can be for the solution to be valid.

Equation (7.7) with boundary conditions can be solved analytically
(Faltinsen (unpublished)). We can formally write the shear stress on the

* body as

S C I AU A It

where f, and f, are independent of the body shape, but functions of
Uc/Uys, « and wt. Numerical results when U./Up =0 and o =0 in the
form of 0.5xf,/f> as functions of wt are presented in Fig. 7.3. When
wt— 0, we see that f,/f,— .

It follows from equation (7.11) and the signs of f, and f,, that
separation (i.e. du/3y |,—o=0) can only occur when d®/dx is negative,
which fits with our intuition about adverse pressure gradients. Further,
initial separation will occur at the point of minimum d&®/dx, which may
or may not occur at the downstream stagnation point of the body. For
bodies with a sharp corner d®/dx is infinite. From equation (7.11) it
follows that separation occurs immediately at sharp corners.

Let us study a circular cylinder. This means

. X
Px)=2 st

with x =0 and x = &R corresponding to the forward and aft stagnation

. points on the cylinder. The separation condition for a circular cylinder

can then be written as

JT X
Efl +f2KCCOSE=O
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This means that the separation angles = |8,| are found from

Xy - fl T
P |
R cos 7,73KC (7.12)
From this it follows that separation starts at the aft stagnation point when
fim
——=KC , 7.13
72 (7.13)

The left-hand side of (7.13) is a function of wr and U, Up. This
function has been plotted in Fig. 7.3 for Uc/Upm =0. Equation (7.13)
tells us directly at what time a flow with a given KC-value and U /Uy,
ratio will start to separate. Equation (7.12) can be used to find the
separation angles as a function of time. Results from a numerical
example are shown in Fig. 7.4 for KC=3.1 and U/Up=0. We note
that the separation starts at time wt = 1.045. This can also be seen from
Fig. 7.3. The limiting KC-values KC,;,, for separation to occur, will be

zojﬁl
22

15+

10 +

5

T T T T >
0.5 1.0 1.5 20 wi
Fig. 7.3. Calculation of the laminar boundary layer functions f, and f, (see
equation (7.11)) for sinusoidal ambient velocity start-up flow. The
data are presented as a function of non-dimensionalized time wt.
The current velocity is zero.
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the KC-value where separation starts at wt = /2 + «. When U /Uy =0
this will be the value of 0.5xf,/f, at wt = /2 (see equation (7.13) and
Fig. 7.3). Thus KC, equals 1.2.

This procedure can be generalized to axisymmetric flow. Values for
KC,,, are presented in Fig. 7.5 for a circle and a sphere as a function of
U./Upm. The results presented in Fig. 7.5 do not depend on Reynolds
number. The reason is that the separation point determination expressed
by (7.12) is Reynolds number independent. This is based on the
assumption of laminar, high Reynolds number start up flow.

In the case of a sphere we may compare the KC-values for which
separation occurs with the experimental values observed by Zhao et al.
(1988). They investigated a hemisphere of diameter 1 m. In calm water
the centre of the hemisphere was at the still water free-surface level.
Visualization tests were performed to study the occurrence of flow
separation around the hemisphere in combined current and regular
waves. The model was restrained from oscillating. Only the flow at the
free-surface was examined by placing confetti with a diameter of 3 mm
on the water surface and taking photographs. When the separated region
is very close to the body the confetti technique may not be effective

hog

T (1.045,1T)

TEIZj

o
-

T T 7 T T
1 1.2 13 1.4 1.5 1.6 wt

Fig. 7.4. Time development of separation angle 6, around a circular cylinder.
(8 = 0 corresponds to the upstream stagnation point on the
cylinder.) The ambient flow velocity is sinusoidal and zero at wz =0,
KC=3.1. U/Ux=0. (KC and U /Uy defined in the beginning of
the chapter.) .
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enough to detect the separated flow. There was no way to confirm that
the flow always stayed laminar in the boundary layer. The current was
simulated by towing the model against the wave propagation direction.
The results are presented in Fig. 7.6. The free-surface effect and the
circular motion of the ambient flow makes the experimental conditions
different from our theoretical assumptions. On the other hand, the
free-surface wave parameter w(D/g)i(g = acceleration of gravity, D =
diameter) did not seem to influence the observations significantly.
Furthermore, circular ambient fluid motion may not be very different
from planar ambient fluid motion when the wake is prevented from
rotating around the body. This seems to be the experience from vertical
cylinders in waves, while submerged horizontal cylinders in waves will
behave quite differently in planar ambient flow and in circular ambient
flow (Chaplin, 1984).

In a qualitative sense, one may say that the theoretical results show
good agreement with experiments; but obviously one should be critical of
the theoretical predictions close to U./Upm = 1.0.

OSCILLATORY NON-SEPARATED FLOW
We will discuss how to predict forces on bodies in non-separated flow.
In order to evaluate the shear forces for laminar flow we will use a
solution found in many textbooks on fluid dynamics (see for instance
Schlichting, 1979: pp. 428-9). We will assume that the outer flow U,
outside the boundary layer can be written as

U(x, t) = Uy(x) cos wt (7.14)

It is assumed that the oscillatory amplitudes are small. This means we
may neglect quadratic terms in the boundary layer equations. For

3
KCim

1.0 A
Sphere

0.57 Circle

>

T T
Ue_
0.0 0.5 10 e

Fig. 7.5. KC-number when the flow separated at the time of zero ambient
flow acceleration following a sinusoidal start-up flow. (KC and
Uc/Up are defined at the beginning of the chapter.)
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laminar flow we cart write

au_,u_a.
o o &

(7.15)

A steady-state solution of this equation with the boundary conditions
u=0aty=0and U=U aty—>®is

u=Uy(x)[cos wt —e™ " c_os(a)t -] (7.16)
{l
KC
KCiim ( Theory)
FLOW SEPARATION
CLEARLY OBSERVED
o NO FLOW SEPARATION
157 X DIFFICULT TO DECIDE
1.0
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Fig. 7.6. Comparison between theory and experimentally observed flow
separation around a hemisphere in regular waves and current. The
centre of the hemisphere is in the mean free-surface. A vertical
cylinder is fitted to the hemisphere above the free-surface to avoid
sharp corners on the body. (KC = UnT/D, Uy = maximum
velocity of ambient oscillatory flow, T = oscillation period, D =
diameter of the sphere, U, = current velocity in the same direction as
incident oscillatory velocity.) (Zhao et al., 1988).
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Here
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The velocity distribution is shown in Fig. 7.7 for different time instants.
The velocity does not have the same phase at all y-coordinate points in
the boundary layer. Equation (7.16) can be used to find the boundary
layer thickness. There are many different definitions of boundary layer
thickness. However, let us consider the point where Ug(x)e (@ 2y =
0.01U(x). This corresponds to (w/(2v))ly =4.6. For v =10"°m?s™!
and T = 10s this means y = 0.008 m.

The wall skin friction force (shear force) per unit area can be written as

ou w\?} b4
Ty = #<@)yﬂo = MU0<;) cos<a)t +Z> (7.18)

which osciilates with a phase lead of 45° relative to the external stream.

4 X
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I T T —T T >
0 1 2 3 b

Fig. 7.7. Example of the horizontal (u) velocity distribution in a laminar
boundary layer along a flat plate for harmonically oscillating outer
flow (equation (7.16)). (y = coordinate normal to the flat plate,y =0
is at the flat plate, w = circular frequency of oscillation, Uy(x) =
velocity amplitude just outside the boundary layer.)
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Let us apply this solution to non-separated oscillatory laminar flow
past a circular cylinder. The free stream velocity far away from the body
will be written as U,, cos wt. The solution U, outside the boundary layer
can then be written as

2U. sin 6 cos wt

From equation (7.18) the shear stress can be written as
4
Ty = uZUm(2> sin 6 cos(wt + ]—r)
v 4

The resulting force on the cylinder in the incident flow direction can be
expressed by

27
F1=f T, sin @ R d6
0

i
= uUm(—cg) cos(wt + g)Dn (7.19)
By writing
cos( t+—7—r> -—ﬁcos wt—\—/gsin wt
Y2 2

we see that there is one force component in phase with the velocity and
another force component in phase with the acceleration. It should be
noted that the force is linear with respect to U,. The drag-force is
normally said to be proportional to the square of the velocity. If we
calculate the drag coefficient, we find

uU,,(%) Dx/V2
CDF =

However this is not the total viscous drag force. There is also an
influence of viscosity on the normal stresses (Batchelor, 1970: p. 355).
According to Stokes (1851) this results in a total drag force on a circular
cylinder that is twice as large as in equation (7.20). Wang’s (1968) analysis
shows that we may write the drag coefficient on a circular cylinder in
unseparated laminar high Reynolds number flow as

=3 () + () — hn) ) (7.21)

2KC * '

where 8 = Rn/KC = D?/(vT). This differs both from equation (7.20) and
Stokes’ solution. The drag coefficient can be very large, (actually it goes
to infinity when KC— 0), but this does not mean that the drag-force is
large. :

Cp
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Johnson (1978) has given empirical formulas for shear stress that apply
to turbulent flow along fixed plane surfaces. Qutside the boundary layer
the flow is oscillating harmonically. When the surface is smooth, Johnson
writes the maximum wall shear stress 7., as

2Ty _
‘_pTU—lZl =0.09 RE™°? (7.22)
where ,
Ut
RE = w—‘v (7.23)

Here U}, is maximum tangential velocity just outside the boundary
layer. RE = 10° is proposed as an engineering criterion for transition to
turbulence. Equation (7.22) can be used as a basis for establishing
slow-drift. viscous surge damping of a ship. We can multiply |z, by the
wetted body surface and (1 + k), where & is a form factor with a similar
meaning as for viscous resistance of a ship (see discussion after equation
(6.25)). Typical k-values for viscous resistance vary between 0 and 0.5.

) SEPARATED FLOW AT SMALL KC-NUMBERS
Bearman (1985) has reported the behaviour of the flow around a circular

cylinder for different KC-numbers when the ambient flow is planar and |
harmonically oscillating. For KC < 7 he says the flow is symmetric. This |
implies zero lift force. However, we cannot set up precise limits for the

onset of asymmetric flow. For instance, the data by Bearman (1988) show

that KC==5 is a limiting value between symmetric and asymmetric |
flow. Bearman (1985) reports that a change in the vortex shedding

appears at KC=7 or 8. The majority of the vortex shedding takes place
only on one side of cylinder. The flow has a strong memory in this range.

Between KC =15 and 25 a vortex is shed before the end of a half cycle.
In addition a second vortex forms from the same shear layer. Vortices !

shed previously combine with the new vortices so that vortex pairs travel
away in two trails at roughly 45° to the direction of the main flow. The
directions can be switched. This depends on the starting condition. At
KC> 25 at least three full vortices are shed per half cycle. The wake
resembles the wake in steady flow, i.e. the vortices tend to form a street
behind the body.

Results for low KC-numbers (KC < =10) have relevance for damping
of slow drift motions of moored structures and roll damping of ships and
barges. Graham (1980) has done an interesting analysis for KC— 0,
which can be used to explain experimental results for KC< =10. His
analysis includes only the effect of separated flow on the pressure

distribution around the body. Viscous shear forces have to be added.
Graham argued that the different behaviour of the drag coefficients of
different sections at small values of KC is due to the relative strengths of
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the vortex shedding, a circular cylinder obviously being much weaker
than a flat plate, for example. He assumes that the vortex flow for a small
Keulegan—Carpenter number depends only on the local flow around each
sharp edge. The edge is characterized by its internal angle 6. That means
for a flat plate 6 =0 and for a square section & = 5r/2. The vortex force
Fy on a sharp edge acts along the perpendicular to the bisector of the
edge angle. It can be shown to be proportional to KC", where
=026 — n)/(Bx — 26).

This means that, for example, the drag coefficient Cp for small
KC-numbers should vary as

Cp o« KC~#4 for a flat plate
o« constant for a square section
o« KC for a circular cylinder (regarded loosely as a
sharp-edged section with é = )

These variations are in quite good agreement with measured data for
KC < 10, for bodies in planar ambient flow (Graham, 1980). The
experimental data for a diagonal and facing square have later been
corrected by Bearman er al. (1984a). The experimental results show
that

Cp ~ 8.0 KCt (flat plate)

b ~ 5.0 (diagonal square)
Cp ~3.0 (facing square) (7.24)
Cp ~0.2KC (circular cylinder)

The results for a circular cylinder are only of a qualitative nature. This is
evident by comparing with Sarpkaya’s (1986) experimental results.
Sarpkaya examined a circular cylinder in planar oscillatory flow of small
amplitude. The results were presented for different KC and S-values
(8=Rn/KC). When the boundary layer flow was laminar and the flow
did not separate (i.e. KC< =1) Wang’s formula (see equation (7.21))
agreed well with the experimental results (see Fig. 7.8). When KC > =2
we note that the Cp-values start to increase with KC-number. This is
what Graham’s asymptotic solution says. However, one should note that
his theory is based on the separation point being fixed. This is not the
case for separated flow around a circular cylinder, particularly at small
KC-numbers. \

The nature of the ambient flow is important. The results by Chaplin
(1984, 1988) demonstrate this. Chaplin (1988) presented data for a
submerged horizontal circular cylinder in beam sea waves at small
KC-numbers. The ambient flow was either nearly circular or elliptical.
Chaplin argued that a circulation is set up around the cylinder. This has
a large influence on the mass coefficients. In the particular case of a
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deeply submerged cylinder in nearly circular orbital flow he found that
Cu=~2-0.21KC? (7.25)

The KC-number was less than two and the Reynolds number was of the
order of 10°. Equation (7.25) shows a very strong influence of KC on the
Cy-value. This is opposite to what happens to the Cpy-value in planar
oscillatory flow for small KC-numbers.

Eddy-making roll damping
The results by Graham (see equation (7.24)) demonstrate the different
degrees of damping due to vortex shedding when a body makes small
oscillations relative to the fluid. If we apply his results to eddy-making

roll damping of a rectangular cross-section, it means that the damping is °

independent of the KC-number. Another example is roll damping due to
bilge keels. We then start out by writing the normal force F,, on the bilge
keel as

F,= —fz’—cDb1|u|u L 26

2
%
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Fig. 7.8. Drag coefficients C, versus Keulegan—Carpenter number KC for a
smooth circular cylinder at 8 = 1035. (8 = Rn/KC = D?*/(+T),
D = cylinder diameter, T = period of oscillation. X Experiments
(Sarpkaya) —Theory (Wang). (Adapted from Sarpkaya, 1986). .
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where b and [ are respectively the breadth and length of the bilge keel,
and u is the relative velocity normal to the bilge keel as if the bilge keel
was not there. For instance, if the bilge keel were fitted to a circular
cylinder of radius R and the cylinder were rolling about its axis we can
write u = R#, when no incident waves are present. If we neglect the
effect of the curvature in the vicinity of where the bilge keel is fitted to
the hull, we can approximate the local flow around the bilge keel with the
flow around a flat plate of breadth 2b in transverse oscillatory flow.
According to Graham’s formula Cp = 8.0 (KC)™3 for harmonically os-
cillating ambient flow. We can write KC = u,,, T/(2b). The separated
flow around the bilge keel will also affect the pressure distribution on the
hull. However, for a circular cylinder the hull pressure does not cause a
roll moment about the cylinder axis. By taking the roll moment of
equation (7.26) about the roll axis we will find the following roll damping
moment for a circular cylinder

dn, |dn,
de | de
This shows that bilge keel damping is strongly influenced by the
KC-number. For a general body shape, for instance a typical midship
section of a ship, the approach outlined is only of a qualitative nature.
The undisturbed velocity u will for instance be significantly larger when
the flow accelerates around the bilge radius of a typical midship section.

F,= —4p(KC) 3bIR? (7.27)

‘Empirical formulas for the bilge keel damping can be found in Kato

(1966) and Ikeda et al. (1977b).

Viscous slow-drift damping of moored structures
The eddy-making damping is important for analysis of slow-drift
motions of moored structures. One exception is surge motions of a ship
where equations (7.18) or (7.22) can be used to estimate viscous
damping.

The eddy-making damping for sway and yaw motions of a ship can in
some cases be calculated by strip theory and the ‘cross-flow principle’
(see discussion of Fig. 6.11). This means that we write the damping force
similar to that in equation (6.26) and analyse cross-flow past two-
dimensional cross-sections of the ship.

The drag coefficients depend for instance on free-surface effects,
beam—draught ratio, bilge keel dimensions, bilge radius, current,
Teynolds number, roughness ratio and Keulegan—Carpenter (KC) num-
ber. Some of these effects will be discussed below. In chapter 6 we
discussed KC = ® more extensively.

Free-surface effects
The free-surface acts similar to an infinitely long splitter plate (see
discussion in chapter 6 on free-surface effects on Cp-values for ship
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sections). This means that one can apply drag coefficients for the double
body with splitter plates. The doubly body consists of the submerged
body and the image body above the free-surface. The splitter plate effect
causes a clear lowering effect on the drag coefficient for high KC-
numbers. When the KC-number is low the eddies will stay symmetric
for the double body without a splitter plate which means the free-surface
has little effect for low KC-numbers.

Beam-draught ratio effects
In general there is little dependence on beam-draught ratio for
rectangular cross-sections. One exception may be for beam-—draught
ratios lower than =1 and KC smaller than =10 (see Fig. 7.9).

Bilge keel effects
The drag coefficients for low KC-numbers depend significantly on the
bilge keel. This is illustrated in Fig. 7.10. We note that the effect is
strongest for the lowest KC-values. For large KC-values the drag
coefficient is not very sensitive to the breadth of the bilge keel.

Bilge radius effects
There is a strong effect of the bilge radius on the drag coefficients.
Increasing the bilge radius means decreasing the drag coefficient (see Fig.
7.11).
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Fig. 7.9. Drag coefficient Cp, as a function of aspect ratio d/D. Rectangular
cylinders with sharp corners. D = Projected width. (KC=U MT/D,
Uy = forced harmonic velocity amplitude of the cylinder, T =
oscillation period.) (Tanaka ez al., 1982.)
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Effect of laminar or turbulent flow (scale effects)
When separation occurs at sharp corners like bilge keels, there are not
any severe scale effects, For high KC-number-flow around midship
sections with no sharp corners, the drag coefficient in model scale may be
roughly speaking twice the value in full scale. The scale effect on the
drag coefficient at small KC-numbers is not so severe. The latter case is
relevant for slow-drift oscillations in the absence of current.
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Fig. 7.10. Effect of bilge keels on the drag coefficient Cy, at small KC-
numbers. (KC = Uy T/D, Uy = ambient oscillatory flow velocity
amplitude in the beam direction, T = oscillation period.)
(Experimental results by Faltinsen & Sortland, 1987.)
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The discussion above for eddy-making damping of ship sections is
summarized in Table 7.1.

The discussion of eddy-making damping of slow-drift sway and yaw
motion of a ship also has relevance for slow-drift damping of other
structures, for example a TLP.

SEPARATED FLOW AT HIGH KC-NUMBERS
Knowledge of drag coefficients at high KC-numbers is important in
predicting wave loads on jackets and risers in extreme weather
conditions.

Table 7.1

Effect of: KC<=10 KC>=10
Free surface no yes
Beam/draught no yes/no
Bilge keel yes yes

Bilge radius yes yes

Scale effect:

(a) No sharp corners yes/no yes

(b) Bilge keels no no

KC measured
A
]
®
D <>
r
d
0 1 L s ! 1 1 L ' 1 1
0 0.5 2i/D 1.0

Fig. 7.11. Drag coefficient Cy, as a function of bilge radius r (d/D = 1.0).
(KC = UnT/D, Uy = forced harmonic velocity amplitude of the
cylinder; T = oscillation period.) (Tanaka et al., 1982.)
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Bearman et al. (1979) presented measurements of a series of two-
dimensional bodies in plane oscillatory flow for KC-values between 3
and 70. They concentrated on bluff bodies with sharp-edged separation
and measured the in-line force on a flat plate, square, diamond and
circular cylinder. Beyond a KC-value of about 10 to 15 the curves for the
flat plate, circular and diamond cylinders are remarkably similar, and by
KC =50 the Cp-values are all only a little higher than their steady flow
values, Cp,°. To demonstrate this similarity, the values of Cp above
KC = 10 are shown plotted in Fig. 7.12 where they have been divided by
their steady flow value. The square section cylinder showed a different
trend.

We will try to explain the results in Fig. 7.12 by estimating the
increased effective incident flow due to returning eddies. In order to
estimate the drag coefficient we will study the force when the ambient
velocity

U,=Upysin wt (7.28)

is a maximum or a minimum, i.e. at wt=((2n+1)/2)7, n =0,1,...
To illustrate the procedure we will study the force on the body when
wt = 3m/2. The eddies that for instance are created at wt = /2 then
return as an increased incident flow.

The circulation T of the eddies will be estimated by a quasi-steady
approach. Schmidt & Tilman (1972) measured the circulation of eddies
as a function of longitudinal distance x from a circular cylinder in

A %
Co
2 O C(IRCULAR CYLINDER
o 0 DIAMOND CYLINDER
15+ o + FLAT PLATE
1_
054
0 T : T T T t
10 20 30 Lo 50 KC

Fig. 7.12. The ratio between Cp at a given KC and Cp™ at KC == (i.e. steady
incident flow). (Bearman et al., 1979.)
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incident flow with ambient velocity U., along the x-axis (see Fig. 7.13).
According to this figure the maximum circulation is

I'=S5U.R

where R is the cylinder radius.

When the eddies have obtained their maximum circulation, their
strength decreases with distance (see Fig. 7.13). In the quasi-steady
analysis of the oscillatory flow it is important to account for this effect. It
means that the effective incident flow is a function of the distance the

This will be done ‘by studying the effect of two vortices, shed from
alternate sides at wt = 7/2 (see Fig. 7.14). The inflow due to the vortices
will vary with time and be dependent on the position relative to the
cylinder. By inflow we mean the incident velocity when the body is not
there. This is the reason why we have dotted the cylinder in the lower
part of the figure. In order to illustrate that we are using a simplified
model we have drawn the returning vorticity as two discrete vortices.
The average velocity at the cylinder centre can be estimated from

eddies have been convected. In order to quantify this effect we will use 1 1
empirical circulation reduction formulas that are often used in numerical a _2 i d § I'R £+ R + ] 2 (7.30)
studies by the discrete vortex method. We will assume I' =TI,e*® 1 (—2-—-§> +R?

where I'y is the initial strength of a vortex and s the distance the vortex
has been convected. Different values of & have been used in numerical
studies. We will set & =0.1 in our example. However, this represents a
larger decay factor than Fig. 7.13 shows and demonstrates sources of
inaccuracies in our simple model. Since KC= UT/D is proportional to

where we have used the potential flow solution for the velocity induced

'

the distances the shed vortices are convected, we may translate s/R into. when/2
KC. For the eddies that are created at wt = st/2 and are returning to the A
body at wt = 35t/2 we can then write I' = I’y e “%!1@XE®)_ This means that
I'=5UyRe™ 02K (7.29) y
where we have set U,= Uy, i.e. the velocity of the ambient flow at
wt = st/2. This is valid for a circular cylinder. , -
Due to the results in Fig. 7.12 we will assume equation (7.29) has '
validity for separated flow past any two-dimensional body shape. We will B
try to quantify the increased incident flow due to the returning eddies.
6 wt=3n/2
T Us ©
UeR =L . -
S
\ l U oo
S l —=
\ ~_ / Bk )T
/R
° 0 1'0 2'0 310 l.lo Flg 7.14. Ilustration 1o show that two returning vortices created half a period

previously represent an increase in effective incident flow at present
time. (I = circulations of vortices, @ = circular frequency of
oscillation.)’

Fig. 7.13. Vortex strength versus distance for steady incident flow past a
circular cylinder (I' = circulation of a vortex). (Adapted from
Schmidt & Tilman, 1972.)
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by a vortex and [/2 is the horizontal distance between the vortices.
Equation (7.30) can be integrated analytically. We find

l
= _“" -1
= (2R>
According to von Karman’s analysis 2R/l = 0.281 (see equation (6.16)).
This means

7=0.83T/1=0.58U, e O2KE™ (7.3

The effective incident flow to the cylinder is Uy + #. We will assume
that the effect of eddies generated in previous cycles is negligible. This
means

Co (Um+ay

CDx UM2
This is in good agreement with the results in Fig. 7.12. It even agrees
with the experimental values at KC=10. Due to the quasi-static
assumptions one should not expect agreement for KC-values below 25.
One should be careful in applying equation (7.32) to new situations since

several major assumptions were made, for example equation (7.29) for
the reduction of vortex circulation.

= (1 +0.58¢~0.064KCy? (7.32)

Lift forces
For large KC-numbers Verley (1982) and Bearman er al. (1984b)
proposed a quasi-steady model to calculate the vortex-induced trans-
verse force on a unit length of a fixed circular cylinder in oscillatory flow.
They used the force in steady flow as a basis, i.e.

F(t)=3pU.>DCy cosQafut + o) (7.33)

Here f,=vortex shedding frequency, which can be found from the
Strouhal number, St=/,D/U. and C, =amplitude of transverse force
coefficient. 1, is a constant, dependent on the history of the flow, that
gives the phase of the transverse force. Cy, and St are generally functions
of Reynolds number.

For an oscillatory flow velocity

2t
U= Uysin( 22 (7.34)
T
equation (7.33) is applied quasi-steady. The instantaneous vortex shedding

frequency is proportional to the absolute value of the instantaneous veloc-

ity, i.e. to |Upmsin(2zt/T)|. The magnitude of the instantaneous -

iift force is assumed proportional to the square of the instantaneous

velocity. In finding the phase of the instantaneous lift force we have to |
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generalize the expression cos(27f,t + y,) for steady flow. This expres-
sion shows that during the time interval ¢ to ¢ + dt there is an increase in
the phase angle dy = 2z, dt. For unsteady flow this means
St 2t
=202 U002
Y =2x D |Unmsin{ ==

By integration we can find the instantaneous value of y. For 0=<¢/T <
0.5 we can write

¢ 2
W= Po= f dy =St - KC(I - cos(i‘»
0 T
During the second half cycle we can use the same expression if ¢ is

replaced by ¢t — 3T. We can now write the following quasi-steady model
for the lift force.

Fo(t)= g U2 sin® 272t/ T) CLD

2 !
xoos[St . KC(I - cos(%)) + "4’0] (7.35)
where
t,_[t for 0=<¢/T<0.5 ]
“le=T/2 for 0.5=<t/T<1.0

Further, C;, and St are lift coefficients and Strouhal number for steady
flow. The equation is valid for any body shape where the steady lift force
can be expressed by equation (7.33) and the ambient oscillatory flow
velocity is given by equation (7.34). The phase angle 3, in equation
(7.35) need not be the same in different half cycles. A 180° phase change
may occur. )

EXPERIMENTAL TOOLS

Oscillatory flow tests in a U-tube
Sarpkaya has, in a series of publications (Sarpkaya & Isaacson, 1981),

" shown that the U-tube is an excellent experimental tool for measuring

Cwm> Cp, Cr, and Strouhal number for plane harmonically oscillatory flow
‘past two-dimensional cross-sections. Bearman and Graham have also

-used a U-tube extensively at Imperial College, London. A U-tube has

also been built at the Norwegian Institute of Technology (Sortland,
1986). The Norwegian U-tube is described in Fig. 7.15. Forces in both
lift and drag direction on cylinders of different shapes in oscillating flow

- can be measured. The force measurement system is illustrated in Fig.

.16. Measurements on different configurations of cylinders like risers
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are also possible to achieve. The length of the measuring section can be
changed in order to look at length-to-diameter ratio effects. The wall
effect on the hydrodynamic coefficients can be simulated by placing the
cylinders close to one of the walls. This is for instance important in
studying sea floor effects on pipelines or slow-drift eddy-making
coefficients for ship sections. In the latter case the free-surface effect can
be approximated by a wall.

A drawback with the U-tube tests is scale effects, but this is the
problem with most model testing of marine structures. Another draw-
back with U-tube testing is that it is difficult to simulate three-
dimensional effects. On the other hand U-tube tests have provided and
will provide a lot of physical insight in understanding vortex shedding in

8
7

___< :) 1. Wave probe
- 2. Main body in aluminium

3. Wood stiffener

- ®

4. Plexiglass window

-1 S. 2-dim ship section
6. Plexiglass window
7. Haneycomb section
ﬂ ? / 8. Driving fan
9. Wood bed
[ANNNNNANNNNNN NN \\\X\\?é\\\\\\&i
'|.——————2_65m —_— ]

Fig. 7.15. Description of U-tube at Norwegian Institute of Technology.
(Sortland, 1986.)

[ ==

measuring section

dummy section

// force transducer
T
4+

plexiglass window

force transducer
mounting

Fig. 7.16. Force measurement system in the U-tube. (Sortland, 1986.)
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oscillatory flow past bluff bodies. Flow visualization tests which are easy
to do in the U-tube are also important for numerical calculations.
Examples of useful flow visualization techniques are the ‘hydrogen
bubble’, ‘polystyrene particles’ and Laser—Doppler techniques (Sortland,
1986).

The determination of Cy and Cp coefficients from U-tube tests is
based on Morison’s equation. For a circular cylinder this means that the
in-line force F can be written as

F=p’ZchMLU+’—2’DLCDU|U| (7.36)
where
D = diameter
L = length of test section
U = free-stream velocity
For oscillatory flow we can write
U=Upn sinz—;l (7.37)
According to Keulegan & Carpenter (1958) we can then write
3 1 2 )
D=§m ; Fpysin0do (7.38)
25
CM:%%;)—U:ﬁB A Fycos 6d6, =2—;[ (7.39)

Here F) is the measured force. In practice Cp and Cy will vary from
cycle to cycle and in same cases one needs to average over 20 cycles to get
good estimates of C, and Cy. Fig. 7.17 shows an example of measured
force signal and estimated force signal based on Morison’s equation.
Equations (7.38) and (7.39) have been used to determine Cp, and Cy to
give an optimum fit between the experiments and results of Morison’s
equation. '

In a U-tube the period of oscillation T is constant. This corresponds
to the natural period of the tank (see chapter 3 on U-tube anti-rolling
tanks). The parameter we can vary is the velocity amplitude Uy. In a
U-tube

is a constant for each model. One therefore often sees Cp and Cy
presented as a function of KC for constant 8. The results can easily be
- translated to be a function of both KC and Rn.
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: Free decay tests
It is common engineering practice to obtain damping coefficients from

free decay tests. It is normal to assume that the motion can be written as

%+ px+pa XX+ psx=0 (7.40)

where p, is linear damping and p, is quadratic damping. Assuming the

damping to be constant with respect to the amplitude of oscillation, the
linear and quadratic damping coefficients p, and p, can be determined
from the relation

2 (X, 16X,
Fﬂ:log(}—(-——l) —pit g b (7.41)

n+1

where X, is the amplitude of the nth oscillation. There is one half period
T /2 between X, and X, ., for any n. By plotting the left hand side of
the equation versus 18x /T, and fitting the points to a straight line by
the least square method, the coeflicients p, and p, are found; these give
the linear and quadratic damping terms respectively, see Fig. 7.18.

It is difficult and in some cases impossible to determine this straight
line from the experimental results. For instance, if the drag coefficient
(i.e. the damping force) has a large KC-number dependence, or
Reynolds-number dependence, it is impossible to find such a straight line.
Problems may occur particularly if the oscillating system is not lightly
damped. The reason is that the maximum velocity then changes
significantly for each subsequent oscillation period. This means the
Reynolds number and the KC-number change significantly. If the
damping force is strongly dependent on these parameters, it means we

Force
? Measurements

Morison's
equation

I Mass
! force in \ \
Morisons !
equation

Fig. 7.17. Example of measured and estimated force by Morison’s equation
(equation (7.36)) from U-tube tests.
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cannot find one 1'),- :_md po-value that is valid for the total decay time.
More than 10 oscillation periods with no significant variation in Reynolds
numb'er and KC-number may be needed to give a good estimate of the
damping.

EXERCISES

) 7.1 Morison’s equation
Copmder deep-sea regular waves incident on a vertical rigid circular
cylinder (Fig. 3.14). Consider the horizontal force on a strip of length dz
(see equation (7.1)).
(a) Discuss at what time instants the maximum horizontal force
F ..x occurs as a function of the amplitude £, and the
wavelength A of the incident waves. Derive expressions for
F ax as a function of £, and A. Answer: With a, proportional
to cos wt:
D If £,e¥ <0.25x CyD/Cp maximum force at wt = 0
I) If £,e** > 0.2524 CD/Cp maximum force at cos wt =
0.25aCwD/(Cpt.e*)
(b) Discuss relative importance of the drag and inertia term as a
function of KC-number.

P1=2.221-10";

Ziogl _?_1 ) P2=1.50610"

m n+t P3-582310"
001

0008 /

%

0006 /,
0,004 e
o |&°
[+
0.002 il
. £
0 16 Xn

00 01 02 03 04 05 06 B

Fig. 7.18. Hlustration of how the damping coefficients p, and p, (see equation
(7.40)) are obtained from a free decay test. The free decay test is the
calrf] water motion decay test in surge presented in Fig. 5.20. (The
?;c}:;);t)e and the abscissa are defined in connection with equation
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7.2 Lift-forces for high KC-number flow

(a) Equation (7.35) presents a formula for oscillatory lift forces
on a two-dimensional body in planar oscillatory flow. Use the
fact that cos(xcos ¢) and sin(x cos¢) can be expressed by
infinite series of Bessel’s functions ¥, of the first kind
(Abramowitz & Stegun, 1964 (equations 9.1.44 and 9.1.45 on
page 361)) to express the lift force in frequency components.
Discuss how the frequency components depend on the
KC-number. (Hint: It is possible to show that

[:L(t) = Re{O.SpUMZCLDe"(:*'V’m

X [70(2) +2 i (=¥ (=) cos k@] }sinze
k=1

where z = KC - St, 8 = 2;tt/T. This can be further rewritten
in frequency components k27zc/T.)

(6) Study a fixed vertical circular cylinder in deep water regular
waves. The cylinder is standing on the sea floor and
penetrating the free-surface.. Assume the vortex shedding is
uncorrelated along the cylinder axis. Show how equation
(7.35) can be applied to simulate the lift force distribution
along the cylinder axis.

(¢) Consider a vertical riser in deep water regular waves. Discuss
‘lock-in’ (vortex-induced oscillations).

7.3 Separated flow at small KC-numbers
Consider a fixed circular cylinder in planar ambient flow velocity.

U..= Uy sin ot (7.4

(see Fig. 7.19). The velocity potential ¢, for the non-separated flow can
be written as

2

R
¢o= Up sin wt(r + T) cos 0 (7.43)

- The KC-number is assumed small, but sufficiently large for the flow to
separate. We will simulate the effect of the separated flow by introducing
two time-dependent discrete vortices with circulations I'(z) and ~I'(¢) at
the positions (r,, 6,) and (r,, —6,). Fig. 7.19 shows that one has to add
‘image’ vortices inside the cylinder with circulations —I" and T at the
positions (R?*/r,, 8,) and (R*/r,, —8,) in order to satisfy zero normal

flow through the body surface. We will assume that a pair of vortices

generated during one half cycle do not survive into the next half cycle. It
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(@)
(d)

(c)

(d)

Fig. 7.19.

has therefore sufficient generality for us to study the flow in the time
interval 0 < wt < 7.

Validate that the body boundary condition is satisfied when r,
is close to R.

Neglect the interaction effect of the two separated vortices on
each other and show that the angular velocity component of
the vortex at 8 = 6, can be written as

RZ
R U sin wt (1 +T—2)sin 0 (7.44)
2:1:<rv—— . v

ry

Calculate I by equation (6.14). Assume for simplicity when T’
is integrated that the separation point (R, 8,) is fixed and that
the influence of the separated vortices on the tangential
velocity U, in equation (6.14) can be neglected. (Answer:
= —Up?sin?0, (wt — 0.5 sinQwt))/ w).
Assume that a separated vortex follows the angular position of
the separation point. Assume the radial position 7, is close to
R and the motion of the separation point is negligible. Show
by means of equation (7.44) that this means

R? _ r
T Ty 47U sin(wt)sin G,

Flow around a circular cylihder at small KC-numbers. The
separated flow is represented by two discrete vortices. (£I"' =
circulations of the shed vortices. Vortex positions (7, 6,) and
(Tv, - ev))
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(e)

From the unsteady Blasius equation (Graham, 1980) it is
possible to show that the drag force F; due to the two
separated vortices can be written as

2
Fi==p 3 2 (=5 7.45)

n=1
where T, is the circulation, and (x,, y,) is the position of
vortex n. Further, (£,, #,) is position of the image of vortex n
inside the circle. Use previous results and evaluate the force
at wt = 5r/2 (i.e. velocity maximum of incident flow). Show
that

Cp= (59>sin4 0, (7.46)
T

Assume reasonable values of @, and compare the results with
equation (7.24).

8 STATIONKEEPING

Precise position and motion control of ships and other floating structures
is important from a marine operational point of view. Thrusters and
mooring systems are important means of holding a structure against wind,
waves and current. In earlier chapters we have discussed how to evaluate
environmental forces due to waves and current. Wind has not been
covered as extensively as current. One of the reasons is that there are
many similarities between wind and current loads. The most Important
differences are perhaps in the differences in magnitude of density and
fluid velocity in the two media. From a fluid mechanics point of view one
may also say that the structural parts above sea level are generally more
complicated than the submerged parts. It is in any case necessary to rely
on model tests to obtain current and wind loads on marine structures.
One has more confidence in using calculations for mean wave loads. This
is particularly true for large-volume structures if one uses an accurate
method based on, for instance, three-dimensional source technique or
Green’s second identity to evaluate the first-order fluid flow.

In this chapter we will discuss forces from mooring systems and

thruster systems.

MOORING SYSTEMS
A mooring system is made of a number of cables which are attached to

the floating structure at different points with the lower ends of. the cables
anchored at the sea bed. One type is the vertical tension leg mooring

which is used in connection with tension leg platforms. This is a moored
table platform for which the buoyancy exceeds the platform weight, and
the net equilibrating vertical force is supplied by vertical tension mooring
cables secured by deadweight or drilled-in anchors. The mooring lines
provide essentially total restraint against vertical movement of their

“upper ends.

In a spread mooring system, several pre-tensioned anchor lines are
arrayed around the structure to hold it in the desired location. The

‘normal case is that the anchors can be easily moved. This implies that the

anchor in operation cannot be loaded by too large vertical forces, and, to

ensure that the anchors are kept in position, it is necessary that a
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significant part of the anchor lines lie on the seabed. The cables are made
up of either chain, rope or a combination of both. The ropes are available
in constructions from steel, natural fibre and synthetic fibres. Segmented
anchor lines, i.e. cables composed of two or more lengths of different
material, are used to get a heavy cable at the bottom (i.e. chain), and a
light line close to the water surface. This gives greater stiffness and
lighter anchor lines, than the use of chain or wire alone. The tension
forces in the cables, which are the means of applying restraining forces
on the floating structure, are due to the cable weight and/or its elastic
properties, depending on the manner in which the cable system is laid.

The initial tension, or pre-tension in a cable is often established by the
use of winches on the vessel or platform (often called a floating unit in
offshore connection). The winches pull on the cables to establish the
desired cable configuration. As the unit moves in response to unsteady
environmental loads, the tension in the cables changes due to varying
cable geometry. Thus the mooring cables have an effective stiffness
composed of an elastic and a geometric stiffness, which, combined with
the motions of the unit, introduce forces depending on the mooring cable
characteristics.

In the following text we will show how to analyse a cable line from a
static point of view.

Static analysis of a cable line .
A picture of the anchor line is shown in Fig. 8.1. We assume a horizontal
sea bed. The cable is in a vertical plane coinciding with x—z-plane. We
neglect bending stiffness which is a good approximation for chains. It is
also appropriate for wires with a large radius of curvature. We neglect
dynamic effects in the line.

Fig. 8.2 shows one element of the cable line. Forces D and F acting on
the element are the mean hydrodynamic forces per unit length in the
normal and tangential direction respectively. w is the weight per unit
length of the line in water, A is the cross-sectional area of the cable line, E
is the elastic modulus and T is the line tension. Because w is the weight
in water, this introduces correction forces, —pgAz and —pgAz — pgA dz
at the ends of the element. In this way we can calculate correctly the
hydrostatic forces on the element.

From Fig. 8.2 we find that

dT — pgA dz = [wsin ¢ — F(1 + T/(AE))] ds
T d¢ — pgAz d¢ = [w cos ¢ + D(1 + T/(AE))] ds

These equations are non-linear and it is in general not possible to find an
explicit solution. However, for many operations it is a good approxima-
tion to neglect the effect of the current forces F and D. We will also
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Fig. 8.1. Cable line with symbols.
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Fig. 8.2. Forces acting on an element of an anchor line.
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The horizontal component of the tension at the waterplane may be

icitv. This simplifies the analysis. However, in :
neglect the effect of elasticity p y s riten as

extreme conditions elasticity should be accounted for. We will later show

how this can be done in an approximate way. We will assume the cable Ty=T cos ¢, (8.9)
i ight it length. . ]
line has constant weight per uni & By comparing equations (8.1), (8.8) and (8.9) we find that

Solutions of the inelastic cable line (catenary) equations Ty =Ty

By introducin .. . .
y g This is also consistent with a global balance of forces. By the way, we

T'=T — pgzA ®.1) have chosen the coordinate system x, =0 and 2z, = —h. Further, we set
we can write so=0. The angle ¢ can be eliminated from equation (8.5) and (8.7) by

dT" in ¢ ds (8.2) equation (8.6) which can be written as

= w sin .
1+si
T'd¢ = w cos ¢ ds 8.3) Tﬂ = 10g<_:—oss%2>
. H

By dividing these two equations we see that e

dT’_sin¢d sinh<@_x>=l<1+sin¢_ cos ¢ >=tan¢>

—T—’_~cos¢> Ty/ 2\ cos¢ 1 +sin ¢
ie. wx\ 1/l+sing¢ cos ¢ 1

' 2 €os . h<_> == ( + " > =
T =T, —C—(Ei% 3.4 €08 Ty/ 2\ cos¢ l+sin¢/ cos¢

By integrating equation (8.3) we find that We may now write

1 (¢ T, cos o Ty’ cos ¢ _ Ty . ( w >
—§g=— dée = tan ¢ — tan ¢o) s =—sinh|{ —x (8.10)
ST b, COS O cos 0 w [tan ¢ Po w Ty
(8.5) T
Since dx = cos ¢ ds we can write 2+h= o [cosh(F; x> - 1] (8.11)

1 (? Ty cos ¢q
X—=%Xo=—| ———7
" wly, cosb

= T’ cos & (log( 1 3 + tan ¢>>
cos

de The line tension can be found by combining equations (8.1), (8.7) and

(8.8), i.e.

T
w T—png=$=TH+w(z+h)
- log( L+ tan ¢>0>> (8.6) ie.
cos ¢y T=Ty+wh+ (w+ pgA)z (8.12)

Since dz = sin ¢ ds we find that
1 (®T, cos ¢gsin 0

The vertical component T, of the tension is found by using

dT,' = d(T" sin ) =dT" sin ¢ + T" cos ¢ d¢p
Z—Ry=— 29 de
w Jg, cos = w sin® ¢ ds + w cos’¢ ds
' 1 1 X
_To' cos ¢ [ - ] 8.7 This means T, = ws, which in the waterplane says
w cos ¢ cos Py ‘

T, =ws (8.13)

We will show how we can use the formulas in a practical context. Let
us consider the example illustrated in Fig. 8.3 and try to find the

We choose ¢, to be the point of contact between the cable line and the
sea bed, i.e. ¢o=0. From equation (8.4) we see that

Ty =T'cos ¢ 8.8)
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minimum length [, of the chain. We will assume gravity anchors are
used. These are commonly used when floating units like ships and
drilling platforms are moored. A requirement is that a gravity anchor
cannot be exposed to vertical forces from the anchor lines. We will use
this to determine [,;,. However, it should be noted that for practical
design cases the line length is determined from a set of different
conditions considering both an intact mooring system and broken line
situations.

To find the minimum length of the cable lines we will ﬁrst use
equations (8.10) and (8.11), i.e.

l=a sinh(z—:> (8.14) ”
h= a[cosh(;—‘> - 1] (8.15)
where
_Tu (8.16)
w

By combining equations (8.14) and (8.15) we see that
I2=h*+2ha (8.17)

From equation (8.12) we see that the maximum tension in the cable
line can be written as

Tovax =T + wh (8.18)

By combining equations (8.15), (8.17) and (8.18) we see that the

minimum length of the cable is

"
lmin=h(25“—}:"‘* 1) 8.19)

w

777 7 7 7T 7
Anchor < X >
X
-

Fig. 8.3. Vessel moored with one anchor line.
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We will set T, equal to T, i.e. the breaking strength of the cable. For
instance if 7', =1510kN, 2 =828 N/m and #=25m we find that
lmin = 301 m.

If we want to find the mean position of the vessel in wind, waves and
current we have to know the horizontal force Ty from the cable on the
vessel as a function of the horizontal distance X between the anchor and
the point where the anchor line is connected to the vessel. We can write
the horizontal distance X as (see Fig. 8.3)

X=1-l+x (8.20)

By using equation (8.17) to express /, and equation (8.15) to express x we
see the following relation between X and Ty

a\} - h '
X=l—h(1+2;> +a cosh (1+—> (8.21)
a

where a = T/w.

Calculations based on equation (8.21) are illustrated in Fig. 8.4. The
weight per unit length of the chain in water is w = 828 N m™', the water
depth 2 =25m and the length [ of the chain outside the ship is 100 m.

T, (kN)

4 |

150

100 /

50

//

80 85 90 95 X{m)

Fig. 8.4. Example of the horizontal force from an anchor line on a vessel as a
function of the horizontal distance X between the anchor and the
point where the anchor line is connected to the vessel. (The vessel
and the anchor line configuration is shown in Fig. 8.3.) Water
depth: 25 m. Weight per unit length of chain in water: 828 N m™".
Chain length: 100 m.

0
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To find X for a vessel that is moored with a mooring system as
described above we have to know the environmental forces on the vessel.
Let us say that the x-component of the average wave, current and wind
force on the vessel was 50 kN. From Figure 8.4 or equation (8.21) we
find that the average distance X from the anchor line to the point where
the anchor line is connected to the vessel will be 93 m. However, due to
the vessel’s motions in waves the distance X will oscillate around 93 m.
From the figure we note that the horizontal force from the anchor line on
the vessel will also oscillate. If the horizontal motions are not too large,
we may write

Tu=Twun+Cum

Here (Ty)m is the average horizontal force from the anchor line on the
vessel, i.e. SOKN in our example, and 7, is the horizontal motion in the
x-direction of the point on the vessel where the cable line is connected to
the vessel. We can find C,, from Fig. 8.4 as the derivative of Ty with
respect to X at (T)m. We may also find an analytical expression of Cy;.
By differentiating equation (8.21) it follows that

-2 AN
c _dTH_w ——ﬁ+cosh‘1<l +;) (8.22)
N X (1 +2 -)
h
where a = (T'y)m/w. From this example it is evident that the anchor line
has a spring effect on the vessel.
If we denote the horizontal motion in the x-direction of the centre of
gravity of the ship as 7, we may approximate the surge equation of
motion of the ship as

dn,| dmy

| + Cum =F()

d*n,
(M +.A”)'E[T+ B“'__+BD

(8.23)

where M is the mass of the ship, A;; is added mass in surge, By is a
linear damping coefficient, By, is a quadratic damping coefficient and
F\(t) is the dynamic excitation force due to waves and wind. From
equation (8.23) we find that resonance in surge will occur when the
circular frequency of oscillation

_({ Cu )*
w~<M————+All (8.24)

In a practical case resonance oscillations in surge may be excited by
slowly-varying excitation forces due to waves and wind. The most
important linear damping B, for slow-drift oscillation of a large volume
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structure is due to the wave-drift damping (see chapter 5). The quadratic
damping is due to drag forces on the hull (see chapter 7) and drag
damping from the anchor lines. Strictly speaking we should have
included the effect of the relative velocity between the vessel and linear
incident wave field when we formulated equation (8.23).

Analysis of a spread mooring system

The above procedure for one cable line can be generalized to a spread
mooring system consisting of several cable lines. The relationship
between mean external loads on the vessel and its position can be found
by considering contributions from each cable line separately. We can
write the horizontal forces F,™, F,™ and the yaw moment F¢™ from the
mooring lines as

FM= Z T'yy; cos ;

i=1

FM=Y Ty siny; (8.25)

i=1

n
FM= Zl T'ys[x; sin ; — y; cos ;]

i=
. Here T'y; is the horizontal force from anchor line number :. Its direction
is from the attachment point of the anchor line towards the anchor.
VKFurther, x; and y; are respectively the x- and y-coordinate of the
attachment point of the anchor line to the vessel and 1; is the angle
between the anchor line and the x-axis as defined in Fig. 8.5. In order

AY
Ty W
{xi,yi}

- X

Fig. 8.5. Example of spread mooring system for a drilling platform.
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for the moored structure to be in equilibrium, F,™, F," and F¢" have to
balance the mean forces due to waves, wind and current. The problem of
finding the equilibrium position can generally not be solved directly and
an iteration procedure has to be set up.

If we want to find the linear restoring effect of the anchor lines in the
equations of motion we can generalize the procedure outlined in
connection with equation (8.22). We can write

Ch= 2 k; cos® Y,

i=1

Cyp= 2 k; sin® ¥,
= (8.26)

Ces= 2 k,(x; sin y; —; cos ¥y
by

n
Cs=Cer= 2, ki(x; sin ; —y; cos ¥;) sin ¥
i=1
Here k; is the restoring coefficient for anchor line number 4. It can be
found as in equation (8.22). The coupling coefficients Ci6> Ce15 C)z and
C,, are zero if the mooring arrangement is symmetric about the x-z

plane.

Example. Static analysis of a spread mooring system
A platform is restrained from moving by two anchors with anchor lines
of chain (see Fig. 8.6). The length [ of the anchor line is 600 m and the
horizontal pre-tension Ty is 300 kKN. The weight of the chain in water
is w = 1000 N m~!. Assume static environmental forces on the platform.
(a) What is the distance between anchors A and B?
(b) What is the line tension at the platform?
(¢) Find out how large the environmental force on the platform
has to be to move anchor A.

Tz

{a
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X
Fig. 8.6. Vessel moored with two anchor lines.

(@)

(@)

)

©)

Study the displacement of the platform as a function of the
environmental force on the platform.

Solution:

The distance between anchors A and B is given as 2X + L
where X =1 — I, + x and L is the length of the platform. By
using equation (8.21) we find that the distance between the
two anchors is

1060 (m) + L

From equation (8.12) it follows that the line tension at the
platform is

T =Ty + wh =500 kN

and (d) Let us first examine mooring line A. Anchor A
will start moving if I, =1 = 600 m. From equations (8.16) and
(8.17) we will find the corresponding horizontal tension 7'y in
cable line A and the x-value for attachment point of the cable
line to the platform (see Fig. 8.3).
We find a = 800 m, 7'y = 800 kN and

s00sinn(22) =
x = 800 sinh (800 555m
This means the attachment point of the cable line to the
platform has moved 25 m compared to the original situation.
In order to find how large the environmental force on the
platform has to be to move the platform 25 m, we will first
study the horizontal tension 7'y in each cable line as a
function of displacement. This is illustrated in Fig. 8.7 and
can be performed in the same way as described for the vessel
shown in Fig. 8.3. Instead of referring the displacement to
one of the anchor positions, we use the displacement of the
vessel relative to the position that the centre of gravity of the
vessel had when there were no environmental forces acting on
the vessel, i.e. the situation described in the introduction of
the example. From Fig. 8.7 we find that the horizontal
tension in cable line A is 800 kN and the horizontal tension in
cable line B is 140 kN when the vessel has moved 25 m to left.
From this we may conclude that the necessary horizontal
environmental force on the platform in direction A-B to
move anchor A is 800—140 = 660 kN. We may also use Fig.
8.7 to study the displacement of the platform as a function of
the environmental forces on the platform. This may be done
by giving the platform a displacement 6 and finding the
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horizontal tension in line A (T'y;4) and horizontal tension in
line B (Typ) from Fig. 8.7. The horizontal environmental
force in direction A—B has to be T'ya — Tys to get a balance
of the forces acting on the platform. The functional
relationship between Ts — T'yp and 8 is plotted in Fig. 8.8.

Solution of the elastic cable line equations
In extreme conditions we have to consider the effect of the elasticity in
the cable lines. We will show how this can be done in an approximate
way. Equations (8.2) and (8.3) which set up relationships between the

effective tension 7, element angle ¢ and unstretched element length ds

are still valid. This means equations (8.4) and (8.5) are also valid. Since
we have chosen ¢, and s, to be zero, it means that

= Lo (8.27)
cos ¢
T t
s =—>tan ¢ (8.28)
w
T, }
i 2
1000
< i
=
S i
w
=z
& i
—
2 i
=
=z
Q 500
[a' 4
Q -
I
0- RN B mam I
+50m +50m
6(& 100 200 300 400 500 600 m
Anchor position Horizontal
line A ' position

Fig. 8.7. Horizontal force on the vessel from anchor lines A andBasa
function of horizontal displacement of the vessel illustrated in Fig.
R.6.
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To find the x- and 2-coordinates we have to use the following
relationship between the stretched length dp and unstretched length ds of
a cable element ‘

T
dp—ds<l+ZE>- (8.29)

This means

? 1

T,
) =cos ¢ +—— (8.30)

dx T
d—s=cos¢(l+~)zcos¢<l+ T

AE AE AE
dz T ) T' i w
_—_ — = +— )= —_—
o sm¢(l+AE) sin ¢(1 AE) sm¢+AEs (8.31)

The last term on the right hand side of equation (8.31) follows by
combining equation (8.27) with equation (8.28). We will now integrate
equations (8.30) and (8.31) up to the attachment point of the cable line to
the vessel. For simplicity we will assume the attachment point is at 2 = 0.
We should note that the vertical component T, of the tension at the

- attachment point is given by equation (8.13). This means the unstretched

length I, (see Fig. 8.3) of the cable from the point where cable first
touches the bottom to the attachment point can be written

lj=— (8.32)

Environmental horizontal force
=Tua-ThB

1\

660 kN

25m 6% displocement

' .Fig. 8.8. Mean environmental horizontal force on the vessel described in Fig.
8.6 as a function of horizontal displacement.
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where cos ¢, at the attachment point can be written Tw/(T? + T,5%.
From this equation we can find an explicit expression for Ty, i.e.

T2 ( po L2 )2
Ty= 2 AE : (8.33)
2(en 3 55)
We should note that the tension T at the attachment point is simply
T =(Ty*+ T2 (8.39)

Finally, by integrating equation (8.30) in a similar way to equation
(8.6) we find that

=11, ((TH2+ T+ Tz> +Tn
T B Ta AE

We can now use equations (8.32) to (8.35) in the following way. We start
out by assuming a value of T',, then calculate [ from equation (8.32), Ty
from equation (8.33), T from equation (8.34) and finally x from equation
(8.35).

If we want to find the mooring line characteristics for a given value of
Ty, we have to perform the calculation procedure above for several
assumed values of T, and then afterwards interpolate the data.

The equations that we have found for cable lines can also be used for
analysis of towing cables. The water depth in the formulas have then to
be replaced by the sag s4 of the cable. Further, [ is the same as half the
cable length.

1, (8.35)

THRUSTER FORCES
Thrusters may be used in combination with a mooring system or alone to
keep a vessel in position. From open water testing one can get a first
estimate of the thruster performance, but a thruster may lose efficiency
due to interaction with other thrusters, the hull, current and waves. One
example of the hull interaction effect is the Coanda effect. This means
that the propeller (thruster) slip stream is attracted by the hull (see Fig.
8.9). A consequence of this is loss of thrust. The Coanda effect can be
explained by representing the propeller slip stream by a circular jet,
which acts like a line of sinks. This means that the water is entrained in
the jet from outside the jet. (For analysis of circular jet flow see
Schlichting, 1979: pp. 747-50). If the boundary had not been there, the
entrainment velocity would have been directed radially toward the centre
of the jet. The entrained velocity is only a function of the radius. If a
boundary is present, the velocity will be at a maximum between the jet
and the boundary. High velocity means low pressure. This means a
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pressure difference across the jet with a/resultant force towards the
boundary. The force will attract the jet towards the wall. The attraction
force has to be in balance with the centrlfugal force of the jet flow. This
determines the position of the jet relative to the wall. This is illustrated in
Fig. 8.10. For a thin jet initially at a distance 4 from an infinitely long
wall, it takes roughly 6 - & to hit the wall if the jet is initially parallel to
the plane wall, This information can be used as a rough tool for avoiding
the propeller slip stream coming into contact with the hull. However, we
should realize that it is an idealization to approximate the propeller slip
stream by a thin jet. The jet must have a radius comparable to the
propeller radius. Close to the propeller the flow is not jet-like. It actually
takes a distance of about six times the diameter from the thruster before
the propeller slip stream develops into a fully turbulent jet-like flow. The
jet will spread as a function of the distance from the thruster. If we
consider a free jet, i.e. a jet not in presence of a boundary, the points in a
jet where the velocity is half the maximum velocity will spread with an

.angle of about 5°. This spreading may cause the propeller slip stream to
. be in contact with the hull before the above attraction effect has fully

developed. When the propeller stream clings to the hull, it behaves like a
wall jet. The wall jet may very well separate from the hull again. This

- depends on the local radius of curvature of the hull. If a sharp corner is

present the propeller stream will separate and there will be no significant

thrust loss. It is difficult to estimate theoretically what the loss due to the

Deflection
of jet stream

L 0%, oy

Higher velocities than
optposne side of

THRUS

Centrifugal
THRUSTER force balanced
by pressure forces

Fig. 8.10. Deflection of propeller slip stream. (Coanda effect.)
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Coanda effect is. Limited full scale experience from a supply ship
indicates that the Coanda effect may cause a 30-40% loss of thrust for a
given power. In that case the propeller stream followed the ship hull all
the way up to the free-surface. If the propeller stream had separated
from some point on the hull surface, it is expected that this would have
caused a smaller loss. For semi-submersibles the Coanda effect for a
thruster on one pontoon may cause the propeller stream to hit another
pontoon. The loss due to this can roughly be estimated by considering
the propeller stream to be an incident current on the other pontoon.
Another case for a semi-submersible would be if the thruster is aligned
longitudinally along a pontoon. Due to the long distance the propeller
slip stream is likely to be completely attracted to the pontoon. The
boundary flow between the wall jet and the pontoon will cause shear
forces. This may amount to 10-15% loss of power.

Loss of efficiency due to current
The forces generated by a tunnel thruster are affected by the flow of a

current past the entrance and exit of the tunnel. Model test results taken
from Chislett & Bjgrheden (1966) and presented in Fig. 8.11 show the
percentage loss of side force as a function of vessel forward speed.

The loss of thrust is caused by deflection of the jet stream and by

Thrust
"Thrust in still water

o2

l 1 1 J

0 04 [o2:) 12 16
Vessel speed

Thruster jet speed

Fig. 8.11. Bow thruster performance. Effect of ahead current/vessel speed.
(Chislett & Bjgrheden, 1966.)
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interactions between the jet stream and the hull which give rise to suction
forces on the tunnel exit side of the vessel.

In order to illustrate the results in Fig. 8.11, we may evaluate the
propeller jet velocity V,; by

Vi= (;T;O)i (8.36)

where T is the thrust and A, is the propeller disk area. This follows from
conservation of momentum in the fluid. For instance, with 7= 130 kN,
Ay=3.5m? V;=6ms™'. A current speed of 1ms™' along the ship
centerline means that the thrust of a thruster working in the transverse
direction of the ship is =80% of the still water thrust.

Minsaas et al. (1986) have argued that a similar effect to this must be
present in waves. They did experiments with a fictitious bow thruster
system in head waves. The ship sides were simulated by vertical plates
parallel to the incident regular waves. The whole system was restrained
from oscillating. At the propeller centre the wave velocity amplitude was
written as

V.= wle (8.37)

where h, is the still water submergence of the propeller shaft.
By interpreting V,, as a current velocity they were able to predict
trends in their experimental results. If a ship is moving in waves the

- problem becomes more complicated. The velocity across the propeller jet

at the tunnel entrance is no longer V. This problem area requires
further research.

Influence of free-surface effects on thruster characteristics
In this section we will talk about other effects of the wave-induced
motion on the thruster behaviour. These are associated with the thruster
coming close to the free-surface. Depending on the thruster loading this

- may cause air ventilation with a serious loss of propeller thrust and

torque.

In order to study the effects of waves, tests in calm water were
performed by Minsaas et al. (1986), based on a quasi-steady assumption.
As long as the thruster is not ventilating, this is legitimate, since the
‘wave-induced motions occur with a much lower frequency than the
propeller rotation. However, when the propeller is in a transient
ventilating condition, there is also a frequency connected with the
development of the ventilated area on the propeller blades. This
‘wave-induced effect cannot be simulated by means of results in calm

¢ 'water.
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The tests in calm water were performed with different propeller axis
submergences k relative to the free-surface. By the quasi-steady
assumption one can interpret & as the submergence of the instantaneous
position of the propeller axis below the instantaneous position of the
wave surface. (see Fig. 8.12). By averaging the propeller thrust and
moments in time one can find the effect of the wave-induced motions of
the ship on the thruster characteristics.

Typical model test results from calm water are shown in Fig. 8.13
where the thrust is presented as a fraction of the thrust for a fully

immersed propeller:

_ KA(h/R)
pr="T—

and for different immersions and number of revolutions n. R means the

(8.38)

]

A K/ Kso
1.0+

LOSS OF

LOSS OF
PROPELLER DISK AREA

+
STEADY WAVE
GENERATION
+
UNSTEADY LIFT

0.5

-
>

/R

0.5 1.0

hit)

Fig. 8.12. Quasi-steady approximation of the effect of waves on propeller
characteristics when ventilation does not occur. (K1/Kx, = the thrust
as a fraction of the thrust for a fully immersed propeller.)
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propeller radius. ‘It is observed that the number of revolutions has a
marked influence on the results. The effect of loss of effective propeller
area is important. When 2/R < 1.0 the ratio of the immersed disk area
A, and the total disk area of the propeller is:

(8.39)

If we assume that the thrust is proportional to A, B, gives the thrust
reduction for small n-values as illustrated in Fig. 8.13. For large
n-values we see that the thrust is very low for the small #/R-values.
This is due to propeller ventilation. Qualitatively it can be explained as
follows. Increased n means increased loading. This means large suction
pressures on the propeller. The lower the pressure is, the more likely it is
that ventilation occurs. For 2/R = 1.0-1.5 there is a very rapid variation
in thrust. This is when ventilation starts. The behaviour of 8 in waves is
not quasi-steady when the propeller is in a transient ventilating state.
The maximum thrust is reached later in time than maximum immersion.
In most of the cases maximum thrust never reaches the same thrust value
as when the propeller was fully immersed in static conditions.

Minsaas et al. (1986) have tried to apply their experimental results for
a ducted propeller and bow thruster in regular waves to thrust loss for
different ships and sea states. An example for a 250 m long ship is
presented in Fig. 8.14. The results will depend on, for instance,
propeller shaft submergence, propeller diameter, propeller pitch,
- propeller revolution and hull form. The results in Fig. 8.14 show that
even a large ship experiences considerable thrust losses in rough sea.

@y n=50revss’

4

057" o / xf1 n=125revs s
/' X —Fo =41
3_ _:--a——“""*_*-*/
-0.5 0 05 10 15 20 hR

Loss of thrust due to reduced immersion of a bow thruster in calm
water. Model scale. ( Bt = thrust divided by thrust for deeply

- submerged propeller. B, (see equation (8.39)), n = number of
propeller revolutions per second, 4 = propeller axis submergence
relative to the free surface, R = propeller radius.) (Minsaas et al.,
1986.)

Fig. 8.13.
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THRUSTER PERFORMANCE AND DYNAMIC
POSITIONING
If the thrusters are part of a dynamic positioning (DP) system, an
idealized simplification of the total thruster forces on a structure can be

written as

6
Fk = Fk - 2 (BijP?:’j + ijDPnj) k= 1, ey 6 (840)

j=1

Here k = 1 means surge force, k = 2 sway force, k = 3 heave force, k = 4
roll moment, k=5 pitch moment and k=6 yaw moment. For a
dynamically positioned ship it is only 2 =1,2 and 6 that are of interest.
F, means mean forces. They have to balance the mean wave, current and
wind loads. Further, 7, are the slowly-varying motions of the structure,
obtained through proper filtering of the motion reference measurements.
It is the high-frequency motion due to waves that are filtered out. It is
generally impossible to have a system that can react to the high-
frequency wave forces. To get a feeling for the values of the damping
matrix B,°F and the restoring matrix C,°", we can refer to a
dynamically positioned ship. As a first guess we can set the coupling
coefficients equal to zero. Further, we can choose CuP¥,k=1,2and 6
so that the natural period of the slowly oscillating ship is from 100-200s
in surge, sway and yaw. The damping coefficients B.,PF can be set equal
to ~60% of the critical damping, for motion mode k. The final real
values are decided after sea tests of the DP system.

Let us show what the first guess implies for the surge motion. We can

1.0

05

T T
0 5 10
Hys (m)

Fig. 8.14. An example of thrust reduction for a bow thruster on a 250 m long
ship in head sea waves. No current. (81 = thrust divided by thrust
for deeply submerged propeller, Hj = significant wave height.)
(Minsaas et al., 1986.)
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write the equation of slow-drift surge motion as
d*n . .
M +All)"‘c‘1t_zl+ B +BHDP)‘(%+ Cu®'m

=FISW+F1Wind (841)

If the ship has a mooring system, its effect on equation (8.41) can be
taken care of by adding a restoring term C;;n,. In equation (8.41) M
means the ship mass, A;, the surge added mass, B, the hydrodynamic
damping, F,3Y the slow-drift wave excitation force and F,*™ gust
excitation force. The mean values of F,5¥ and F,*™ are zero. According
to what we said just recently we should choose

2m\?
C,\"F = (—) (M +A,) where T, =100s for instance

T,
BnDP= 1.2[(M +A11)CnDP]% 8.42)
The variance o, of the slow-drift surge motion can be calculated as we
did for the slow-drift motion in chapter 5 (see equation (5.47)). We can
also calculate the variance of the total thruster surge force by using
equation (8.40).
We should note that we have all the time talked about the total thruster

- forces. For a DP system there has to be an allocation system that tells
_how the power should be distributed among the individual thruster

units.
EXERCISES

8.1 Static analysis of a cable line
Given:
Weight of chain in water w=828Nm™!
Breaking strength of the chain T =1510kN
Water depth h=25m
Length of chain outside the ship [=100m

Further, the cable line is connected to the vessel just above the

‘waterplane. Assume in questions (a), (&) and (c) that the cable line is

inelastic.

(a) Find out the necessary horizontal force Ty from the vessel on
the chain in order to be able to move the anchor. (Answer;
155 250 N).

(b) What is the breaking safety of the chain in the condition
described in question (a)? (Answer: 8.6.)
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(c) Calculate the angle 8,, between the cable line and the mean
water surface as a function of the horizontal distance X
between the anchor and the point where the anchor line is
connected to the vessel (see Fig. 8.3). Check the calculations
of Ty in Fig. 8.4.

(d) Repeat the calculations in question (¢) by assuming an elastic
cable line.

8.2 Effect of mooring system in the equations of motions

(a) Derive equations (8.26) for the restoring coefficients due to a
spread mooring system.

(b) Outline how one can estimate the drag damping from an
anchor line. (Hint: Assume the top of the anchorline has a
horizontal time dependent motion 7,(¢). Neglect dynamic

 effects in the anchorline and find the static position of the
anchorline as a function of 1,(t). Use the ‘cross-flow-
principle’ to estimate drag-forces along the anchorline, but
assume for simplicity that the drag-forces do not influence the
anchorline configuration).

8.3 Free-surface effect on propeller
Assume a propeller is not ventilating. The propeller axis is at a
submergence of ki, in still water. The propeller radius is R (see Fig.
8.12). Consider regular waves propagating in the direction of the
propeller axis with amplitude &, and circular frequency w. The wave
elevation at the propeller position is

¢ =¢,sin wt

Assume the propeller thrust is proportional to the immersed propeller
disk area A,. Set up an expression for the ratio 8 between the mean
thrust in one period T and the thrust for the deeply submerged propeller
in terms of hy, R and §..

8.4 Turret-moored ship

Consider a turret-moored ship in waves and current. The ship and the
coordinate system is defined in Fig. 8.15 and Table 8.1. We will assume
the mooring system has zero stiffness in yaw rotation about the turret and
that the slowly-varying motion of the ship is a pure yaw motion around
the turret.

Assume the incident waves are long-crested and that the ship is in a
mean position close to head sea waves. For simplicity we will use the
following wave spectrum to describe the sea state

3.1m?s 0.6s'<w<l.1ls™!
0 other w-values

S(w)=[
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The transverse wave drift force F,¥2 and yaw moments F¢¥® in regular
waves with circular frequencies w<1.1s"! are assumed to be
frequency-independent. Further we assume F,*® and F¢¥P are propor-
tional to the heading angle 8 when 8 <0.175 rad where 8 is defined in

Table 8.1. Relevant data for the ship to be analysed in exercise 8.4

Length L=230m
Beam B=4lm
Draught D=15m
Displacement V=121000m?
Turret position: xr=-20m
(coordinate system defined in
(Fig. 8.15)
Radii of gyration of the ship mass ru=12m
rss=57.5m
Tee = 57.5m

Restoring coefficients with respect
to coordinate system in Fig. 8.15

C“ = sz =35- 105 N I'rl_l
Cz=7.0-10°N rad™!
Ces=1.4-10° Nmrad™!
Added mass, o —0 An=1.02-10kg

(with respect to coordinate Ay =1.29-10%kg

system in Fig. 8.15) Ax=0.0
Ag=3.70 - 10" kg m*

furlref Y
W <é —»ﬂ
L/2
Y4
.
1 1y X J

- Fig. 8.15. Turret-moored ship ( § = wave heading, 8 = current angle). Used in

exercise (8.4).
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Fig. 8.15. We write

FZWD

2
a

FGWD
2
a

(&, = wave amplitude of regular incident waves)

The yaw moment is with respect 1o the z-axis (see Fig. 8.15). The
current velocity U, is 0.5 ms-!. 0 is the angle between current and
ship’s x-axis. The angle between wave propagation direction and current
is 10° (0.175 rad), i.e.

B=0+0.175

The transverse current force F,¢ and yaw moment F¥ «C are written as
F,t=0.22 pUZLDO
F€=10.048 pUZL*DO

for small angles 6. The yaw moment is with respect to the z-axis.

(a) Find the average position of the ship relative to the wave
heading (Answer: 6 = —0.12 rad.)

(b) Assume that thrusters are used for heading control and that
the average current angle 8 is zero. The yaw moment of the
thrusters with respect to the turret can be written as in
equation (8.40). The natural period of the yaw motion is
400's. Set up an uncoupled equation for the slowly-varying
yaw motion and explain the terms in the equation of motion.
How large must the yaw damping effect of the thrusters be in
order for the standard deviation of the yaw motion to be less
than 3°? (Hint: Use equation (5.48) as a rough
approximation.)

=0.314 pgLB

=—0.0114 pgL’p

8.5 Design data for thruster systems
A vessel with length 185 m and draught 13 m is proposed as a pipelaying
vessel. The average wetted area of the ship is 10000 m?. The vessel
should be able to operate up o a significant wave height Hy=4m, a
mean wave period T,=7s, a wind speed of 26 knots and a current of 2
knots. The vessel will be equipped with a dynamic-positioning system.

. (a) Study two conditions. One condition is irregular long-
crested head sea waves with current and wind in the
longitudinal direction. Another condition is long-crested
beam sea waves with current and wind in the transverse
direction. Find the mean environmental loads that the
thrusters should counteract in the two weather conditions.

EXERCISES 3
201

)

(Hint: Es_timate wave drift forces by using data given in Fi
5.13. I'Estm?ate current loads by using equation (6.24) and &
data given in Fig. 6.11. Estimate wind loads by pressure dr
form_ulas.. Use drag coefficients equal to 0.8 both for *
longitudinal and transverse wind directions. The projected
areas fo_r longitudinal and transverse wind forces are ]
respectively 350 m? and 1400 m*.)

Discuss the possibility that the thrusters lose efficiency due to
wave effects by making reasonable choices of thruster

positions and estimates of relative vertical motions between
the ship and the waves.
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SLAMMING

Impulse loads with high pressure peaks occur during impact between a
body and water. This is often called ‘slamming’ and occurs for instance
when a ship bottom hits the water with a high velocity. The probability
of slamming is highest on the fore part of a ship where the relative
vertical velocity between the ship and the waves is largest. Slamming on
the ship bottom occurs more often in the ballast condition. than in the
full-loaded condition and is a larger problem for ships with large block
coefficients than for fine ship forms. Wave impacts can also cause bow
damage above the waterline. Ship masters normally reduce the speed of a
vessel to avoid slamming. An often used criterion for ‘voluntary speed
reduction’ is that a typical ship master reduces the speed if slams occur
for more than three out of 100 waves that pass the ship.

For a catamaran, slamming can happen on the underside of the deck
between the two hulls. To avoid slamming on platform decks one
requires an air gap of typically 1-2m between the underside of a deck
and the most probable highest position the wave can. reach relative to the
underside of a deck in a ‘100 year’ design condition. The columns of a
platform have to be designed for impact loads due to breaking waves (see
Fig. 9.1). Inside ship tanks violent fluid motion (‘sloshing’) can cause
high slamming pressures and damages. Abramson et al. (1974) reported
that 24 atmospheres of impact pressure had been measured in a tank of
an OBO-ship. S

The duration of slamming pressure measured at one place on the
structure is of the order of milliséconds. It is very localized in space. The
position where high slamming pressures occur changes with time.
Slamming pressures are sensitive to how the water hits the structure. We -
can exemplify this with experimental results of slamming pressures due
to sloshing in tanks. Abramson et al. (1974) reported model test results
for a typical LNG tankform, similar to the one presented in Fig. 1.2. The
tank was forced to oscillate harmonically in sway and two-dimensional
flow conditions were enforced. Experiments show that even under
harmonic oscillations, the pressure variation is neither harmonic nor
periodic since the magnitude and duration of the pressure peaks vary
from cycle to cycle. A typical histogram for the distribution of peaks is

Fig. 9.1. High slamming pressures can occur when breaking waves hit the
' column of a platform. The top photo shows a breaking wave
approaching the column of a platform and the other photo shows the
situation just after the breaking wave has hit the platform. The
photos are from the TCP-2 platform at the Frigg Field on the
Norwegian Continental Shelf operated by EIf Aquitaine Norge A/S.
(Kjeldsen & Andersen (unpublished).)
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shown in Fig. 9.2. The most frequently occurring pressure peaks will
reach 0.4 times the pressure level exceeded by 10% of all peaks. The 1%
exceedance limit is two to three times the 10% exceedance limit. We may
also note from Fig. 9.2 that the slamming pressure has a much shorter
rise time than decay time.

In order to describe the physics of the slamming problem, let us
examine a related, but simpler problem —a horizontal cylinder that is
forced through an initially calm water surface with constant velocity V.
We assume the body has small submergence, the body has a blunt form

and the flow is two-dimensional (see Fig. 9.3). The submergence of the

lowest point on the body relative to the calm waterplane is Vz, where ¢ is

the time variable. At this stage we will not precisely deﬁn‘é‘lﬂ)_w largg the
wetted area of the body is. This depends on the theoretical approxima-

tion that will be used. We will just state that the werted body area is

P
!

I

t

1%

. 10% EXCEEDANCE LIMIT (Pg)
PRESSURE

l- 2.5%
DETECTED

T .

T T L
04 10 20 PR,

FREQUENCY OF OCCURRENCE

Probability density function of impact pressure peaks from forced
harmonic sway oscillation of a LNG-tank. Based on model tests with
two-dimensional flow. Also shown is an example of pressure
recording. (Abramson et al., 1974.)

Fig. 9.2.

Fig. 9.3. Definition of parameters in analysis of impact forces and pressures
on a body.
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between —c(f) <x <¢(z) (see Fig. 9.3). However, we exclude the wetted
area due to spray. The reason is that we are interested in finding the
hydrodynamic pressure and force on the body and the pressure on the
body in the spray area will be very close to atmospheric pressure.

In solving the problem we will assume irrotational flow and an
incompressible fluid. This means we can use potential theory. However,
in special _cases the compressibility of the fluid has to be accounted for.
The pressure is assumed constant and equal to atmospheric pressure on
tl\)g\free-surface. However, this is not true Wwhen a body with a horizontal
flat_bottom_hits the free-surface. A compressible air pocket is then
created between the body and the free-surface in an initial phase (see
Fig. 9.4).

To analyse the problem we will use the free-surface condition ¢ =0
~on z=0. This means we assume the fluid accelerations are much Targer
than the gravitational acceleration. &., The cylinder is replaced by an
‘equivalent’ flat plate of half-width ¢(¢) in the mean free-surface. The

body boundary condition is transferred to the flat plate. We can show
this by starting out with the body boundary condition
—Enl—+n3a~¢= ~Vns

x Oz

where n = (n;, 0, n3) is the normal vector to the body surface. (Positive
‘normal direction is into the fluid.) By a Taylor expansion we can write

3 _ 29 #o

dz 98z —Vigz ()

2
z=0 dz z=

+O(V4?)
0

-Further, for slamming to have any practical meaning »;<<n; and
3=~ —1. This means the boundary condition is approximately

—=-=V on z=0

‘when Vit/c() is small. The boundary-value problem that we have to

N

WATER
Fig. 9.4. Deformation of the free-surface and formation of an air pocket
during entry of a body with a horizontal flat bottom.

v
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solve at every time instant is illustrated in Fig. 9.5. A solution to this
problem may be found in many text- -books (see for instance Newman,
1977 on p. 122). We can write the velocity potential on the body as

¢ =—V(c?—x), lx} <c(t) .1

The pressure on the body follows from Bernoulli’s equation. However,
we have to be consistent. In formulating the body boundary condition we
neglected terms because Vt/c(¢) is small. The same has to be done when
evaluating the pressure p. The pressure can be written as
9¢
p=-p o
where C is a constant. The slamming occurs over a small time instant.
This means_the rate of change of ¢ with time is generally larger than the
rate of change of ¢ with respect to x and 2. We may therefore neglect

vv= ()4 ()

relative to —p 8¢/3t. Further, since the submergence of the body is
small we may also neglect the hydrostattc pressure term —pgz relative to

—p d¢/3t. We may therefore approximately write the hydrodynamtc
pressure

pgz——V V+C

0 _ vt & ©2)
p==Py =PV E T A
The corresponding vertical force on the body is
d/ =n
V——( o~ 2> 9.3
F3_l pdx= pVCdxl (c —eps a\P2e ©-3)

We note that p(s/2)c? is the added mass in heave of the ﬂat plate when

‘@=>. This is half the added mass for the flat plate in infinite fluid. We
will now illustrate how we can find the wetted body length (=2c(t)) for a
circular cylinder and a wedge.

4

L‘P=0

P AT X T LY

o v v

(c($),0)

WIS 4 Z

{(-c(t),0)

l
&2y

Fig. 9.5. Boundary value problem in simplified analysis of impact between a
two-dimensional body and water.
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Case 1. Circular cylinder

We will assume the wetted length can be measured from the calm water
level. By geometry it follows that
) =2ViR - V¥? (9.4)
where R is the cylinder radius. By using equations (9.3) and (9.4) and a
definition of a slamming coefficient C;, it follows that

9.5)

at the initial time of impact. It is well known that C, is larger in
experiments. For instance, Campbell & Weynberg’s (1980) experimental
value ofC 1s 5 15 at the time of i impact. If equation (9.3) for the force i is

analyse this by following Wag ,r»s ‘7(1932) approach The previous
approach is referred to as von Karman’s - (1929) solution.

The first step is to find an expression for the free- ree-surface elevation.

From the solution of the boundary-value problem illustrated in ‘Fig. 95
it follows that

84) Vix

T VIx = @)
‘The free- surface elevation 7 relatlve to the bottom of the cylinder can
then be written as

-V at 2=0,x>c@) 7 (9.6)

= f JELL ©.7)
1 V=] '
“This has to be equal to 1u(x) which is the vertical coordinate of a point
‘on the cylinder relative to the bottom of the cylmder (see Fig. 9.3). This

xu(c)

Nu(x) = f V2 _Cz(t)]d 9.8)

uc)=VvVde/de 9.9

e do not know u(c). Equation (9.8) is therefore an integral equation
at determines u(c). When u(c) is found we can use equation (9.9) to
find ¢ as a function of time. We will try to find an approximate solution

f equation (9.8) by guessing that
ule)=Ag+A4Ac (9.10)

ere A; and A, are unknown constants. By integrating the right hand
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2
side of equation (9.8) it follows that
16(%) =A07—2tx +Ax? (9.11)

For a circular cylinder it follows that

x2+ (R — 1y = R?

i.e.
xz = zan
This means Ao =0 and A, =1/(2R). By using equation (9.9) it follows
that ‘
‘c
v =j <
14 IR dc
This means
¢ =2V(VIR) \ 9.12)

By comparing equation (9.12) with equation (9.4) we see that the wetted

length is \/2 times the wetted length measured from the calm water. The
“slamming coefficient C, is found to be 277 at the initial time of impact.
This is higher than the experimental value of 5.15 found by Campbell &
Weynberg (1980).

The hydrodynamic pressure on the body can partly be obtained by
equation (9.2). The pressure coefficient C,, is given by

Co=1 sz= v : 2
2 L X
’ \/ 7))
(9.13)

The result can be compared with the experimental values by Campbell &
Weynberg (see Fig. 9.6). The agreement is reasonable except for the
maximum pressure value. According to equation (9.13) Cp—® when
x—>c(t). This is partly a consequence of incorrect boundary “conditions
on the free surface in the immediate vicinity of |x|=c(t). If we usea
microscopic view of the flow in this area we will find the fluid moves with
a very high velocity (see Fig. 9.7). This can be seen from the velocity
de/dt= (VR/t)lz of the wetted area. In the jet flow which is present at
x >c(t), the pressure is nearly constant across the jet. This means the
pressure on the body is close to atmospheric pressure. The maximum
hydrodynamic pressure in the immediate vicinity of Jx| = c(t) is accord-

ing to Wagner (1932) and Armand & Cointe (1986) equal to 0.5p(dc/dey
(see Fig. 9.7), i.e.

G, = (dc/de)’/V? 9.14)

for |x|<c(t)=2V(VIR)
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Using Wagner’s solution this mean
n e _ sthat C, =R i
IrI‘xl[.l = %(ﬁfg_tz,,w\}’henhfor instance Vt/R =#0{10"1m2""it r'/ri(g;'g's“tlllll:t:hcoccu—rs8§t
Ho 15 about | ice the measured value by Campbell & Weynbergﬂa;% .
proximatél position where the maximum pressure occurs i 4
y correct. On the other hand experimental errors are Is)o;Zil:lE._

g k

we used von Karman’s solution then C,...=05R/(Vt) at
max * a

cp=__P_
Y 2pV? yory V/R=0012

504 l
ﬂ Faired distribut
e Vi/R=0012 "
40 +0 Mean data from
__ pressure
9 histories

Faired meaq

n pressure
when .fransducper
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30 /

0.024
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- Fig. 9.6. C i i
| g omparison between experimental and theoretical values of

slamming pressure p durin, i
g entry of a circular cyli i
zg?rsetant d((;.wnward velocity V (¢ = time variableyv&;irtﬁezriv g ;
sponding to initial time of im i o
pact). Experiments: C
Weynberg (1980). (Adapted from Campbell & Weynber;ml%%?)u)&
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x| = (2VtR)%. This is in satisfactory agreement with the maximum pres-
sure value at Vi/R =0.012, but it occurs at the wrong position on
the cylinder. If we plot C,_ as a function of time we see that it goes
to infinity when ¢t —0. One important reason for this is that we have
neglected compressibility effects in the water. When these are accounted
for the pressure cannot be higher than

Dac = pccV (9.15)

This is called the acoustlc pressure where c. is the veloc1ty of sound in

Fig. 9.7. Details of the flow at the intersection between the free surface and a

body during impact. (p = hydrodynamic pressure. ) (Wagner, 1932.)
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the water. With no air content ¢, varies typically between 1450 ms~" and
1540 ms™". In rough seas, air bubbles will be in the water altering the
speed of sound dramatically (Lundgren, 1969). We can show equation
(9.15) by a simple analysis. Let us assume a body hits the water with a
horizontal flat surface A. We neglect all free-surface deformation and
effects of the air. At the time of contact between the body and the
free-surface, the fluid will be given a disturbance that will propagate
-with the sound velocity ¢.. During the time step At after the impact a
mass of fluid M= pc.A At will be accelerated. The acceleration is
apprommately V'/At. This means there has to be a force on the body that
i equal to pceA AtV/At_. The average pressure on the body is therefore
oV, T — BT
- The importance of the acoustic pressure is illustrated in Fig. 9.8 where
_ pressure results from forcing a vertical cylinder with radius 5 m through
the free-surface with velocity V=8 ms™! are presented. We note that
_the acoustic pressure is about 125 times the atmospheric pressure and is
~the maximum pressure occurring close to the centre line of the cylinder.
. When x >=0.5 m the slamming pressure is determined from Wagner’s
- analysis. As pointed out earlier the slamming pressures are very local in

1500
Phz3jas
[o)e el
1000
@V
—- R
N§ Ve
~ C X
|>:1< I 1
E 500

o TEST No 1
e 2
s 3
+ : ! . :
0p, P, py 0.1 P, ps 02
x/R

Fig. 9.8. Maximum impact pressures on a circular cylinder as a function of
time after initial impact (V =8 ms™', R = 5 m). (Hagiwara &

Yuhara, 1976.)
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time and space and the maximum slamming pressure does not occur
simultaneously around the cylinder surface.

In design of local structural parts against slamming loads, the peak
value of the slamming pressure gives a conservative estimate of thé load
distribution. This has been discussed by Hagiwara & Yuhara (1976).
They introduce an ‘equivalent static pressure’ p., in analysing the strain
of a rectangular panel due to slamming load. peq is defined as uniformly
distributed static pressure which causes static strain equal to the
maximum transient strain during impact. In an example with a
0.45m X 0.31 m panel, which is part of a circular cylinder surface of
radius 5 m, they found that the magnitude of p.q Was about one-third of
the maximum impact pressure pmax- However, this result will obviously
be a function of the size of the panel.

v Case 2. Wedge
We will apply Wagner’s (1932) analysis to a wedge. We define a deadrise

angle B which is the angle between the wedge side and a hQrivzonEallklripe
through the wedge apex. The vertical coordinate ny(x) of the wedge
surface relative to the wedge apex can be written as

Ny(x) = x tan B (9.16)

It now follows from equation (9.11) that Ao(sr/2) = tan B. From equa-
tions (9.10) and (9.9) it follows that
Vi

c(®) 3tan B (9.17)

From equation (9.14) it follows that
2

Comm = %Cotanz B (9.18)
Theoretical calculations are shown in Fig. 9.9 together with experimental
results. The calculations are in fair agreement with experimental results.
We note that equation (9.18) breaks down when B— 0, i.e. when the
bottom of the wedge becomes more and more flat. When a ﬁat_—bottomgd
body enters the free-surface, it is known that the airflow_between_the
body and the free-surface is important at time instances when the
airgap between the body surface and the free-surface is small relative
to the transverse dimensions of the body (Verhagen, 1967). The
free-surface elevation depends on the pressure in the air above the
free-surface and the pressure in the air depends on the gap between
the free-surface and the bottom. The water elevation is first notice-
able at the edges of the body (see Fig. 9.4). This causes the air to be
entrapped between the free-surface and the body. If the body has a
small deadrise angle, say 2—3°, the air will not be entrapped (Koehler &
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Kettleborough, 1977). The entrapped air will have a pronounced
cushioning effect, and the impact pressure on the hull is therefore
sensitive to small changes in angle between bottom and water surface.
This indicates that it is difficult to create deterministic flow situations for
impact problems. This was also pointed out in the discussion of Fig. 9.2.

When calculating bottom slamming on ships the relative vertical
velocity between the ship and the waves is an important quantity. We
ought to be precise about what we mean by vertical velocity. It is not the
vertical velocity in a (x, y, ) system fixed in space (see Fig. 3.13), but it
is the z"-component of the velocity in a coordinate system (x”, y", ") that
is fixed relative to the ship and coincides with the (x, y, 2)-system when
the ship does not oscillate (see Fig. 3.13).

THEORY
— -—— WAGNER

EXPERIMENTS
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~ Fig. 9.9. Variation of maximum impact pressure with deadrise angle for a
wedge shaped body. (Hagiwara & Yuhara, 1976.)
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We have also drawn a picture of the ship’s velocity U in the figure.
According to an observer on a ship, the ship’s speed acts as an incident
constant velocity U. From the figure we see that this velocity has a
z"-component that is equal to Uns. This has to be accounted for in the
calculation of the z"-component of the relative velocity. From this
discussion we can write up a linear 2"-component of the relative velocity

as

dn3 dns
Ve=—t2_ 4205 _ .19
R de dt Uns = ©-19)

where w is the z-component of the und1sturbed wave velocrty in the
free-surface at the longitudinal position x Where ship slamming is to be
-analysed. The heave and pitch motions may, for instance, be obtained by
a strip theory program if regular incident waves are analysed.

Statistical estimates of slamming pressure in an irregular sea can easily
be obtained if we assume that the magnitude of the impact pressure can

be written as
= 3ok [Vil? 20

Here k depends on the sectional form, especially the local deadrise angle

at the point considered (see for instance Fig. 9.9). We will assume
short-term stationarity of the irregular waves, i.e the waves can be
described by a sea spectrum S(w). For simplicity we will assume the
waves to be long-crested. If we assume that the maxima (peak values) of
the relative velocity of the ship follow a Rayleigh distribution, we can
write the probability that the maxrmum of the relative velocity is larger
than v as

2
P(IVR]>v)=exp(— v 2) ©.21)

20,
where
2= s
0

(9.22)

Ca

the sh1p response in incident regular waves of circular frequency w with
the same wave heading as the irregular sea. By combining the pitch and
heave velocities (see equation (9.19)) we can find the amplitude of the
relative velocity |Vr(w)| divided by the incident wave amplitude §,. The
results are ship speed and wave heading dependent. The relative velocity
is normally largest on the fore part of the ship, but large relafive
velocities may also cause slamming problems on exposed aft parts of the
ship. In order for slamming to occur at a point A on the surface of the
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ship it is necessary that the relative vertical motion at the same
longitudinal position of the ship is larger than the vertical distance d from
the still water surface to point A. The probability for the amplitude of the
relative motion g to be larger than d can be expressed as

d2

Pge>d)= exp( - 2) (9.23)
where '
[ | T

-[0 (w) . d (9.24)

is the variance of the relative motion. This expressron does not account
for the waves being influenced by the Shlp “In the calculation of the
relative motion we should take this into account.

Using the fact that the relative motion and relative velocity are
statlstrcally independent, we can write the probability that the slamming
pressure becomies larger than a given value p at a specific point A on the

ship as

. d?
P(impact pressure >p) =¢ [—( 4 >]

"(impact p p)=exp pkaV2+2m2 (9.25)
Equation (9.25) has been obtained by multiplying together equations
(9.23) and (9.21), and then using equation (9.20) with |V| = v to rewrite
equation (9.21).

From equation (9.25) we find nd the most probable largest slammrng
Pressure pmax m N encountered ‘waves to be

— 2 dz .
Puwe = Pl ?(log N 3 ;) 9.26)
where N can be approxrmated by ¢/T,. Here t is the time duration of the
N encounter waves and T, is the mean wave period. Both o,, o, and %
depend on the position of the ship where slammmg is to. be evaluated It
should be kept in mind that equatlon (9.26) is based on using equation
(9.20), i.e. no compressibility effects are accounted for (see equation

‘(9.15)).' We could have substituted equation (9.15) into equation (9.21)
by setting V =o. In this way we would find the most probable largest
-acoustic pressure p., and use the smallest of p,,,, and Prmax

Long-term predictions of sl_arnrnmg pressure can be obtained by
combining equation (9.25) with the joint probablllty of 31gn1ﬁcant wave
eight Hi.and mean wave period 7. This is similar to the method

déscribed in chapter i for long term predlctlons of 11near wave-induced

" In a given sea state we can also use equation (9.25) to evaluate the
‘probability of slamming. It is then necessary to define how large a

pressure has to be to call it slamming. One indirect way is to define a
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threshold velocity V., and say that slamming occurs when the relative
velocity is larger than V. For instance Ochi (1964) sets the threshold
velocity equal to

Ve =0.093(gL)}

where L is the ship length. The probability that slamming occurs can
then be written as

9.27)

Vet d?

cr

P(slamming) = exp < B (20VZ * 20,2>>

This can for instance be used for studies of voluntary speed reduction.
An often used criterion is that a typical ship master reduces the speed if
slams occur more than 3 of 100 times that waves pass the ship. This
means that if P(slamming) is calculated to be larger than 0.03, the ship
speed U used in evaluating o, and g, in equation (9.28) is too high. It
should be reduced to a level so ‘that P(slamming) is 1¢§§,@(gﬁ.
However, it should be kept in mind that additional criteria are also used
for ‘voluntary’ speed reduction. Ochi & Motter (1974) say that for a ship
in fully-loaded condition voluntary speed reduction does not occur if

P(water on deck)=< 0.07

(9.28)

and (or)
P(significant acceleration in the bow > 0.4 g) < 0.07

For a ship in ballast condition voluntary speed reduction does not occur
if

P(slamming) =< 0.03
and (or)
P(significant acceleration in the bow>0.4g) < 0.03

Fig. 9.10 shows an example of calculations of voluntary speed reduction

for a 170 m long ship in head sea long-crested waves as a function of sea :
state or significant wave height. For smaller sea states the involuntary .
speed reduction due to added resistance in waves and wind determines

the reduction in ship speed at full engine power.

WATER ENTRY PROBLEMS

In the case of a horizontal jacket truss in the splash zone one is not
particularly interested in the high pressures occurring when the water hits -

the member. One is more interested in the force on the body as the

cylinder hits the water and proceeds through the water, One"of the first .
calculations of this type was done by von Karman (1929) for a related._;
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problem with seaplanes. He used the free-surface condition ¢ =0 and
me'asured the wetted length from the calm water level. The force was
written as:d(A_V33V)/dt where Aj;; is the infinite-frequency added mass
coefficient in heave for the body as a function of submergence. The
added mass calculations were simplified by usmg flat 'p‘la'te results giving
Fhe same result as equation (9.3) when c¢(¢) is measured from the
intersection point between the cylinder and the still water level. The
formula does not account for buoyancy and incident wave effects.

The f.ormula can be derived by momentum considerations. We will
show this when there are no incident wave effects. Infinite water depth is
~assumed. We start out with equation (5.7) which says that

—p ” [<%+gz)n+ vV, — U,,)] ds
S

We should note that the positive normal direction is out of the fluid
domain. The momentum of the fluid inside S can be written as

dM

d¢ (9.29)

M(z)=J’J’ ponds (9.30)
S

~This follqws from Gauss’ theorem (see equation (5.6)). By using ¢ =0
con the still water level and neglecting free-surface waves, we get no

contribution from the free-surface integration in equations (9.29) and
9.30). Further, by replacing the pressure p at S, by Bernoulli’s

IRy

Ship speed
{(knots )
A

Head sea long~crested
waves

20 Ship length L =170 m

Involuntary
speed

reduction Voluntary speed
10 reduction
T T T T ot
3 6 9 12 Significant

wave height {m)

Fig. 9.10. Ship speed in various sea states due to involuntary and voluntary
speed reduction.
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equation, it follows that

d
F=—-p— ds — d
pdtlfd)n s ffpgzn s

S

-p ij [VV,—3|V|’n] ds 9.31)

It is important to note that d/de in equation (9.31) is an ordinary time
derivative. The integral over S, in equation (9.31) can be neglected. This
follows by studying how the disturbance from the body dies out far away
from the body. One way to find this out is by representing the flow by a

distribution of sources (and sinks) over the wetted body surface (see

chapter 4). This means we write ™ 7" 1 )

963,9)= [ [ QO = B + = ns)* + (o = L™

Ss

—((x — EG)?*+ (¥ — n()? + (2 + LD ds
(9.32)

The term in the brackets satisfies the free-surface condition ¢ =0 on
2=0. The source density Q(s) is determined by satisfying the body
boundary condition. If we let 7 = (x*> + 3% + 22} be large we can simplify
the ‘term in the brackets. By considering it as a function of
(E(s), n(s), &(s)) and making a Taylor expansion about (0, 0,0) we find
the dominant term to be

—28er™3 9.33)
This means the term in the brackets of equation (9.32) behaves like a
dipole with a vertical axis. By differentiating (9.32) with respect to x, y
and 2 we see that the velocity due to the body decays far away at least as
fast as r—>. Going now back to equation (9.31) it means that the order of
“magnitude of the integrand of the integral over S is r7°
surface element ds is proportional to 7%, it means that the integral over S.,
is zero in equation (9.31). '

The first term in equation (9.31) can be written in terms of added

nmass. We will illustrate this by limiting ourselves to studying the vertical |
force due to vertical motion. This means the velocity potential ¢ satisfies .

the body boundary condition

9y on sy 034

on

. Since the -
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In addition the vélocity potential satisfies the free-surface condition
¢=0 on z=0 (9.35)

For a general body this problem can be solved as outlined by equation
(9.32). This is the same boundary-value problem we solved to find the
added mass in heave when the frequency of oscillation @ —> . This
means we can use results from that problem and write

pff ¢nsds = ~VA,; (9.36)
Sa

The second term in gﬁgéﬁi_qg_@ 31) is the buoyancy term. This means
we have shown that the hydrodynamic (including hydrostatic) vertical
force on a body penetrating the free-surface with a downward velocity V
can be written as

d
"If'gfa;-(A§3V)+PgQ (9.37)

Yvhere Q is submerged volume and As; is the high-frequency added mass
in heave for the body as a function of submergence relative to calm water
level. The same result applies in two dimensions. Fig. 9.11 shows some
results for an infinitely long horizontal circular cylinder. Two-
dimensional added mass values in heave A;,%™ are shown as a function
of 2/R. R is the cylinder radius and / is the submergence as defined in
the figure. The asymptotic value of A;;®/(pR?) for large h/R is .

_A33(?E)__l}a§“beé}l—calculafgd numerically by source technique, but can also
be calculated by analytical expressions (see the review article by
Greenhow & Li 1987). The two force terms in equation (9.37) are
also shown in Fig. 9.11 in the case when the forced velocity is
constant. We can then write

d dA..eD

g U=tV = =2 —V? 9.38)
‘and define a C;-value by equat};;‘

dA33(2D) , P 2

TV —ECSZRV 39

The experimental values by Campbell & Weynberg (1980) for a smooth
-circular cylinder have also been shown in Fig. 9.11. The experimental
‘values can be represented by the formula

‘(‘25__=§.15/(1 +8.54/R)+0.275h/R (9.40)

Buoyancy effects have not been deducted from this formula. Campbell &

‘Weynberg estimated the error in_/é'quation (9.40) due to buoyancy effects
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to be from 0.05 to 0.54. This may be one reason why the theoretical
values for C, are higher than the experimental values in the range
between A/R =1.0 and 2.0. On the other hand one may question the
theoretical assumptions when %/R is close to 2.0 and larger. This can be
illustrated by the photos in Fig. 9.12. The upper part “of the cylinder is
dry even when A/R>2.0. One reason for the differences between
experimental and numerical values of C is that the present theory does
not adequately predict the wetted surface.

Equation (9.37) can be generalized to include incident wave effects.
We will assume the wavelength is large relative to the cross-section of the
body so that the undisturbed velocity and pressure field can be assumed
to have small variation over the submerged volume occupied by the
body.

We assume regular sinusoidal deep water waves that can be described
by linear wave theory. If the waves propagate along the positive x-axis
the incident wave potential is

cos{wt — kx) 9.41)

5.0 1

b0, (s (Experiments Campbell & Weynberg,1980)

2.0

1.0

Fig. 9.11. Slamming coefficient C,, added mass A3;" and displaced volume
A, of a circular cylinder as a function of submergence. (F = vertical
force, V = constant downward velocity of the cylinder, ¢ = time
variable with ¢ = 0 corresponding to initial time of impact.)

Fig. 9.12. Flow visualizations from impact studies of a circular cylinder.
(Greenhow & Lin, 1983.)
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' Fig. 9.12. (continued)
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However, any wave heading can be considered. The flow acceleration
generated by the body is assumed to be much larger than the
gravitational acceleration in the neighbourhood of the body. The velocity
potential ¢p due to the body will then approximately satisfy the
free-surface condition

$s=0 (9.42)

on the instantaneous position z = §, sin(wt — kx) of the incident wave
field. Condition (9.42) is relevant for high-speed water entry problems.

We can proceed in a similar way as for the derivation of equation
(9.37). If we limit ourselves to analysing the vertical force F; and assume
the body has a vertical motion 75 relative to a "coordinate system fixed in
space, with positive direction upwards, we can show that

.

" Current

dw
Fy=pQ(t) o pg (1)

nf)

where
w = w{, cos(wt — kx), (9.44)

Q(p) is the instantaneous submerged volume of the body, and x is the
average x-coordinate of Q(¢). The two first terms in equation (9.43) are
due to the combined effect of the Froude—Kriloff pressure and the
hydros_tanc pressure.
- Equation (9.43) can be used in the analysis of hftmg operations of a
Fig. 9.13). Durmg the transit of the structure through the water §urface
high hydrodynam1c forces may occu; L This can cause slack”in the
A4: hoisting wire followed by high snatch' loads. This may also happen
during other phases of the operation, for instance when the structure is -
close to the sea bed. On the sea bed the boundary condition d¢g/3z =0
applies. Greenhow & Li (1987) have presented analytical solutions for
added mass as a function of distance away from the sea bed (see also Fig.
3.11). ;
Equation (9.44) can be further generalized to irregular long-crested
"seas by writing

N
w= > WA, cos(wi — kx + €) (9.45)

i=1

‘where A, is determined from the sea spectrum and €; are random phase
angles (see equation (2.22)). It is necessary that the wavelength of each
wave component in (9.45) is large relative to the cross-sectional
dimension of the structure. Equation (9.45) can also be generalized to
short-crested seas.

-Fig. 9.13. Lifting operations of subsea modules.
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To evaluate the hydrodynamic forces we need to_know _the infinite
frequency added mass in heave Ass as a function of submergence.. This
can be calculated independently of the wave _ﬁel_giwgalg;laggrl: What
matters is the submergence relative to the water level. This 15 exactly the
same type of calculation we presented in Fig. 9.11 for a circular cylinder.
Miloh (1981) presents similar results for a sphere.

We should not use equation (9.43) when the structure is fully
submerged and close to the free-surface. The reason is that the
free-surface condition ¢p =0 used in calculating ¢y is questionable and
influences the results. When the body is deeply_submerged, we may
again use equation (9.43). In this case dA;s/de = 0. For the exit problem
it is not possible to use equation (9.43). Some exact calculations within
potential flow theory with correct non-linear free-surface conditions have
been given by Greenhow (1988) and Telste (1987). We should note the
very different flow pictures between an exit and an entry of a cylinder.
Fig. 9.14 shows an example of flow visualizations of an exit of a cylinder.
The water above the cylinder is lifted with the cylinder. In the last
picture the free-surface breaks spontaneously under the cylinder.

During the first phase of the impact we may underestimate the forces
(see Fig. 9.11). However, what is important for the global response _of
: the structure during a small time increment At after the impact_is the
impulse ’

. At
. I=| Fide (9.46)
% 0

relative to the mass of the structure. A small time increment means a

b small time relative to a natural period. Typically the interesting natural
: periods will be 1-2's. However, this depends on the stiffness properties
of the crane. Equation (9.43) is a good approximation in the calculation
of the impulse.

Equation (9.43) can be further generalized and applied for a ship at
forward speed (see exercise 9.4). An example is the evaluation of
hydrodynamic forces on bow flare sections. This can cause large midship
stresses with resulting damage to deck and bottom plates. Loss of bow

parts has been reported.

EXERCISES

9.1 Impact loads on horizontal bracing

: A horizontal member (of a jacket) with diameter D =0.5m is in the
’ splash zone (Fig. 9.15). Regular sinusoidal waves of period 15s and
height H =30m propagate in deep water in the positive x-direction.

Find the vertical slamming force (i.e. the force when the wave hits the

Fig. 9.14. Flow visualizations from exit studies of a circular cylinder.
(Greenhow & Lin, 1983.)
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Fig. 9.14.

(continued)

EXERCISES 313

member) as a function of d. (d is the height of the centre of the member
from the still water level).

9.2 Impact loads on a vertical cylinder
Consider a situation where a vertical face of a wave hits a vertical
cylinder (see Fig. 9.1). Assume the waves are long-crested before impact
(see Fig. 9.16). Set the horizontal velocity of the wave front equal to
(g/2m))T (i.e. the phase velocity of small amplitude deep-water waves
with period T'). Choose T' =10 s and cylinder radius 10 m.
Calculate the impact pressure as a function of time and space.

9.3 Lifting operations

Consider a watertight circular cylinder of length L = 10 m and diameter
D =2m that is lowered horizontally from a crane ship (see Fig. 9.17).
The mass of the cylinder is & - 10*kg. The stiffness of the crane-wire
system is 2000 kKN m~" when the cylinder is given a forced displacement
in the vertical direction. When the cylinder goes through the water
surface, the waves hit the cylinder with a vertical velocity 2ms™?.
Assume the water surface is horizontal at the time of impact and that the
cylinder and the crane top have no vertical motion before impact.

Assume the vertical motion #; of the cylinder can be described by a

Fig. 9.16. Impact pressure from waves breaking against a vertical cylinder.

=

Fig. 9.17. Crane operations.
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linear differential equation of the form

d’ns dns
i +B“a;‘+c1’]3—F(l) (9.47)

M

with initial conditions ;=0 and dns/dt=0. Use the fact that the
solution of this equation system can be written as

73() = J'l h(t — DF(T)drt (9.48)
0
where

— ; —Awgt o;
h(t) Mo e sin wgt,
wo=(C/M)t and A=B/(2Mw¢)<< 1. Set M equal to the mass of the
cylinder, B =0 and C equal to the stiffness of the crane-wire system.
Use equation (9.40) to calculate the slamming. Neglect the influence of
the body velocity on the slamming force.

Calculate numerically the dynamic tension in the wire during a period
27t/ w, just after the cylinder hits the water. Compare the maximum wire
tension during the impact period with the tension in the wire before
impact. Compare the results with a quasi-static solution where the
impact force at ¢t = 0 is applied as a static force.

9.4 Wave loads on bow-flare sections
Equations (9.37) can be generalized and applied for a ship at forward
speed. An example is hydrodynamic forces on bow-flare sections. The
hydrodynamic analyses will be based on strip theory. In this reference
frame the forward speed of the ship appears as an incident steady flow
with velocity U along the positive x-axis (see Fig. 9.18). We will start
with the momentum equation (9.29). The control surfaces S can be
selected as shown in Fig. 9.18. There are two lateral planes S, separated
by a distance dx exterior to the ship. The intersection curve between the
planes and the ship is called Yp(x). We will limit ourselves to consider
forced heave motion and no incident waves.
(a) Show that the vertical force on the ship cross-section can be

written as
d
F3=—pd— J’J' ¢nsds — J’J' pgans ds
LSB+S[= Sp+Sk
~p [[ wv.-sivEmas (9.49) -
So+So

(Positive normal direction is out of the fluid domain).

EXERCISES 315§

(b) Show that the integral over S in equation (9.49) can be
written as

d
—-pU dx— 1, d
P P ):B(x)¢ 3ds (9.50)

(c) Show that the vertical hydrodynamic force F;?™ per unit
length can be written as
d 3 d
@D) _ : n
0= - (£-U2) (450 E) + ppA) 95D

where A(x) is the submerged cross-sectional area.

(d) How would you propose to generalize the formula by
including the effect of incident waves and pitch motion.
(Hint: See equations (9.19) and (9.43)).

Fig. 9.18. Use of momentum equation to calculate wave loads on bow-flare
sections of ships (see exercise 9.4.)
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