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Introduction 

Flow and sediment transport in the coastal zone are important in relation 
to several engineering topics like sedimentation and erosion around structures, 
backfilling of dredged channels, changes in near-shore morphology and long- and 
cross-shore sediment transport rates. 

During the last decade the development in coastal sediment transport re- 
search has changed from simple phenomenological descriptions to sophisticated 
numerical models in which the flow as well as the resulting sediment transport are 
described in detail. 

The longshore sediment transport calculations can be mentioned as an ex- 
ample. For many years these have been based on the so-called CERC formula (see 
p 329), which relates the longshore sediment rate to the longshore wave energy 
flux. Today it is recognized that such a simple model which does not include 
essential parameters like sediment grain size and bed morphology (for instance 
the presence of bars) does not give a full description of the complex problem of 
longshore sediment transport. On the other hand, more sophisticated methods 
like those described in this book often get very sensitive to variations in the input 
data, like the mean grain size. The cause might be that the cross-shore profile 
also varies with the sediment properties, and thus a longshore sediment transport 
calculation can not be made except with a fully three-dimensional model includ- 
ing grain sorting, a stage which until now has not been reached in the numerical 
modelling. 

Another example of the development in coastal sediment transport mod- 
elling is the cross-shore profile modelling. Formerly, the average cross-shore profile 
was described by empirical rules (Bruun, Dean, see p 322), while the trend today 
is towards describing the on-offshore flow pattern as accurately as possible and 
then step by step describing the dynamic behaviour of the cross-shore profile by 
morphological computations. Like the longshore sediment transport calculation, 
this problem is not completely solved yet ~ particularly the resulting direction of 
sediment transport outside the surf zone and the detailed morphology of the bars 
which must be investigated much more thoroughly. 



x Introduction 

The purpose of the present book is to describe both the basic hydrodynamics 
and the basic sediment transport mechanisms which are of importance for the 
construction of a mathematical model for sediment transport in coastal areas. 

The main effort has been to describe the hydrodynamics as is usual in 
sediment transport description. The first six Chapters deal only with the hydro- 
dynamics of waves and current in and outside the surf zone. 

The reader’s background should be a basic course both in wave hydrody- 
namics and in fluid mechanics (laminar and turbulent flow). 

The basic elements of wave hydrodynamics is consequently therefore only 
briefly listed in the introductory Chapter 1. Chapters 2 and 3 treat the turbulence 
made by non-breaking waves with and without the presence of a current. During 
the last decade significant progress has been made in this field, and today very 
accurate solutions can be obtained. However, these very accurate solutions are 
also very time-consuming and costly to compute, and it is not feasible today to 
introduce them in a numerical model of coastal sediment transport. Simpler as 
well as more advanced solutions to the wave boundary layer problem have therefore 
been described, from which the bed shear stress in combined wave-current motion 
can be obtained very accurately. Some of the simpler models are described quite 
in detail, so students should be able to work with these models on a PC. 

Chapters 4-6 deal with aspects of surf zone hydrodynamics that are im- 
portant for the sediment transport. Wave kinematics is described, including the 
strong production of turbulence in the surf zone which will have to be included in 
a detailed sediment transport model. The depth-integrated wave-driven currents 
are treated for more or less complicated situations on uniform coastal profiles, that 
can be represented by a simple computer model. Furthermore, the flow over com- 
plex three-dimensional topographies like rip channels is described. The vertical 
distribution of the forces from breaking and broken waves is described in detail. 
This has been applied to model the circulation current (undertow) in the surf zone 
which is of major importance for cross-shore sediment transport. 

In Chapter 7 the sediment transport description starts with the basic con- 
cepts. The number of sediment transport formulae in current as well as in com- 
bined wave-current motion is very large today and rapidly growing. Many of these 
transport formulae are more or less empirical in their nature, and a simple deter- 
ministic description of sediment transport is still not available. In Chapter 7 an 
attempt is made to describe the construction of a simple transport formula for the 
bed load case, and some suggestions for the description of sediment transport at  
higher shear stresses are included as well. However, the sediment transport in the 
sheet flow layer as well as the bed concentration of suspended sediment are topics 
which still need to be investigated in more detail. Chapter 8 describes the be- 
haviour of suspended sediment in waves. While the bed load even in this unsteady 
case usually can be calculated as the quasi-steady value from the instantaneous 
value of shear stress, the behaviour of suspended sediment gets quite complicated 
in the wave case due to the increase and decrease in turbulence intensity. 

Chapters 9 and 10 concern bed waves, which are of major importance for 
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the bed shear stress and for the transport of suspended sediment. The description 
again takes its starting point in the pure current case and extends these findings 
to the wave case as well. 

Finally, the last two Chapters 11 and 12 describe the construction of models 
which can describe long- and cross-shore sediment transport. 

It is not the intention of the book to give a broad review of the literature on 
this very wide topic. The structure of the book is more like a monograph where 
the subjects have been treated so much in detail that the book would be applicable 
as a student textbook. 

As a help for further reading on the subject, a section with additional refer- 
ences has been included at  the end of the book. The list is far from being complete 
but should provide students with a good basis for an in-depth study. 

We would like to acknowledge the encouragement from Professor P.L.-F. 
Liu to make the book. Our Librarian Kirsten Djorup and Tom Foster, the Danish 
Hydraulic Institute, have tried to improve our written English. The book has 
been typewritten in T)jX by Hildur Juncker and the drawings are produced by 
Eva Vermehren. Erik Asp Hansen, Danish Hydraulic Institute, has produced the 
figure for the front cover, and Julio Zyserman, Danish Hydraulic Institute, has 
been very helpful in constructing several figures in the book. 

Finally we would like to thank the Danish Technical Council (STVF) for 
their large support to the field of Coastal Engineering in Denmark. This support 
has created a scientific environment which has made this book possible. 





List of symbols 

The main symbols used are listed below. Due to the large number of param- 
eters, which stem from different disciplines of hydrodynamics, it has been decided 
to use double symbols. In most cases their use is restricted to a single chapter as 
stated in the symbol list. It should be easy to distinguish between these parameters 
from the context they are used in. 

Main symbols 

D 
2, 
D' 
Dc 

amplitude of near-bed wave orbital motion 
migration velocity of bed forms (Chapter 8) 
cross-sectional area of the surface rollers (Chapters 4, 5 ,  6) 
level for the reference concentration (Chapter 8) 
wave profile coefficient 
wave celerity, phase speed 
suspended sediment concentration 
bed concentration 
wave group velocity 
turbulent energy dissipation coefficient 
grain diameter 
grain fall diameter 
grain sieve diameter 
grain spherical diameter 
diameter corresponding to 50, 16 and 84 percent of the material 
being finer 
mean water depth 
depth-integrated energy dissipation 
boundary layer thickness over the back of a dune 
water depth at the bar crest 



List of symbols 

unit vector in x-direction 
wave energy 
momentum exchange coefficient (Chapter 5) 
wave energy flux 
energy flux due to the surface rollers 
energy flux due to the wave motion 
kinetic wave energy 
potential wave energy 
friction factor 
probability density 
skin friction factor 
current friction factor 
energy loss factor for the wave boundary layer 
wave friction factor 
wind friction factor (Chapters 5 and 12) 
probability distribution (Chapter 1) 
error function (Chapter 12) 
Froude number 
momentum contribution to the radiation stress 
pressure contribution to the radiation stress 
roller contribution to the radiation stress 
acceleration of gravity 
local bed level 
wave height 
dune height 
ripplc height 
root mean square of the wave heights 
significant wave height 

az 
deep water wave height 
H at z = 0 (Chapter 6) 
gradient of the energy line 
energy gradient due to skin friction 
energy gradient due to the form resistance of the dunes 
submerged weight of the longshore sediment transport 
turbulent kinetic energy 
wave number 
equivalent sand roughness of the bed 
wave rouEhness 

a H  - 

- 
ratio between the wave height and the water depth 
directional distribution of wave energy 
factor in the CERC formula 

h-(Aa) 
Kc 
e mixing length 
e d  turbulent length scale 



List of symbols xv 

emax 

1, 
L 
Lb 
L D  
Lr 
Lo 
M 
MZY 
n 
P 
P 
P+ 
P: 
Pes 
PROD 
9 
q b  
qdrift 

QD 
qe 
qroller 

9 s  
q s d  

q 8 Z  

QT 
40 

Q 
Qe 
R 
RE 
s 
s 

turbulent length scale away from the bed 
length of the surface roller 
wave length 
length of a longshore bar 
dune length 
ripple length 
deep water wave length 
Monin-Obukov parameter 
momentum exchange 
porosity of the bed sediment 
pressure 
fraction of bed surface particles in motion 
excess pressure above the mean hydrostatic pressure 
pressure contribution from a surface roller 
longshore energy flux factor 
production of turbulent energy 
discharge per unit width of channel 
bed load transport rate 
discharge due to wave drift 
rate of sediment deposition at a dune front 
specific longshore sediment transport rate 
mean discharge due to surface rollers 
suspended load transport rate 
suspended load transport rate due to the wave drift 
sediment transport rate in the 2-direction 
specific sediment discharge 
sediment transport rate in the dune trough 
longshore discharge in the trough inshore of a bar 
longshore sediment transport rate 
Reynold’s number 
Reynold’s number for the near-bed wave-orbital motion 
relative density of the sediment 
parameter in expression for directional wave spreading (Chapters 
5 and 12) 
total wave momentum flux in the direction normal to the 
direction of wave propagation 
total wave momentum flux in the direction of wave propagation 
normal radiation stress in the 2-direction 
shear component of the radiation stress 
normal radiation stress in the y-directiop 
mean water surface slope 
time 
wave period 
significant wave period 



Uf max 

Uf 0 

u1 m 

U2m 

u 1 0  

VY’ 
V 
V* 
V, 
VY 
V’ 

W* 

ws 
WCC 

US 

V 

W 

2 

2’ 

Y 
Y’ 
Y 
Yi 
t 

ZC 

zo 
Q 

Q W  

List of symbols 

velocity in the z-direction 
friction velocity, time varying 
Lagrangian wave drift velocity 
streaming induced velocity 
velocity in the z‘-direction 
free stream wave-orbital velocity near the bed 
wave period averaged velocity 
velocity of grain in bed load transport 
friction velocity, steady 
skin friction velocity 
current friction velocity 
critical friction velocity (Chapter 7) 
maximum friction velocity during wave period 
friction velocity for the mean velocity profile in the wave 
boundary layer 
mean current velocity at the top of a wave boundary layer 
amplitude of near-bed wave-orbital velocity (1st order Stokes 
theory ) 
amplitude of second harmonic of the near-bed wave orbital 
velocity 
wind speed 10 m above the sea surface 
velocity in the y-direction 
velocity in the y’-direction 
depth mean velocity 
local depth mean velocity 
depth mean velocity in the z-direction 
depth mean velocity in the y-direction 
mean velocity in the boundary layer over a dune 
velocity in the z-direction 
dimensionless settling velocity 
terminal settling velocity of a sediment grain 
vertical velocity due to the displacement in a wave boundary layer 
horizontal coordinate 
horizontal coordinate 
horizontal coordinate 
horizontal coordinate 
position of the coastline 
width of a rip channel 
vertical coordinate 
height of the centroid of a suspended sediment concentration 
profile 
zero level for velocity ( k ~ / 3 0  at a rough bed) 
wave direction 
wind direction 



List of symbols  xvii 

73 
6 
6* 
6, 
63 
6 ,  
A D  
AH 
AH" 
At 
Ax 
AY 
Aa 
AT 

deep water wave direction 
slope of the lower boundary of a surface roller (Chapters 4 and 5) 
bed slope angle of the coastal profile or transverse to the mean 
current direction 
ratio between E,  and VT (Chapter 8) 
specific gravity pg 
angle of the bed slope in the mean current direction 
angle between the current and the wave propagation (Chapters 3 
and 8) 
specific gravity of the sediment grains 
wave boundary layer thickness 
displacement thickness 
mean value of the wave boundary layer thickness 
sheet layer thickness 
thickness of the viscous sublayer 
wave set-up or set-down 
hydraulic head loss 
hydraulic head loss at dune front 
time step 
step in z 
step in Y 
deviation from mean wave direction 
change in the shear stress over a wave boundary layer due to 
streaming 
dissipation of turbulent energy 
apparent turbulent diffusion coefficient 
turbulent diffusion coefficient for sediment 
hydraulic head loss coefficient 
Shields' parameter, dimensionless bed shear stress 
dimensionless bed shear stress, skin friction 
dimensionless form drag on dunes 
local value of 8 at dune surface 
critical Shields' parameter 
dimensionless parameter (X f O c )  
Shields' parameter corrected for a bed slope 
water surface elevation 
surface roller thickness 
von Kbrmbn's constant 
linear sediment concentration 
dynamic viscosity 
dynamic friction coefficient 
static friction coefficient 
kinematic viscosity 
eddy viscosity 



xviii List of symbols  

I 

N 

+ 

surf similarity parameter 
density of water 
density of air 
normal stress 
geometric standard deviation 
normal dispersive stress 
Prandtl number for turbulent diffusion 
shear stress 
skin friction 
form friction 
bed shear stress 
critical bed shear stress 
shear stress carried by fluid 
shear stress carried by grain-grain interaction 
maximum bed shear stress during wave period 
near surface shear stress 
bed shear stress due to a water surface slope 
wind shear stress (Chapters 5 and 12) 
instantaneous bed shear stress in waves and current 
shear stress component 
shear stress component 
stationary part of the bed shear stress 
velocity potential 
friction angle 
dynamic friction angle 
static friction angle 
dimensionless sediment transport rate 
angle between the instantaneous bed shear stress and the mean 
current (Chapter 3) 
dimensionless bed load transport 
dimensionless longshore sediment transport 
dimensionless suspended load transport 
flow direction 
angle between the particle path and the drag force 
angular frequency 
signifies a time-averaged quantity 
denotes turbulent fluctuations (unless stated otherwise above) 
the part of a quantity that varies with the wave period 
a vector 
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Chapter 1. Basic concepts of potential 
wave theory 

This introductory chapter is mainly a summary of the basic concepts for 
wave mechanics which are necessary for the further developments presented later 
in this book. For this reason, nearly all derivations are omitted, and readers 
are instead referred to standard texts in wave hydrodynamics. (e.g. Dean and 
Dalrymple, 1990; Svendsen and Jonsson, 1976; Mei, 1990; Phillips, 1966; Wiegel, 
1964). 

1.1 Waves propagating over a horizontal bottom 

Wave kinematics are usually described by potential theory requiring the 
fluid to be inviscid and irrotational. In this case, a potential (b can be introduced, 
which is related to the velocity field by 



2 Chapter 1: Basic concepts of potential wave theory 

where x and y are horizontal coordinates, and z is the vertical coordinate (Fig. 
1.1). Origin of the coordinate system is located on the seabed. u ,  v and w are the 
velocity components in the x-, y- and z-directions. By inserting Eq. 1.1 into the 
continuity equation 

du dv aw - + - + - = o  
ax dy d z  

the Laplace equation is obtained 

Figure 1.1 Definition of the coordinate-system. 

The boundary conditions are 

1. At the seabed, the flow velocity perpendicular to the bed is zero. For a 
plane horizontal bed this gives 

2. A fluid particle located at the free surface must remain at the free surface 
giving 

(1.5) 
d77 w = -  f o r z = D + q  

in which D is the mean water depth, and 7 is the surface elevation, see Fig. 
1.2. 

dt 

3. The pressure at the water surface must be equal to the atmospheric pressure 
and can be set to zero, whereby the Bernoulli equation gives 

(72 + 0 2  + w2) 134 
!J at 

+ -- = C(t)  for z = D + 17 (1.6) D + V +  2g 

in which C is a function of t only. 
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D i I 
I i 

/ / / / / / / / / / / / / / / / / / / / / / / /  )X 

Figure 1.2 Definition sketch of D and 7 .  

If the wave is two-dimensional and periodic with a wave period T and a 
direction of propagation in the x-direction, Eqs. 1.3 - 1.6 can be solved as a 
boundary value problem. 

As the maximum surface elevation is assumed to be small compared to a 
typical dimension, for instance the wave length L ,  the problem can be linearized 
and solved analytically. As all higher order terms in qmax/L are neglected, the 
solution to the boundary value problem becomes 

H g cosh(kz) 
2 w cosh(kD) 

4 = _-- sin(& - kz) 

7/ = - H cos(wt - Icz) (1.8) 2 

c 2 = (i) 2 g  = - tanh(kD) 
k 

TH cosh(kz) 
T sinh( kD) 

7rH sinh(kz) 
T sinh( kD) 

u = -  cos(wt - k z )  

w = -- sin(wt - kx) 

(1.9) 

(1.10) 

(1.11) 

This solution is the linear wave solution, also called the Airy wave or a Stokes first 
order wave. In Eq. 1.8 H is the wave height (from trough to crest), k the wave 
number, and w the cyclic frequency, k and w being defined as 

(1.12) 

If second order terms in H / L  are also included in the solution of Eqs. 1.3 - 
1.6, then the Stokes second order solution is obtained, which is given by 



4 Chapter  1: Bas ic  concepts of potential  wave theory 

H 1 
2 16 

11 = - cos(wt - kz) + -kH2(3coth3(kD) - coth(kD)) cos[2(wt - kz)] (1.13) 

and 
4 = 4(1) + 40) 

where +(I )  is given by Eq. 1.7 and 

(1.14) 

t 
(1.15) 

cosh( 2 kz) 1 
+(2) = -?,-kD2 sin[2(wt - kz)] + Clz - -c2(kD)' 

32 sinh4(kD) 16 sinh2( kD) 

where the constant C1, which must be of the order ( H I L ) ' ,  represents a steady, 
uniform flow. If the mean value over a wave period of the mass flux through a 
vertical section is zero, then C1 must have the value 

1 g H 2  
8 CD 

C] = (1.16) 

The last term in Eq. 1.15 does not affect the velocity profile, but appears 

The horizontal flow velocity in Stokes second order theory is found from 

(1.17) 

from the Bernoulli equation 1.6. 

Eqs. 1.1 and 1.14 to be 
u = u ( l )  + J 2 )  

where u ( l )  is given by Eq. 1.10 and 

C O S [ ~ ( ~  - k ~ ) ]  + C1 
3 (kD)2cosh(2kz) 
16 sinh4(kD) 

= - ' 

Similarly, the vertical velocity can be found to be 

w = w(l)  + 

in which w(l)  is given by Eq. 1.11 and 

sinh 2kz 
sin [2(wt - kz)] 

3 
16' (kD)2sinh4(kD) 

,(a = -_ 

(1.18) 

(1.19) 

(1.20) 
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Example 1.1: Group velocity 

Considering the superposition of two linear waves with same wave height 
but with slightly different wave numbers k and k + Ak: 

H H .  
2 2 7 = 71 + 72 = - sin(k(z - c t ) )  + - sin((k + NC)(Z - ( c  + A c ) t ) )  (1.21) 

or 

(1.22) 

This wave is shown in Fig. 1.3. For small values of Ak the envelope curve 
(shown dashed in Fig. 1.3) migrates in the 2-direction with the velocity 

dc 

C 
= - [1+G]  

2 

-1/2 L, 

Figure 1.3 Wave group. 

(1.23) 

At the nodal points A and B, shown in Fig. 1.3, the surface elevation is 
always zero. At these points no energy transfer can take place, which means that 
the energy is transported with the group velocity cg. 



6 Chapter  1: Bas ic  concepts of potential  wave theory 

Example 1.2: Drift velocity (mass-transport velocity) in irrotational 
flow 

In relation to sediment transport, it is essential to distinguish between the 
mean velocity u measured at a fixed point and the drift velocity U ,  which is the 
mean velocity of a fluid particle averaged over a wave period. 

For two reasons the drift velocity U is always positive relative to the mean 
velocity U (Longuet-Higgins, 1957): 

(1) A fluid particle will stay longer below the wave crest than below the wave 
trough, because the fluid velocity is positive below the crest and negative 
below the trough. 

(2) The particle path is elliptic in shape, with the particle travelling forward 
at the upper part of the orbit and backwards at the bottom of the orbit. 
At the top of the orbit, the velocity is slightly higher than at the bottom, 
resulting in a small positive contribution to the drift. 

The drift velocity can be evaluated by Lagrangian considerations as follows 
(Longuet-Higgins, 1957): consider the points P and Q, where P is a point on the 
orbit of a particle, the mean position of which is Q, (Fig. 1.4.) 

UT 
u 

P 

Figure 1.4 Drift velocity as seen from a Lagrangian point of view. 

The difference between the instantaneous velocity at P and at Q is given 

d U  d U  
dX d2 

AU = -AX + -At (1.24) 
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where Ax and AZ are the horizontal and vertical displacements of P from Q. Ax 
and AZ are given by 

Az = J u d t  

AZ = I w d t  (1.25) 

Inserting Eq. 1.22 into Eq. 1.21 and time-averaging over one wave period 
gives 

(1.26) 

The last two terms in Eq. 1.26 can easily be evaluated by applying the 
linear wave theory expressions Eqs. 1.10 and 1.11 for the orbital velocities giving 

u =u+ -(-)y 1 TH cosh2(kz) + sinh2(kz) 
2c T sinh2( k D ) 

(1.27) 

Close to the bed ( z  N 0), this expression becomes 

U = U + y  u:rn (1.28) 

in which U 1 ,  is the maximum horizontal orbital velocity at the bed as predicted 
by the linear wave theory. It is seen that the mean drift velocity is a non-zero, 
second-order quantity. 

The water discharge associated with the drift is found by integration over 
the water depth 

1 T H  cosh2(kz) + sinh2(kz) 
qdrift = iD % (7) ( sinh2 (kD) ) d z  = 

where 

1 sinh2 kD TH’ 1 2 

- 1 T H  
%(y) sinh2(kD) 2k 4T tanh(kD) 

(1.29) 

(1.30) 

Wave drift, Eulerian analysis 

In the preceding section the wave drift was analyzed by considering the 
paths of the water particles in the wave motion. In the following, the wave drift 
will be determined by considering the water motion from an Eulerian specification, 
i.e. at fixed positions in the z - z coordinate system. Note that the Lagrangian 
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O L  0 1  
lo UdrlftC 10 20 

(HIT )2 

B. 

+ 

Figure 1.5 Example of the  vertical distribution of t he  drift velocity. A: 
Calculated by Lagrangian analysis. B: Calculated by Eulerian 
analysis. D = 10 m, T = 7 sec, H = 4 m. 

and the Euleriaii analyses do not derive two different contributions but present 
two different approaches to net drift. 

The time-averaged discharge of the water motion is calculated at a fixed - 

position (z = 0) by 
D+r) 

qdrift = $ lT 1 udzdt (1.31) 

where u and 7 are calculated from Eqs. 1.8 and 1.10. Below the wave trough level, 
the velocity u varies harinonically in time and does not contribute to Qdrift. Eq. 
1.31 can therefore be written 

1 T D+T 
udzdt (1.32) 

Only the lowest order solution in H / L  is required, therefore u can be replaced 
with the horizontal orbital velocity at  z = D 

qdrift = T 1 L-H,2 
B H  1 

u=- cos(wt) = u1, cos(wt) (1.33) T tanh(kD) 

Inserting Eq. 1.33 into 1.32 gives 

qdrift = ' T lT (7 + g) vim cos(wt)dt = 

f lT (: cos(wt) + - U1, cos(wt)dt = "> 2 

H U I ,  H 2 r  1 
-- -. 

4 4T tanh(kD) 
(1.34) 
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which gives the same result as Eq. 1.29. 
The Eulerian analysis thus gives the same discharge due to the wave drift 

as the Lagrangian analysis, but while the Lagrangian drift is distributed over the 
entire water depth, the Eulerian drift is located between the levels of the wave 
troughs and the wave crests. An example of the calculated vertical distribution of 
the drift velocities is given in Fig. 1.5. 

1.2 Wave energy 

Wave energy consists of two parts, potential and kinetic energy. The po- 
tential energy arises because water below the mean water level is moved above the 
mean water level, so for an Airy wave the potential energy per unit area is given 
bY 

LIZ 1 
pgv2dx  = -pgH2  

16 Epot = 1 
The kinetic energy is given by 

(1.35) 

(1.36) 

which for a linear wave gives 

Ekin = z P S H  1 2  (1.37) 

The energy is transported in the direction of wave propagation, at the group 
velocity. This can be seen either from Example 1.1 or from the following applica- 
tion of the momentum equation: 

The work per unit time performed by the wave motion on the left side of a 
vertical line A - A (Fig. 1.6) is given by 

(1.38) 

The transport of kinetic and potential energy through the same vertical line 
A - A is given by 

(1.39) 
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r A  

Figure 1.6 Pressure acting on a vertical line A-A. 

The flux of energy Ef through A - A from left to right is equal to the sum 
of the work per unit time given by Eq. 1.38, and the transport of energy given by 
Eq. 1.39. Hence, the flux of energy for small waves is given by 

PD P D  

The pressure p can be written as 

P = P+ - P g ( D  - 2) (1.41) 

in which p+ is the pressure beyond the hydrostatic pressure from the mean water 
level. p+ can be obtained for instance from the Bernoulli equation to be given by 

H cosh(kz) . 
sin(wt - k z )  '+ = cosh(kD) 

(1.42) 

The energy flux Eq. 1.37 can now be written as 

(1.43) 
1 

Ef =l 8 

D 
p'udz = - p  g H2c[ l  + GI cos2(wt) 

where G is defined in Eq. 1.23. 
The time-averaged value of the energy flux is obtained from Eq. 1.40 

(1.44) 

(1.45) 

from which it is seen that the energy is transported with the group velocity cg. 
The energy transport can be explained by the following mechanism: close to 

the water surfacep+ is positive at the same time as u is directed in the direction of 
wave propagation (below the wave crest). Below the wave trough p+ is negative, 
while the fluid is moving against the direction of wave propagation. This results 
in a work in the direction of wave propagation. 

1 
16 

Ef = - p  g H 2 c [ l  + G] 
or 

Ef 1 [Ekin + EpotIcg 
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Example 1.3: Shoaling 

The change in wave height when water waves migrate from one water depth 
to another is usually calculated by the energy flux-concept. Neglecting energy 
loss (from dissipation in the wave boundary layer, see Chapter 2, or from wave- 
breaking, see Chapter 4) the energy flux can be taken as constant. Considering 
the case where waves with infinitely long wave crests propagate over a bottom 
with parallel bed contours, the wave orthogonals become parallel, so the energy 
equation reads 

cg E = const. (1.46) 

which, by use of Eqs. 1.9, 1.23, 1.35 and 1.36 gives 

H 2  tanh(kD) [1+ G] = Hi (1.47) 

in which Ho is the deep water wave height. 

wave shoaling as specified by Eq. 1.47. 
The wave table (Appendix I) provides a simple method for calculating linear 

1.3 Radiation stresses 

The presence of waves will result in an excess flow of momentum, which is 
defined as the radiation stresses (Longuet-Higgins and Stewart, 1964). This flux of 
momentum is formed by two contributions: one due to the wave-induced velocities 
of the water particles and another one due to the pressure. 

The first of the above mentioned contributions is evaluated as follows: the 
momentum per unit volume associated with a fluid particle is pu, so its contribu- 
tion to the flux of momentum across a vertical section normal to the s-axis (the 
direction of wave propagation) is pu2.  Hence the total flux of momentum in the 
s-direction due to the wave-generated motion is 

(1.48) 

In the horizontal n-direction perpendicular to the s-axis there is no momen- 
tum flux due to the wave-generated motion, as the wave-generated velocity is zero 
in this direction. 
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The second contribution to the momentum flux originates from the pressure 
and is given by 

(1.49) 

This value is independent of the orientation of the vertical section consid- 
ered. 

The principal component of the radiation stress in the direction of wave 
propagation is defined as the time-averaged total momentum flux due to the pres- 
ence of waves, minus the mean flux in the absence of waves, i.e. 

D+v D 

s 3 S  = 1 ( p  + pu2)dz  - 1 podz (1.50) 

where po is the hydrostatic pressure. The force per unit width caused by the 
presence of waves given by Eq. 1.44 is always directed towards the body of fluid 
considered, no matter whether the waves travel to the left or to the right. 

As terms of third and higher order are disregarded, S,, can be calculated 
from linear wave theory 

(1.51) 

Similarly, the radiation stress in the n-direction is given by 

which gives 
1 1 2kD 

snn iPgH2 sinh(2kD) 2 
= - EG 

Hereby the radiation stress tensor becomes 

(1.53) 

(1.54) 

In a coordinate system where the two horizontal axes x and y do not coincide 
with the s- and n-directions, the radiation stress tensor can easily be evaluated 
by considering the force balance on a small triangular vertical column indicated 
in Fig. 1.7. This gives the following radiation stress tensor 

cos’ a + G 
(1 + G) s inacosa 

(1 + G) sin a cos a 
(1 + G) sin’ a + G = [ s,, s,, 
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I 
sss 

Figure 1.7 Radiation stresses acting on a small triangular element. 

1.4 Irregular waves 

The waves described by the preceding theories are assumed to be regular, 
i.e. to be periodic in time and space. 

Natural, wind-generated waves will be irregular, with stochastically varying 
wave heights and periods. This book will not deal with the processes of irregular 
waves in any detail, but some of the later theories are extended to take irregular 
waves into account. 

The most important information for the present treatment of the irregular 
waves is the statistical distribution of the wave heights. For wind waves, it has 
been found that the distribution of wave heights is often close to the Rayleigh 
distribution. This has been explained theoretically by Longuet-Higgins (1952) 
to be related to the spectrum - or Fourier decomposition - of the water surface 
elevation in natural waves. The probability density function for the Rayleigh 
distribution can be written 

where HI,, is the root-mean-square of the wave heights 

HI,, = fi 

(1.56) 

(1.57) 

HI,, is the wave height that represents the wave energy in the wave field, because 
the wave energy is proportional to H 2 .  The probability density function is shown 
in Fig. 1.8. Another wave height that is traditionally used to characterize a wave 
field is the significant wave height H, or which can be defined from the 
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Figure 1.8 The  probability density function for the Rayleigh distribution. 

Figure 1.9 The  probability distribution curve for the Rayleigh distri- 
bution. 

wave height distribution as the average of the highest one third of the waves. The 
relation between H113 and HI,, is 

Traditionally, many coastal engineering formulae are based on H I  13 ,  but this 
tendency has weakened, among other things because of the difficulty in attributing 
a physical meaning to 

The probability distribution curve for the Rayleigh distribution is written 

H 
F ( H )  = P(H’ < H )  = 1 f ( H ’ )  dH‘ = 1 - exp(-(H/Hrm,)’) (1.59) 

F ( H )  is shown in Fig. 1.9. 
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Directional spreading 

Both regular and irregular waves can be two-dimensional, which means that 
the wave fronts are very long, and that the wave-orbital motion occurs only in 
the z - z-plane. Natural, wind-generated waves are normally found to be three- 
dimensional in addition to being irregular. 

Three-dimensional waves are normally described by wave spectra. The di- 
rectional spreading is characterized by the directional distribution function K(Aa) 
where Aa is the angle between the direction considered and the x-axis. The func- 
tion I l (Aa)  describes the distribution of the wave energy (or wave energy flux for 
a particular frequency) over the different directions. If the total wave energy is E ,  
then the amount of wave energy associated with waves propagating in the interval 
from Aa - da 12 to Aa + d a / 2  will be given by 

dE = EIi (Aa)da  (1.60) 

Since the total wave energy is given, it follows that 

1; K(Aa)da  = 1 (1.61) 

A commonly used simple representation of the three-dimensional waves is 
made by describing I i (Aa)  as a cosine squared, Fig. 1.10. 

2 IT 77 

7r 2 I i (Aa)  = -cosZ(Aa) '-2 < Aff < - 

0.8 

0 ~c12 Aa 

Figure 1.10 The  directional spreading of the wave energy according to the  
cosine-squared, cf. Eq. 1.62. 

(1.62) 

A more elaborate distribution, where the variance in spreading is not fixed, 
is used to estimate the effect of directional spreading on wave-driven currents in 
Chapter 5 .  
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Chapter 2. Wave boundary layers 

2.1 Introduction 

Bottom shear stress and turbulence in wave motion are key parameters for 
moving the sediment and keeping it in suspension. In this and the next chapter, 
we quantify these two parameters in the case of non-breaking waves. 

In non-breaking waves without any resulting current, the turbulence is re- 
stricted to the thin boundary layer just above the seabed. Due to the no-slip 
requirement, the potential theory fails in this region because the shear stresses 
become important, and the full Navier-Stokes equation (with boundary layer ap- 
proximations) must be solved here. This layer is of great importance for bringing 
sediment into suspension above the seabed, and further, this boundary layer is of 
importance for the vertical distribution of a co-present current. 

This chapter starts by considering the pure oscillatory boundary layer, 
which is the boundary layer formed by a uniform, purely oscillatory outer flow, 
which for instance is formed in a u-tubed closed conduit, see Fig. 2.1. In this case 
the bottom boundary layer is the same at all x-values (except at the edge bound- 
aries), while in real waves, Fig. 2.2, the boundary layer-characteristics change 
with x, as does the outer wave-induced flow. 

The variation in the x-direction gives rise to the so-called streaming, which is 
analyzed later in this chapter. Except for this streaming, which is a term of second 
order, the convective terms are only of minor importance, and can be neglected 
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Figure 2.1 Purely oscillatory flow in a u-tube. The  flow is uniform in the  
x-direction. 

-y A- 
7, / / / / / / / /, / / / / /  ,’ / /  / / / / / * T b  - x 

Figure 2.2 Flow including boundary layer in real waves. The potential 
flow near the bed is indicated by a thin line. 

when calculating bed shear stresses below waves. The general flow equations to 
be solved in the boundary layer read 

in the flow direction and 
- 0  aP 

82 
_ -  

perpendicular to the flow direction. In the case of uniform flow, Eq. 2.1 is reduced 
to 

Outside the boundary layer, the shear stresses vanish, so Eq. 2.3 is reduced to 
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in which uo = the free stream velocity. The longitudinal pressure gradient &/dz 
remains constant through the boundary layer, as seen from Eq. 2.2, whereby Eq. 
2.3 can be written as 

a dT 
at a z  

p-(uo - u )  = -- 

Example 2.1: The laminar boundary layer 

In the case of laminar flow, r is related to the velocity gradient by 

where u is the kinematic viscosity. Eq. 2.5 now reads 

a a Z U  
-(uo - u )  = -u- at 822 

Taking 
uo = U1, sin(&) 

the solution to Eq. 2.7 (with the boundary conditions u = 0 for z = 0 and u -+ uo 
for z -+ co) is 

u = Ulm sin(wt) - Ul,,, exp ( -- ;l)sin(wt- 

in which 

h1 = J" 
w 

(2.10) 

is the thickness of the laminar boundary layer, which is called the Stokes length. 
The bed shear stress is given by 

(2.11) 

From Eqs. 2.8 and 2.11 it is seen that there is a phase shift of 45" between 
the shear stress and the outer flow velocity. 
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2.2 The momentum integral method for the turbulent 
wave boundary layer 

Eq. 2.5 is valid in the laminar as well as in the turbulent case. In relation 
to sediment transport, the turbulent case is the most important. Several solution 
procedures exist for solving Eq. 2.5, ranging from simple approximate solutions to 
refined turbulent closures. Some of those are described in the following, starting 
with a simple integral approach. 

The momentum equation, Eq. 2.12, is obtained by integrating Eq. 2.5 
across the boundary layer thickness S 

6+zo a 
- ( ~ o  - u ) d z  = /""" z d z  = - r b  -do at 

(2.12) 

In the derivation of Eq. 2.12, the zero shear stress at the top of the boundary 
layer has been used. rb is the bed shear stress, and 20 is the zero level of the velocity. 
The ordinary way of solving the boundary layer momentum equation is to assume 
a reasonable shape of the velocity profile, which fulfils the boundary conditions. 
In the case of a hydraul ical ly  TO 

can be taken to be logarithmic 

where Uf = friction velocity (= 

gh bed, the velocity profile, as an approximation, 

(2.13) 

M I ,  K = the von Kbrmbn's constant, which is -~ . . I , .  I 

around 0.40, and zo = the bed level, which following Nikuradse (1932) can be taken 
equal to k ~ / 3 0 ,  in which k~ = bed roughness. As a first simple approximation, 
the development in the wave boundary layer can be found by inserting Eq. 2.13 
into Eq. 2.12 with the boundary condition that at  the top of the boundary layer 
u must be equal to the free stream velocity uo. 

Example 2.2: Velocity profiles in turbulent steady channel flow and 
turbulent boundary layers 

Eq. 2.13 is adopted trom the velocity prohles in steady channel now. It the 
case of uniform steady flow in a channel with flow depth D is considered initially, 
the bed shear stress is given by 
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where S is the slope of the water surface. 
The vertical distribution of 7- is given by 

(2.14) 

In a turbulent flow, the shear stress is usually related to the velocity gradient 

(2.15) 
7- du - z q- 

by 

P dz 

in which VT is the eddy viscosity. In open channel flow, this varies as 

"1 D 
(2.16) 

in which K is the von KBrmBn's constant (- 0.40). Eqs. 2.14, 2.15 and 2.16 give 

which is integrated to 
u 1  
- = - l n z + c l  
Uf IC 

(2.17) 

(2.18) 

The constant appearing in Eq. 2.18 must be determined experimentally (or 
by numerical solution of the full Navier-Stokes equation, Spalart (1988)). Niku- 
radse (1932, 1933) determined the constant to be 

(2.19) 
1 

c1 = 8.5 - - ln(kN) 
K 

for the rough wall case (viscous sublayer 6, < k ~ ) .  Hereby Eq. 2.18 reads 

(2.20) 

If the wall is smooth, a viscous sublayer exists in the vicinity of the wall, 
the thickness being 

6, = 11.6 V f U f  (2.21) 

In this case, Nikuradse found that the constant, appearing in Eq. 2.18, was deter- 
mined by 

so Eq. 2.18 becomes 
_ -  U - 5.7 + L l n ( F )  
Uf K 

(2.22) 

(2.23) 
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In the smooth-wall case, the viscous terms dominate close to the bed. Here 
the flow equation reads 

which gives 

(2.24) 

(2.25) 

where z+ is a dimensionless near-wall coordinate. At the top of the viscous sub- 
layer, given by Eq. 2.21, the velocity u is the same from the inner (Eq. 2.25) and 
the outer (Eq. 2.23) solutions. Usually the thickness of the viscous sublayer is 
only a few millimeters. 

In steady turbulent boundary layers, the velocity profiles tend to be loga- 
rithmic. This can be deduced by assuming the shear stress to be a constant, which 
is equal to the bed shear stress in the lower part of the flow 

T % T b  puf 2 (2.26) 

The eddy viscosity is assumed to increase linearly away from the bed 

z/T u f z  (2.27) 

Eqs. 2.26 and 2.27 again give a logarithmic shape of the velocity profile through 
the use of Eq. The logarithmic velocity profile can also be found from 
the more sophisticated turbulence models by expressing local equilibrium between 
production and dissipation of turbulent kinetic energy in the boundary layer, (see 
also Section 2.3 and Appendix I). Production of turbulent kinetic energy is given 

Prod = r- (2.28) 

2.15. 

du 
d z  

by 

while dissipation is given by 
k 3 / 2  

l d  
Diss = c:! - (2.29) 

where c2 is a constant, lc is the turbulent kinetic energy, which (Laufer, 1954) from 
measurements turns out to be 

k N U; (2.30) 

Id 2 (2.31) 

Equating the production Eq. 2.28 and the dissipation from Eq. 2.29 gives again the 
well-known logarithmic shape, Eq. 2.18. In a boundary layer flow, the constants 
must, respectively, be matched with the flow near a rough and smooth wall, giving 
the same constants as those appearing in Eqs. 2.19 and 2.22. 

In an oscillatory flow, the instantaneous production and dissipation are 
not necessarily the same, due to the unsteady behaviour. For this reason, slight 
deviations from the logarithmic shape are to be expected, especially for rapid 
oscillations (small wave periods). 

and l d  a length scale of turbulence 
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Example 2.3: Numerical solution of the momentum equation 

By introduction of the dimensionless parameter 

Z = " o ,  (2 .32 )  
Uf 

the boundary condition at the top of the boundary layer reads (cf. Eq. 2.13)  

z = In[(s f L N / ~ O ) / ( ~ N / ~ O ) ]  

or 
1) (2 .33 )  k N  6 = -(ez - 

30 
By inserting Eqs. 2.13 and 2.32 into the momentum equation Eq. 2.12, we 

(2 .34 )  
obtain 

duo 1 d U  k N  z -u; = -6- + -f- [ e  (Z - 1)+1] d t  K d t  30 
This relation can be converted into a differential equation in the dimensionless 
parameter Z (from Eq. 2.32) ,  utilizing 

dZ Z duo Z dUf 
dt  U O  d t  Uf dt  
_ -  - (2 .35 )  

Eq. 2.34 can now be written 

U O  d t  
d Z  30 - = [-K'YO - Z[exp(Z) - Z - (eZ(Z - 1) + 1) (2 .36 )  
dt k N  

If the flow just above the boundary layer is assumed to be described by 
sinusoidd wave theory, uo is given by 

uo = U1, sin(wt) (2 .37 )  

and Eq. 2.36 becomes 

in which 
(2 .39 )  30n2 Uim p = -- = 3 0 n 2 L  

kN w kN 
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Figure 2.3 Variation in (Fig. A), Ur/Ul, , ,  (Fig. B ) ,  and &/a  (Fig. C) 
with time. __ : a /k  = 10. - - : a /k  = 100. 

where a is the free stream particle amplitude (= U l m / w ) .  From Eq. 2.20 it is 
seen that the variation in the dimensionless quantity 2 with dimensionless time 
only depends on the parameter a / k N .  Eq. 2.38 is easily solved numerically. The 
boundary condition at t = 0, where uo = zero is taken to be that the flow velocity 
in the wave boundary layer is zero. To be fully correct, the flow in the boundary 
layer is not totally zero when UO is zero, because of the flow inertia. This effect is 
especially pronounced for small values of L Z / ~ N .  In the main part of a wave period, 
however, the velocity profile is very near a logarithmic shape and is described by 
Eq. 2.13. 

Fig. 2.3 shows two examples of the numerical solution of Eq. 2.38, namely 
for a / k N  = lo1 and lo2. In the numerical solution of Eq. 2.38 it is convenient to 
introduce a stretched value t* of the dimensionless time wt  in the initial stage of 
the solution, because the variation in 2 is very large as seen from Fig. 2.3. At 
small values of w t ,  Eq. 2.38 can be written as 

dZ wt  2 -- 
d ( w t )  - 2p22 - wt (2.40) 

which has the solution 

z = 6 p  ( W t ) 2 / 3  = t* (2.41) 

The time wt  can be replaced by t* for small values of w t  in order to account for 
the large initial variation in 2. 

Js- 
The wave friction factor f w  can be defined by 

(2.42) 

which is quite similar to ordinary open channel hydraulics. The theoretical solution 
for the wave friction factor over a rough bed, obtained by the momentum method, 
is depicted in Fig 2.4 together with the variation in the boundary layer thickness. 
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Figure 2.4 Variation in friction factor fu, and boundary layer thickness 
with a / k N  in the case of a rough bed. 

As seen from Fig. 2.3C, the boundary layer thickness varies with time. The 
boundary layer thickness depicted in Fig. 2.4 is the one which occurs at  w t  = ~ / 2 ,  
i.e. at the maximum outer flow velocity. At very small values of a / k N  the friction 
factor becomes higher than predicted, because the flow only moves a distance back 
and forth, equal to a few times the grain roughness. In this case, the flow around 
the individual grains must be modelled more accurately instead of adopting an 
average expression such as Eq. 2.13. The theoretical expression for the friction 
factor f,,, can be approximated by 

Here a is the free stream amplitude, given by 

(2.43) 

(2.44) 

Similarly, the following expression can be obtained for the wave boundary layer 
thickness 

0.82 
- 0.09 ($, 6 

kN 
_ -  (2.45) 

In Fig. 2.5 a comparison between the theoretical expression and measured 
values of the wave friction factor is presented. The measurements are carried out 
over a bottom with natural sand fixed to the bed, except those by Jonsson and 
Carlsen (1976) where the bottom consists of two-dimensional triangular roughness 
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Figure 2.5 Wave friction factor versus a / k N  (rough wall) 0, 0, m, 0 :  

Jensen et al. (1989), x: Kamphuis (1975), A: Jonsson and 
Carlsen (1976), v: Sleath (1987). The solid line is the theo- 
retical solution from Fig. 2.4. 

elements. The friction factor is seen to be predicted quite well, except for small 
values of a / k N ,  where the theory underpredicts the friction. As seen later, even 
more refined theories are not capable of predicting this variation. This is probably 
because the models do not model the flow around the individual grains in the 
bottom with enough details. 

Kamphuis (1975) suggested that the data for small a / k N -  values could be 
approximated by 

a -0.75 a 

N k N  
f w  = 0 . 4 ( ~ )  , - < 50 (2.46) 

Example 2.4: Boundary layer behaviour in broken waves 

In non-linear waves, the outer velocity above the boundary layer can not be 
described by the simple harmonic variation Eq. 2.8. One of the most pronounced 
non-linear cases is broken waves, where the outer velocity variation UO, due to the 
very asymmetric shape of the waves, can be described by a so-called "saw-tooth 
profile" (Schaffer and Svendsen, 1986), as sketched in Fig. 2.6. 
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Figure 2.6 Velocity variation below a bore-like broken wave. 

The time variation in the outer flow velocity here can be approximated by 

I '  

where UIm is the maximum velocity and a ,  which indicates the skewness of the 
wave, is defined in Fig. 2.6. Eq. 2.47 can easily be inserted in Eq. 2.36, which 
can then be solved numerically. 2.7 shows an example of the calculated 
time variation in the bed shear stress. For reasons of comparison, a more refined 
solution of the same problem, by means of a turbulence model, has been included 
in the figure. 

The picture differs significantly from that obtained under harmonic waves 
(see Fig. 2.3B). It is interesting to note from Fig. 2.7 that the maximum positive 
T - value is larger than the maximum negative value. Due to non-linear effects 
between flow and shear stress, the resulting bed shear stress, defined by 

Fig. 

27T - 
T = Td(Ut )  (2.48) 

differs from zero, and is directed in the direction of wave propagation. Fig. 2.8 
shows the calculated variation in 7 with the skewness parameter a for different 
values of a / k N .  F is quite a small quantity, and much smaller than that originating 
from streaming, see Section 2.4. 
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Figure 2.7 Temporal variation of bed shear stress under broken waves, 
01 = 0.25 and a / k N  = lo3.  __ : Integrated momentum 
equation. - .  - .  -. : k - E model. 

0.0 0.1 0.2 03 0.4 0.5 

Figure 2.8 Resulting bed shear stress in the direction of wave progagation 
as a function of a. 

Wave boundary layer over a smooth bed 

If the bed instead of being rough is hydraulically smooth, the expression 
given by Eq. 2.13 for the rough case must be replaced by the following expression 

u = -  u, 1n(-+1) 9.8 up 
K 

(2.49) 
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in which v = the kinematic viscosity ( = 10W6m2/s for water at 20" centigrade). 
Like Eq. 2.13 Eq. 2.49 is taken from the wall law. To be fully correct, Eq. 2.41 
should be modified in the thin viscous sublayer. However, because the momentum 
method is based on an integral formulation, this modification is of no significance. 
Now, Eq. 2.41 can be inserted in the momentum equation Eq. 2.13, in which z g  

for the smooth bed case is zero. 

Example 2.5: Numerical solution for the smooth bed 

In the smooth bed case the momentum equation can be solved in the same 
way as in the rough bed case, Example 2.2. Still defining the quantity 2 by Eq. 
2.32, the momentum equation now gives the following differential equation in 2 
(similar to Eq. 2.36 for the rough wall case) 

For sinusoidal waves (Eq. 2.37), Eq. 2.50 can be written as 

in which R E  is 'the amplitude Reynolds number' defined by 
U1ma R E = -  

V 

At small values of t ,  Eq. 2.52 can be written as 

d 2  9.8 w2t2 - = - K 3  UIm-  
dt v 2 3  

(2.50) 

(2.51) 

(2.52) 

(2.53) 

which has the solution 

2 = ( / ;9 .8~~RE(wt)~ = t* (2.54) 

By solving Eq. 2.52 (numerically with the analytical solution, Eq. 2.54 
as the starting point), the variation in 2 is now a function of dimensionless time 
wt and the Reynolds number. Analogous to the rough wall case, Fig. 2.4, the 
variations in wave friction factor and boundary layer thickness, made dimensionless 
with the free stream particle amplitude a,  are depicted in Fig. 2.9. Both quantities 
are now dependent on the Reynolds number. 

For this smooth bed case, the variation in the friction factor can be approx- 
imated by 

fw = 0.035RE-0.16 (2.55) 
while the boundary layer thickness is approximated by 

s 
- = 0.086RE-0.11 
U 

(2.56) 



30 Chapter 2: Wave  boundary layers 
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Figure 2.9 Variation in friction factor and boundary layer thickness with 
Reynolds number in the case of a smooth bed. 

Example 2.6: Transition from laminar to turbulent flow 

The wave boundary layer is either laminar or turbulent depending on the 
value of the Reynolds number. Fig. 2.10 presents several experimental investiga- 
tions on the variation in friction factor with RE-numbers. 

It is seen that the transition from laminar to turbulent flow takes place for 
the RE-numbers in the interval between 2 x lo5 and 6 x lo5. However, even at 
higher RE-numbers, the flow is not fully turbulent during the entire wave period. 
Fig. 2.11 presents a plot, where the temporal value of the friction coefficient c ,  is 
plotted against RE for various phases w t .  The coefficient c ,  is defined by 

c ,  = 
cos(wt - 7r/4) 

In a laminar flow, c ,  should be a constant, and located on the curve 

(2.57) 

2 
c ,  = - (2.58) m 

as seen from Eqs. 2.10 and 2.11. From Fig. 2.11, it can be seen that the flow is 
fully laminar for RE less than 5 x lo4, but even at very high Reynolds numbers, 
the flow might be partly laminar at the phases where the outer flow velocity is 
small. 
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Turbulent 
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Figure 2.10 Measured variation in wave friction factor with RE-number  
in flow over a smooth bed. 0 :  Kamphuis (1975), x : Sleath 
(1987), 0: Jensen et al. (1989), A: Hino et al. (1983). 
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Figure 2.11 Normalized friction coefficient versus RE at different phase 
values. Smooth bed. From Jensen et  al. (1989). 
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Example 2.7: Phases between free stream velocity and bed shear 
stress 

In an oscillatory flow, the bed shear stress is out of phase with the outer 
velocity. In the laminar case, see Example 2.1, the bed shear stress is exactly 45" 
in advance of the outer flow velocity. This phase is introduced because the pressure 
gradient, which is constant over the depth, can easily turn that part of the flow 
which is located close to the bed in the boundary layer (because the flow velocity 
is a minimum in this region). In the turbulent case, the near wall velocities are 
not decreased as much as in the laminar case, because of the vertical exchange of 
momentum by the eddies. For this reason, the bed shear stress in the turbulent 
case should not be as much ahead of the free stream velocity. Fig. 2.12 which 
shows the measured phase lag confirms this, as the phases drop from 45" to about 
10" in the turbulent case. This phase is also predicted by the momentum integral 
method, as seen in the same figure. 

Figure 2.12 Phase difference between bed shear stress and outer flow ve- 
locity. (i): laminar flow. (ii): phase difference predicted by the 
momentum integral method. 
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Figure 2.13 Friction factor diagram based on experiments and a one- 
equation turbulence model. (From Justesen, 1988a). 

Transition from smooth to rough wall 

In general, a sand bed exposed to waves will be hydraulically rough, when 
the waves are large enough for the sediment to move. Several experimental data 
exist for the friction factor in the rough, the smooth and the transitional regimes. 
Fig. 2.13 indicates the limit for the rough turbulent regime as a function of the 
Reynolds number and the parameter a / k N .  Also shown in this diagram is the 
theoretical findings of Justesen (1988a) by means of a one-equation turbulence 
model, see Section 2.3. 
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2.3 Detailed modelling of the wave boundary layer 

The integrated momentum method, described in the preceding section, gives 
reasonable values of the bed shear stress which is one of the key parameters in 
describing sediment transport. Another key quantity is the vertical distribution 
of turbulence which determines the vertical distribution of suspended sediment. 
A first reasonable guess is to assume that the eddy viscosity ut varies across the 
wave boundary layer 

Vt = K U f Z ( 1  - 216) (2.59) 

in which U f  and 6 are the instantaneous values of friction velocity and boundary 
layer thickness, obtained from the former section. More detailed knowledge can 
be obtained from turbulence modelling, as described below. For simplicity, only 
the rough wall case is considered in the following. 

Eddy viscosity models 

In the eddy 
whereafter the flow 
Grant and Madsen 
from the bottom 

viscosity models, the vertical variation in VT is prescribed, 
equation, Eq. 2.5, can be solved exactly. As an example, 
(1979) assumed the eddy viscosity to increase linearly away 

V T  = ~ ~ f , m a x z  (2.60) 

where Uf,,,, is the maximum value of the friction velocity. Together with the 
definition of the eddy viscosity 

7- d U  - = u*- 
P a z  

Eq. 2.60 gives the following equation of motion 

(2.61) 

(2.62) 

in which U d  is the deficit velocity in the boundary layer, defined by 

The boundary conditions to U d  are 

and, in the case of a rough bed 
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Figure 2.14 Velocity profiles in the boundary layer at different phases pre- 
dicted by eddy viscosity models. Full line: steady eddy viscos- 
ity (Eq. 2.60). Dashed line: time-varying eddy viscosity (Eq. 
2.67). Rough wall ( a / k ~  = 159). After Davies (1986). 

Finally, the flow is periodic 
U d ( t )  = Ud(t + T )  (2.66) 

Eq. 2.62 can be solved analytically, whereby the exact shape of the instan- 
taneous velocity profile can be found, see Fig. 2.14. 

It is seen that the profile close to the bottom follows the logarithmic shape, 
while at the outer edge a small deviation from the logarithmic profile exists. Sev- 
eral other guesses on the shape of the eddy viscosity profile have been suggested 
(e.g. Kajiura, 1968; Brevik, 1981; Myrhaug, 1982; Christoffersen and Jonsson, 
1985). The calculated velocity profiles become nearly identical in all these cal- 
culations. In the above models, the eddy viscosity is taken to be time-invariant. 
Trowbridge and Madsen (1984), and later Davies (1986), have incorporated the 
effect of time variation into the eddy viscosity description. The dashed line in Fig. 
2.14 shows the calculated velocity profiles for the following time variation in the 
eddy viscosity 

(2.67) 

Including the effect of the time variance has a certain effect on the velocity 
profiles. However, as seen later, the time variation in UT is usually smaller than 
that given by Eq. 2.67. 
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Mixing length theory 

The mixing length hypothesis, introduced by Prandtl (1926), states that 
fluid is transported by turbulent fluctuations a certain distance 1 (the mixing 
length) across the flow before it is mixed with the surrounding water, and thereby 
adjusts its longitudinal flow velocity to that occurring at  the new level. Prandtl 
found that the shear stress is now given by 

(2.68) 

Inserting this expression into the equation of motion, Eq. 2.5, the following partial 
differential equation in U d  is obtained (defined in Eq. 2.63) 

(2.69) 

In the mixing length theory, it is necessary to prescribe the variation of 1. 

1 = nz (2.70) 

in which n is the von K&rm&nls constant. Different variants of Eq. 2.70 exist 
without significantly changing the calculated velocity profiles. Bakker (1974) was 
the first to solve the mixing length model for the wave boundary layer by appli- 
cation of the finite difference method. Results of the mixing layer theory will be 
presented later in this section. 

The simplest expression is 

Example 2.8: Prandtl’s mixing length theory 

Consider Section A-A parallel with the bed in a uniform channel flow (see 
Fig. 2.15). Perpendicular to A-A the eddies in the turbulent flow cause an ex- 
change of fluid and thereby an exchange of momentum. The eddies in the flow are 
assumed to have a characteristic size, called 1. An eddy with a length scale 1 will be 
able to transport fluid from level I to level 11, where the mutual distance between 
I and I1 is of the order 1, see Fig. 2.15. For reasons of continuity the same amount 
of fluid must be transported downwards from I1 to I. Hence, a fluid discharge of 
pq will occur in both directions, where q can be interpreted as a typical value of 
the turbulent fluctuations perpendicular to the wall. 

The fluid particles transported from level I will keep their longitudinal ve- 
locities unchanged until they reach level 11, where they will be mixed with the 
surrounding fluid and adapt to the mean flow velocity at  level 11. Thus the parti- 
cles would have increased their velocity by 

d u  
U I I  - U I  21 I -  

d z  
(2.71) 
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Figure 2.15 Exchange of momentum perpendicular to the flow direction. 

The total rate of exchange of momentum per area unit through A-A is given 

d u  
d z  

AB = p q l -  (2.72) 

In order to formulate an equation of motion in which the turbulent fluctu- 
ations are neglected, the influence of these turbulent fluctuations must be substi- 
tuted by an equivalent shear stress given by 

d u  
d z  

r = pql- (2.73) 

The magnitude of q is related to the vertical fluctuations, which, for reasons 
of continuity, again have the same magnitude as the horizontal velocity fluctua- 
tions. These fluctuations are of the same order as the mean velocity difference 
over a distance equal to the mixing length, whereby q can be related to this mean 
velocity difference 

d u  
d z  

q N_ 1- (2.74) 

Inserting Eq. 2.74 into Eq. 2.73, the basic expression given by Eq. 2.68 is 
obtained. 

One-equation models (k-model) 

In a one-equation formulation, a transport equation for turbulent kinetic 
energy k is included in the flow description, this allows a more accurate description 
of the vertical distribution of turbulence possible. The turbulent kinetic energy k 
is defined by 

1 -  - - 
k = - ( d 2  + w'2 + wt2) (2.75) 

2 
in which u', w' and w' are the turbulent fluctuations in the z-, y- and z-direction. 
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The transport equation for turbulent kinetic energy reads (see Appendix 11) 

(2.76) 

(rate of change = diffusion + production - dissipation) 

in which cg is a constant (- 0.08), and I d  is the length scale of turbulence, which 
is given by 

I d  = t c f i  z N 0.213 z (2.77) 

In the one-equation model, the eddy viscosity is related to the turbulent 
kinetic energy through the Kolmogorov-Prandtl expression 

V T  = (2.78) 

Eqs. 2.76, 2.78 and the flow equation, Eq. 2.5, constitute a closed system 
of equations, which together with the boundary conditions must be solved numer- 
ically (e.g. by a FDM-scheme). The boundary conditions for the rough wall case 
are for the velocity 

u ( k ~ l 3 0 , t )  = 0 (2.79) 

and 
(2.80) 

au 
aZ - + o  f o r  z - 0 0  

The boundary conditions for the k-equation are 

and 
dk - = 0  f o r  t - t m  aZ 

(2.81) 

(2.82) 

Eq. 2.81 states that there is local equilibrium close to the wall, while Eq. 
2.82 expresses that there is no flux of turbulent kinetic energy at the upper bound- 
ary. 

2.16 demonstrates the usefulness of a one-equation approach, with 
plots of the time variation in the predicted eddy viscosity at two different levels. 
The mixing length theory always predicts that the eddy viscosity will fall twice 
to zero during one wave period, cf. Eq. 2.68. On the other hand, a one-equation 
model more realisticly predicts that VT varies much less during a wave cycle. This 
is because it takes some time for the eddies to decay after being formed (mainly at 
the large outer flow velocities). The effect is especially pronounced for small values 
of a / k N ,  a being the amplitude in the near bed motion just outside the boundary 
layer. Further, the variation in VT decreases with increasing distance from the bed. 
The effect of time variation in VT on the velocity profile, as shown in Fig. 2.14, is 

Fig. 
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Figure 2.16 Variation in eddy viscosity with time. Dashed line: Predicted 
by a one-equation model. Full drawn line: Predicted by a 
mixing-length model. A: a / k N  = lo2.  B: a/krJ = lo3 .  
(Justesen and Fredsere, 1985). 

exaggerated, because Eq. 2.67 gives a too large variation in VT. Fig. 2.17 shows 
another outcome of a one-equation model, namely the predicted instantaneous 
picture of contour plots of turbulent kinetic energy. Here the variation in the x- 
direction (the direction of wave propagation) is obtained from the time variation 
bv use of the relation 

I d  d 
ax c a t  

- _--  _ -  (2.83) 

It is seen that k is maximum at the bottom, where the main production 
takes place. The shape of the contour plots is skewed, due to the time lag in the 
strength of eddies away from the bed. 
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Figure 2.17 Contour plot of turbulent kinetic energy along the bed, pre- 
dicted by a one-equation model. The wave is moving from left 
t o  right. A: afkN = 10. B: afkN = lo3.  (Justesen and 
Freds@e, 1985). 

Two-equation models (k - E models) 

In a two-equation model, the length-scale 1 is allowed to vary in time and 
space instead of being given by a prescribed function like Eq. 2.70. This intro- 
duction of a new parameter 1 requires an additional equation, compared to the 
system of equations for the k-equation model. This additional equation is usually 
a transport equation for the dissipation E ,  and structured as Eq. 2.76 which is a 
transport equation for the kinetic energy k. 



The transport equation for E reads 

(2.84) 

where U D ,  c3 and c4 are constants which must be found from experiments, (for a 
more detailed derivation, see e.g. Launder and Spalding, 1972). 

2.76, 2.77 and 2.5, two 
additional boundary conditions to the four given by Eqs. 2.79 - 2.82 are required. 
These are 

= (c2)3/4 ~ f o r  z + k ~ / 3 0  (2.85) 

In order to solve Eq. 2.84 together with Eqs. 

k312 
nz 

and 
(2.86) 

Eqs. 2.85 and 2.86 are equivalent to Eqs. 2.81 and 2.82 but for the dissipa- 

a& 
- = 0  f o r  z - + c o  
a z  

tion E replacing the turbulent kinetic energy k .  (Rodi, 1980). 
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Figure 2.18 Calculated and measured variation of period-averaged turbu- 
lent kinetic energy as a function of the distance from the bed 
A: a l k ,  = 720. B: a / k N  = 3700. ~ : Two-equation 
model. ~ ~ - : One-equation model, (Justesen, 1990). 

: Measurements by Jensen et al. (1989). 

Fig. 2.18 shows a comparison between the prediction of a one-equation 
model and a two-equation model with respect to the mean values of k over one 
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wave period, while Fig. 2.19 shows a similar comparison for the instantaneous 
values. Further, experimental values of lc, measured by Jensen et al. (1989), 
are plotted in the figures. It is seen that the average level of lc is lower for the 
two-equation model. 

z/k, 

w t = K  

0 5 1 0 0  5 10 0 5 1 0 0  5 10 

kIU,: x 1 0 3  

Figure 2.19 Calculated and measured variation of instantaneous turbulent 
kinetic energy. Symbols as in Fig. 2.18. a / k p ~  = 3700. (Juste- 
sen. 1930). 
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Figure 2.20 Calculated and measured vertical variation of Reynolds stresses 
in oscillatory flow. u / k ~  = 3700. Symbols as in Fig. 2.18. 
(Justesen, 1930). 
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Figure 2.21 Calculated and measured flow velocity. a / k N  = 3700. Sym- 
bols as in Fig. 2.18. 

Fig. 2.20 shows a comparison between the predicted and measured vertical 
shear stress distribution at different phases. Here, the two-equation model is 
slightly better than the one-equation model. Fig. 2.21 shows the measured and 
calculated flow velocity at different phases. Again the two-equation model seems 
to be slightly better than the one-equation model. 

Finally, Fig. 2.22 shows a comparison of the friction factor, calculated by 
most of the methods described above. It is seen that all methods give nearly the 
same result. This is promising, because the bed shear stress is one of the most 
important values for sediment transport calculations. Fig. 2.22 suggests that only 
a little is gained by using very sophisticated (and computer-expensive) models. 
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Figure 2.22 Prediction of wave friction factor by different models. 

2.4 Streaming 

Until now, the wave boundary layer has been treated under the assumption 
that the flow is uniform in the flow direction. In real waves, however, the flow 
is non-uniform, as sketched in Fig. 2.23, so the near bed velocity variation in 
harmonic waves must be changed from Eq. 2.8 to 

uo = U1, sin(wt - k z )  (2.87) 

Here k = 2 r / L  is the wave number. 
This means that the boundary layer thickness varies along the bottom in the 

direction of wave propagation. If the displacement thickness S* of the boundary 
layer 

6 

uo6* = 1 (uo - u ) d z  (2.88) 

is introduced, it is easy to realize from the preceding sections that 6*, in principle, 
expands, as shown in Fig. 2.23. From geometrical considerations this expansion 
is seen to create a vertical flow velocity, (ref. Fig. 2.24) which is small compared 
to the orbital velocities. This additional vertical velocity attains the value w, 
outside the boundary layer, while it decreases through the boundary layer to be 
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Figure 2.23 Variation in displacement thickness as defined to the right ( the 
two shaded areas must have equal size). 

zero at  the bed. The existence of this small w, is important because it appears 
that the time-averaged term UW, is different from zero. This means that an 
additional shear stress will be induced, resulting in a weak additional circulation 
current. In the following, this additional shear stress term is evaluated. 

From the equation of continuity, w, can be expressed by the displacement 
integrated over the entire boundary layer as 

(2.89) 

In Eq. 2.89 the relation between spatial and temporal derivatives has been intro- 
duced 

(2.90) 

Eq. 2.90 is at present an approximation, because the wave height, due 
to dissipation (see Section 2.5), decreases slightly in the 2-direction. From the 
linearized flow equation, Eq. 2.5, the last integral in Eq. 2.89 is easily obtained 
by integrating over the boundary layer thickness 

(2.91) 

in which AT is the increase in instantaneous shear stress through the boundary 
layer. Now, w, is given by 

w, = -- (2.92) 
AI- 
P C  

In the wave boundary layer models described above, T6 has been assumed to 
be zero. However, in general, T does not vanish at the top of the boundary, even if 
no resulting current co-exists together with the waves, because a small circulation 
current over the vertical will always be present in dissipative water waves, cf. 
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Chapter 5 .  Outside the boundary layer, however, the shear stress can be taken 
as a stationary quantity rg, while the bottom shear stress varies significantly with 
time, cf. Fig. 2.20. The bed shear stress can therefore be written as 

T b  = Ts + 6 (2.93) 

where the N denotes the time-varying part of the bed shear stress. 
Eqs. 2.89, 2.90 and 2.91 give 

w, = -- 
P C  

(2.94) 

If w, is not 90" out of phase with uo, additional shear stresses will be induced in 
the boundary layer. 

. L 

Figure 2.24 Induced vertical velocities due to  spatial changes in displace- 
ment thickness, as shown in Fig. 2.23. The dashed line indi- 
cates the control box used for the momentum equation. 

This can be realized from the momentum equation, applied to the control 
box shown in Fig. 2.24, which is one wave length long. The control box extends 
from the bed to a level a above the bed. At this level the shear stress is r,, 
the horizontal flow velocity u,, and the vertical velocity w,. The time-averaged 
momentum equation for this box reads 

where Cis a unit vector in the s-direction. 

7 6 ,  so the bed shear stress is determined by 
Above the boundary layer, u ,  becomes uo, w, becomes w,, and 7, becomes 

(2.96) - 
rb = - p K  + rs 
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or 
(2.97) 

Because the term -uoW, is not zero, it is seen that % will be different from 
7 6 ,  so the shear stress changes through the boundary layer due to the organized 
transfer of momentum, originating from the displacement effect, as sketched in 
Fig. 2.23. 

Example 2.9: Laminar and turbulent streaming 

Eq. 2.94 was first developed in a modified version by Longuet-Higgins 
(1957), who applied it to determine the flow induced by the spatial and temporal 
gradients in the velocity deficit in the laminar case. 

The laminar boundary layer flow is given in Example 2.1, Eqs. 2.8, 2.9 and 
2.10. Inserting these into Eq. 2.89, gives 

(2.98) 
1 
2 

w, = --U1,k61 sin(wt - k z )  

where 61 is the Stokes length, defined by Eq. 2.10. Longuet-Higgins (1957) as- 
sumed the bed shear stress outside the boundary layer to be zero, whereby Eq. 
2.98 gives 

(2.99) 

The mean induced streaming velocity u ,  in a distance a above the bed is 

- 73-61 2 
Tb = - p m  = p--u,, 

2 L  

found from 
7, = .d",( =pUaWaf% (2.100) 

z=a 

cf. Eq. 2.95. w, is found from the equation of continuity to be 

in which u is given by 

(2.101) 

(2.102) 

cf. Eq. 2.10. It is now possible to integrate Eq. 2.100 to obtain us, as done by 
Longuet-Higgins (1957). He found that at the top of the boundary layer the mean 

(2.103) 
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i.e. independent of the kinematic viscosity v. 
It is interesting to note that the streaming outside the boundary layer is 

equal to the Lagrangian drift velocity, except for a constant factor cf. Example 
1.2. The drift velocity is given by 

(2.104) 

cf. Eq. 1.28. Finally, it can be mentioned that the same principles apply to the 
turbulent and the laminar case. However, a turbulent model is needed for esti- 
mating the eddy viscosity V T ,  which must replace the constant kinematic viscosity 
v in Eq. 2.100. Broker (1985) did such an analysis for a rough wall using the 
momentum integral method, described in Section 2.2. 

The result of that analysis was that the induced streaming at  the top of 
the boundary layer was reduced, compared to the laminar result in Eq. 2.103, 
and the strength of the streaming became a weak function of the parameter a / k N .  
To compare with the laminar result, the turbulent streaming velocity Us,6 can be 
written as 

where f ( a )  is plotted in Fig. 2.25. 

,Laminar boundary layei It  

(2.105) 

Turbulent boundary layer 

a - 0.0 k 

loo 10’ lo2 lo3 lo4 

Figure 2.25 Streaming velocity a t  the top of the boundary layer in the 
turbulent and the laminar case (after BrZker, 1985). 

In the turbulent case, the reduction in the strength of the streaming is re- 
lated to the fact that the velocity deficit is much smaller in the turbulent boundary 
layer than in the laminar boundary layer. 
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2.5 Energy dissipation in the wave boundary layer 

Outside the surf zone, together with occasional events of wave-breaking, en- 
ergy dissipation in the wave boundary layer is responsible for extraction of energy 
from the wave motion. 

Time-averaging over one wave period reveals that the production of energy 
is equal to the energy dissipation into heat, so the dissipation can be written as 

The instantaneous production term is given by 

Prod = r g d z  

(2.106) 

(2.107) 

The easiest way to evaluate this term is to realize that the same turbulent 
flow is created in the boundary layer, either if the outer flow is driven by pressure, 
as in a u-tunnel (Fig. 2.1), or if the boundary layer is created by oscillating the 
bed back and forth, the outer water being originally at rest. Considering this last 
case, Eq. 2.107 is easily integrated to give 

(2.108) 

Here the time-averaged value of the last term is equal to zero, the function being 
periodical, so 

v = - m  (2.109) 

Considering the case where the flow above the bed is moving back and forth 
(instead of the bed), the sign on T becomes the opposite, so the dissipation is now 

Usually, the energy loss is calculated by use of the so-called energy loss 
factor fe. This energy loss factor is defined as follows: it is assumed that the 
instantaneous bed shear stress is given by 
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where uo is the instantaneous outer flow velocity. Eq. 2.110 now becomes 

(2.112) 

f e  will differ slightly from f w ,  defined by Eq. 2.42, because the temporal variation 
in Tb is more complex than given by Eq. 2.111 with fe  being constant. For this 
reason, the accurate definition of f e  is given by Eq. 2.112. Table 2.1 gives the 
relation between f e  and f w  for the rough turbulent case. The calculations are 
carried out by use of a one-equation model (Justesen, 1988a). The table indicates 
that, for practical purposes, fe can be taken to be equal to f w .  

Table 2.1 The factors f e  and f w  calculated by a one-equation model. 

loo  
101 
102 
103 
104 

0.104 0.124 0.842 
0.0358 0.0376 0.952 
0.0160 0.0157 1.019 
0.00836 0.00807 1.036 

Example 2.10: Laminar dissipation. Decay of waves due to dissipa- 
tion in a laminar wave boundary layer 

In the laminar case, the bed shear stress is given by Eq. 2.11 

The Stokes length ti1 is given by Eq. 2.10. Now the dissipation is 

- 

(2.11 3) 

(2.114) 
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The decay in wave height due to dissipation is found from the continuity equation 

(2.115) 

in which Ef is the wave energy flux, given by 

Ef = Ec, (2.116) 

where c ,  is the group velocity, see Eq. 1.23, and E the wave energy. For reasons 
of simplicity the shallow water wave case is considered, 

c g = c = - \ / g D  (2.1 17) 

where D is the water depth, and c the phase velocity. If the bottom is assumed 
horizontal, D is constant, and Eqs. 2.116, 2.117, 2.118 and 2.119 give 

- ( - p g H ' m )  d 1  = -- J.w U,Z,p 
dx 8 22/2 

In shallow water the velocity amplitude is given by 

H 
2 0  

U I ,  = -c  

which, when inserted into Eq. 2.118, gives 

or 

H 2 = H i e x p  - -- ( J;;) 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

where Ho is the wave height at z = 0. It is seen that for the distance Xh that the 
wave has to migrate in order to reduce its height by half, the height is given by 

or 

(2.122) 

(2.123) 

For a water depth equal to 10 m, a wave period of 8 sec. and a kinematic 
viscosity equal to lop6  m2/s, x h  becomes 219 km. 
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Example 2.11: Turbulent dissipation 

The wave boundary layer, described in the example above, remains laminar 
up to about 

(2.124) 

cf. Fig. 2.10. For the waves considered above (D = 10 m, T = 8 sec.) this 
corresponds to a wave height found by 

R E =  (2Hgy - gD-<5xX04 2Tv 

or 
H < 0.400 m 

For larger RE-numbers, the boundary layer becomes more and more tur- 
bulent. For R E  > 2 x lo5,  the boundary layer is nearly fully turbulent, if the 
bed is assumed to be smooth, cf. Example 2.5. This RE-number is exceeded for 
H > 0.80 m in the preceding numerical example. 

For H = 0.80 m, the wave decay is calculated from Eqs. 2.111 and 2.112 

(2.125) 

Here f e  N fiu = 4.96 x lod3,  cf. Eq. 2.55 for RE = 2 x lo5, so 

_ -  dH - H 2 f e  = 1.06 x 10-5 
dx 3 D 2  

If the laminar solution, Eq. 2.118, was used at this high RE-number, the 
or half the predicted value from gradient in H would be found to be 5.05 x 

the turbulent case. 
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Chapter 3. Bed friction and turbulence 
in wave-current motion 

In this chapter the findings of Chapter 2 are extended to the more general 
case, where a current co-exists with the waves. In this case, the turbulence is 
not restricted to the thin wave boundary layer, but extended to the whole water 
depth. 

The presence of a current together with waves significantly complicates the 
turbulence structure. In the following the case is considered where the current 
is driven by a small slope S of the mean water surface. In the case of uniform 
conditions, the time-averaged vertical shear stress distribution can be found from 
static considerations to be given by 

7 = pgDS(1 - z / D )  (3.1) 

In the general case, this shear stress can be divided into two parts, ~f 

and T ~ .  ~f is the part that is carried by the Reynolds stresses due to turbulent 
fluctuations and by the viscous stresses. T~ is the part that is carried by the 
organized motion of the flow. In the wave-current case this last contribution 
occurs in the wave boundary layer due to streaming (see Section 2.4). Usually this 
streaming contributes only to a small fraction of the total shear stresses near the 
bed as sketched in Fig. 3.1, and can therefore be neglected. 

The flow depth in the combined wave-current motion can be divided into 
roughly three zones (see Fig. 3.1) (Lundgren, 1972). 

In the upper zone (zone I), the turbulence is totally dominated by the 
current. Here the dominant frequency of the turbulent stresses is usually much 
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Figure 3.1 Definition sketch and  location of different zones of turbulence. 

lower than the wave frequency, and the turbulent characteristics are independent 
of the waves. Zone I1 is a transition zone, where the turbulent viscosity produced 
by the wave boundary layer is of the same magnitude as the viscosity pertaining to 
the current turbulence. In this zone, the dominant frequencies of the turbulence 
gradually increase with depth and are larger than the wave frequency towards the 
lower boundary of this zone. Zone I11 is totally dominated by the wave-produced 
turbulence. The vertical extent of zone I11 depends on the relative influences of 
waves and current. If the current becomes very strong compared to the waves, 
zone I11 may totally vanish. 

The change in the turbulent structure due to the presence of waves implies 
that the vertical distribution of the mean current profile will be different compared 
with the profile without waves. Also, the flow resistance for the current will change 
due to the presence of waves. 

Both the mentioned items are important for the calculation of sediment 
transport, and are the main topics of this chapter. As in Chapter 2, the start is 
with a very simplified description in order to obtain a better view of the physics 
involved. 

3.1 Simple considerations on changes in the shape of the 
velocity profile and increase in bed shear stress 

The effect of the presence of the wave boundary layer is easily illustrated: 
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because of the wave boundary layer the eddy viscosity becomes slightly larger close 
to the bed than in the case with only a current as illustrated in Fig. 3.2. The eddy 
viscosity can, roughly speaking, be considered to consist of a contribution v, from 
the current and another contribution v, from the waves. From the constitutive 
equation 

dU 
a z  

7- 
- = (vc + vw) -  
P 

it is easily realized that for the same value of the bed shear stress, the near bed 
slope of the current velocity profile U becomes smaller in the combined wave- 
current case than it does in the current case. Farther away from the bed, the slope 
is not affected by the waves. As the mean bed shear stress is given by 

Tb = pgDS (3.3) 

it is realized that the presence of waves reduces the water discharge if D and S 
are kept the same for the two cases with and without waves. 

i 
V 

Figure 3.2 Schematic illustration of the current and wave contribution t o  
the time-averaged eddy viscosity. 

The purpose of this introductory section is in a simple way to calculate 
the above described changes in the current velocity profile due to the presence of 
waves. For simplicity , the case where waves exist together with a weak current is 
considered first. The present analyses were originally suggested by FredsGe (1981). 
The directions of the wave propagation and the current are taken to be the same, 
unless otherwise stated. 

In this first approach, the boundary layer thickness is taken to be a steady 
value 6 and equal to the one determined by the wave motion alone in Chapter 2. 
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According to Fig. 3.1, the flow is now divided into two zones: an outer zone 
outside 6, where the turbulence is due to current only, and an inner zone ( z  < S ) ,  
where the turbulence is mainly determined by the waves. No transition zone is 
included in this simple description. This implies that the strength of the current 
is assumed to be so weak that the wave boundary layer characteristics (friction 
factor and boundary layer thickness), are determined by the wave motionalone as 
an approximation. 

Due to the wave motion, a boundary layer is now formed with the wave 
friction factor f, and the boundary layer thickness 6, cf. Chapter 2. 

At the top of the boundary layer ( z  = 6 ) ,  the current velocity Us is still 
unknown at this point. 

Figure 3.3 Schematic variation in flow velocity with time at the top of the 
wave boundary layer. 

The variation in velocity with time at the level z = S is shown in Fig. 
3.3. This velocity consists of the steady current contribution Ug, and an unsteady 
component uw from the wave motion (capital letter U denotes in this chapter 
the steady component while small letter u is the time-varying component). For 
simplicity, u, is taken to vary harmonically with time (Airy wave). 

With the present assumptions it is possible to determine the average bed 
shear stress as follows: In pure wave motions, the maximum bed shear stress is 
determined by 

The average bed shear stress over one wave period is zero. Henceforth, Eq. 3.4 
is assumed to be generally valid for the instantaneous bed shear stress during the 
wave period, i.e. 

in which u is the instantaneous flow velocity given by 
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From Eqs. 3.5 and 3.6, the resulting mean bed shear stress in the direction 
of the current is found to be 

Since vsIu1, << 1, Eq. 3.7 can be solved analytically as 

- 
Twc I f w  

p - 2 T  

u1 m 

T 

- /1 (sin(ut) + 

u .  - - 1 L+SL { i7r [sinZ(wt) + 2 2  sin(wt)l d(wt )  
2 27r u1 m 

27r 

- 1 7r [sinZ(ut) + 2% u1 m sin(olt)]d(wt)} 

(3.8) 
2 

= - f w u l m u 6  
7r 

By definition, the current friction velocity U f c  is related to by 

r,,, = P q ,  (3.9) 

so the current friction velocity is found from Eqs. 3.8 and 3.9 giving 

(3.10) 

From Eq. 3.8 it is easy to see that the average bed shear stress is significantly 
increased due to the presence of waves, because f, is usually much larger than the 
current friction fa.ctor f c ,  and i71, is usually much larger than Us.  
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Velocity profiles outside the wave boundary layer 

Using Eq. 3.8 makes it possible to estimate the shape of the current velocity 
profile in the outer zone. Here the turbulence is dominated by the current, so the 
eddy viscosity can be estimated as 

The velocity gradient above the wave boundary layer is given by 

or 

which when integrated gives 

(3.12) 

(3.13) 

In Eq. 3.13 the constant k ,  is introduced, so the equation follows the usual 
law of the wall for the rough wall case. Hence, k, can be interpreted as an apparent 
‘wave-roughness’ felt by the current in the combined wave-current flow, (originally 
suggested by Grant and Madsen, 1979). By introducing the current velocity at  
the top of the wave boundary layer Us,  Eqs. 3.8 and 3.13 give 

Here 6, fw and U 1 ,  can be calculated from wave data, while Us is unknown. 
can be correlated to the mean flow velocity V by using Eq. 3.14 and However, 

averaging over the depth of U from Eqs. 3.10 and 3.13. This gives 

(3.15) 

where D is the water depth. In the derivation of Eq. 3.15, the usually very small 
contribution to the total water discharge inside the wave boundary layer is not 
correctly considered. 

The velocity profile inside the wave boundary layer 

Inside the wave boundary layer, there are two contributions to the eddy 
viscosity, one from the wave turbulence uw and the other from the current, v,. In 
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the present special case, where the directions of wave propagation and current are 
the same, the combined eddy viscosity can be given by 

VT = v, + v, = "(Uf, + UfC), (3.16) 

in which Uf, is the wave friction velocity. Inside the wave boundary layer, the 
time-averaged velocity gradient is now given as 

which when integrated gives 

The integration constant c is found from the boundary condition 

k N  U = O  f o r z = -  
30 

So, Eq. 3.18 finally gives 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Example 3.1: 

In this example, the above findings are illustrated by a numerical example. 
Let us consider waves with a height of 3 m, a wave period of 8 sec., and a water 
depth of 10 m. According to the wave tables in Appendix I, sinusoidal wave theory 
gives a maximum wave-induced bottom velocity (just outside the boundary layer) 
of U1, = 1.17 m/s. With a bed roughness of k N  = 1 mm, fw = 0.0064 is obtained 
from Eq. 2.43 and 6 = 0.036 m from Eq. 2.45. By choosing the strength of the 
current at the top level of the wave boundary layer to be (arbitrarily) Us = 0.15 
m/s, the apparent wave roughness k ,  is found from Eq. 3.14 to be 0.114 m or 114 
times the physical roughness I C N .  

The current friction velocity is found from Eq. 3.10 to be 0.0267 m/s, and 
the wave friction velocity is found from Ufw = U I , ~  = 0.0662 m/s (cf. Eq. 
2.42). The vertical distribution of the flow velocity is now given by Eqs. 3.13 and 
3.20 as 

z > 6 : U = 0.0669 ln(262z) (metric units) 

z < 6 : U = 0.0192 ln(30000z) (metric units) 
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The calculated current distribution is shown in Fig. 3.4, together with the 
velocity profile for the same water discharge in the absence of waves. The velocity 
profile is found by first calculating the mean flow velocity from Eq. 3.15 to give 
V = 0.46 m/s, with the friction velocity for the situation with current only being 
found from the usual flow resistance formula 

V - 
Uf 

which gives Uf = 0.0157 m/s. The velocity profile is then given by 

(3.21) 

(3.22) 

The presence of waves decreases the average current velocity near the bed 
significantly. This is of importance in relation to the transportation of suspended 
sediment, which is mainly located quite close to the seabed. 

10 
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0 .I 
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Y 

Figure 3.4 Mean velocity profile with and without waves for the same water 
discharge. 
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Example 3.2: Increase of the wave length due to the current 

The calculations given above can be refined by taking into account the wave 
lengthening by the current. If the entire wave is transported with the mean flow 
velocity, then, without the presence of the current, the wave in the preceding 
example (with a wave length of 70.9 m) will propagate with a celerity c = 8.56 
m/s (from the wave table). Hence, c + V = 8.86 + 0.46 = 9.32 m/s. 

The wave period T (= 8 sec) may have been obtained from local measure- 
ments in the presence of currents. But even if the wave period is known from a 
location with different current conditions, the wave period is constant for a steady 
wave field due to the conservation of wave crests. 

The higher celerity velocity of the waves on the current results in (with the 
constant period) an increased wave length given by 

L1 = ( c + V ) T = ( 8 . 8 6 m / s + 0 . 4 6 m / s )  x S s = 7 4 . 6 m  

Because the migration velocity of the waves depends on the wave length 
(cf. the wave table, Appendix I) the new wave length L1 corresponds to a (higher) 
migration velocity, which from the wave table is found to be c = 8.94 m/s. This 
new value for c must be inserted in the expression for L1 giving a new wave length 

One more iteration gives L3 = 75.3 m. 
The wave kinematics must be calculated in a frame of reference following 

the current. In this frame of reference, the wave table gives a wave period 

8.94 + 0.46 
= 8 sec x = 8.41 sec c + v  T , = T x -  

C 8.94 

which gives a maximum near-bed orbital velocity of 

T H  1 
T, sinh( ICD) 

u1, = - = 1.196m/s 

compared to 1.17 m/s if the current is not taken into account. Usually, this effect 
can be neglected. 

If the wave direction and the direction of the current are not parallel, the 
above calculations must be based on that component of the current which is in 
the direction of wave propagation. 
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Example 3.3: Three-dimensional wave-current flow 

It is not difficult to extend the above findings to the general three- 
dimensional case, where the direction of wave propagation forms an angle y to 
the current direction, see Fig. 3.5. 

Figure 3.5 Instantaneous velocity at the top of the wave boundary layer. 

In a horizontal s - y coordinate system with the 5 coordinate in the current 
direction, the instantaneous flow velocity just outside the wave boundary layer can 
be written as 

g =  (2) = ( u 6 + U i m s i n ( ~ t ) c o s y  
Ulm sin(&) siny 

(3.23) 

For this purpose, the angle, y, between the current and the direction of the wave 
propagation can be assumed to lie in the range from 0 to 90 degrees. 

The instantaneous bed shear stress is still given by Eq. 3.5 and is assumed to 
have the same direction as the flow velocity vector just outside the wave boundary 
layer 

The instantaneous bed shear stress in the s-direction is 

1 
r z / p  = 5fwJui + u:, sinZ(wt) + ~ u ~ u I ,  sin(wt) cosy 

(3.25) 
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The mean shear stress in the current direction is then 

+ sin2(wt) + 2.1 sin(wt) cosy klTJ 1 G l P  = p;m- 
[ I C ~  + sin(wt) cosy] d t  

where K ,  = U6/ulm. 
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(3.26) 

The integral in Eq. 3.26, as in Eq. 3.7, is an elliptic integral which cannot 
be solved analytically. In general, it must be solved numerically. In the present 
case where the wave motion close to the bed is assumed to be dominant, the 
asymptotic expression can be applied for small values of ~ 1 :  

sin2(wt) + K: + 2.1 cosy sin(wt) [cosy sin(wt) + &I]  dt $ L T J  
4 1 + cos2 y 

N K l -  
T 2  

G f p  can thus be written as 

2 1 + cos2 y 
;fwUlnUS 

The current shear velocity, Ufc, is hence given by (cf. Eq. 3.9) 

(3.27) 

(3.28) 

(3.29) 

Note that the average shear stress vector will be in the same direction as 
the current only for y = 0" and y = 90". This side-effect is discussed in detail 
by Grant and Madsen (1979). The maximum angle between the two directions is 
approximately 20". 

From Eq. 3.29 it is easily seen that Ufc is a maximum for y = 0".  From 
Eq. 3.14, which in its general form (from Eq. 3.13) reads 

k, = 306 f exp [ d J 6 / U f c ]  (3.30) 

it is then seen that the apparent wave roughness is maximum when the wave 
direction is the same as the direction of the current. 
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3.2 The integrated momentum method applied to com- 
bined wave-current motion 

In order to simplify the problem it was assumed in the previous section that 
the near-bed current represented by Us was sufficiently weak when compared to 
the wave-induced near-bed flow velocity U l m ,  so the wave boundary layer charac- 
teristics did not change due to the presence of the current. In order to extend the 
findings of the previous section to a more general case where no restrictions are 
introduced on the ratio Us/Ulm,  a reasonably simple model based on the same 
momentum equation concept as applied in Section 2.1 will be outlined here. For 
simplicity, only the case of a hydraulically rough bed is considered, which is the 
most important as far as sediment transport investigations are concerned. 

Kinematic description 

As in Section 2.1, the idea is to make a reasonable guess on the shape of the 
velocity profile, and insert this guess into the momentum equation. From Section 
3.1,  it is natural to guess the shapes of the velocity profiles to be logarithmic, 
but with one slope near the bed where the turbulence from the wave motion is of 
importance, and another one far from the bed where the turbulence is due to the 
current alone. The velocity profiles are described in a similar manner to Section 
3.1: 

The instantaneous velocity profile u' consists of two parts: a steady compo- 
nent U ,  due to the mean current, and an unsteady component ii, due to the wave 
motion. 

The unsteady component is described in the same way as in the previous 
section: outside a small boundary layer at the bottom which is still called the 
wave boundary layer, the velocity from the unsteady flow is calculated by potential 
theory. So, in the case of a sinusoidal wave, the velocity just outside the boundary 
layer is given by 

u, = UIm sin(&) (3.31) 

The thickness of the wave boundary layer, 6 ,  is no longer prescribed as in 

Inside the boundary layer, the instantaneous velocity profile (the sum of the 

-+ 

Section 3.1. Also, 6 is allowed to vary with time. 

steady and unsteady component) is assumed to be logarithmic and is given by 

(3.32) 

The steady component fit is described as follows: outside the wave boundary 
Here, the usual logarithmic layer the turbulence is due to the mean current. 
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velocity distribution 

( 3 . 3 3 )  

is adopted. As in Section 3 .1 ,  k ,  is the apparent bed roughness which is different 
from the grain roughness, as the wave boundary layer acts as a larger roughness 
element. U f c  in Eq. 3.33 is the current friction velocity which will be determined 
later. 

Inside the wave boundary layer, the mean current velocity profile is assumed 
to be given by 

(3 .34 )  

where U f o  is the current friction velocity for the inner profile. The boundary 
condition at the top of the wave boundary layer ( z  = 6 + k / 3 0 )  requires that the 
vectorial sum of the potential flow velocity Eq. 3.31, and the mean current profile 
Eq. 3.34, be equal to the instantaneous velocity at z = 6+ k / 3 0  given by Eq. 3.32. 
If the angle between the mean current direction and direction of wave propagation 
is called y, this condition becomes 

cf. Fig. 3.6 ,  where ug is the mean current velocity at the distance 6 above the 
bed (given by Eq. 3 .34) .  

f Mean flow direction 

X 

Figure 3.6 

U,siny 

Definition sketch of y and '3. 
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If, as in Eq. 2.32, a quantity Z defined by 

nu0 z=- 
"i 

is introduced, where u; in the present case is given by 

_ -  1 - UfocOsy + p T T q - i -  
u; u; - ujo (u'r - U f J  - ujo 

Eq. 3.35 yields the same relationship as Eq. 2.33, i.e. 

e z  - 1) s = - (  k N  

30 

(3.36) 

(3.37) 

(3.38) 

Also, the angle CP between the instantaneous flow direction in the boundary 
layer and the mean current direction (see Fig. 3.6) is needed for later use: from 
Fig. 3.6 it is seen that 

(3.39) 
u,n cosy + Uf,Z 

Uf z COSCP = 

Finally, using Eqs. 3.37 and 3.38, we obtain 

(3.40) 

from Eq. 3.39. 

Dynamic description 

dicular to the mean current direction (the y-direction, see Fig. 3.6) is given by 
The momentum equation for the boundary layer in the direction perpen- 

r 6 + k i v / 3 0  2 ' U  
p- (U s i n e  - u,  siny)dz = -76 sin CP 

dt 
(3.41) 

where the first term under the integral on the left-hand-side represents the accel- 
eration in the y-direction. The second term is the pressure gradient from the wave 
outside the wave boundary layer. The right-hand-side of Eq. 3.41 represents the 
bed shear stress component in the y-direction. 

The principle for the study of the wave boundary layer development is the 
same as that previously presented for the case of pure wave motion in combined 
wave/current motion. The development of the boundary layer for 0 5 w t  5 T is 
first studied. At t = 0, the flow pattern is identical to the resulting mean current 
velocity profile, u g  being zero, and the small phases between the outer flow and 
the boundary layer flow due to inertia effects being disregarded. 

At w t  = T ,  the system returns to the original flow situation (ug = 0), and 
a new wave boundary layer, similar to the former one, develops during the next 
half wave period. 
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Example 3.4: Numerical solution of the integrated momentum equa- 
tion 

The development of the boundary layer is calculated from Eq. 3.41. After 
insertion of Eq. 3.40 followed by integrating Eq. 3.41 gives 

du* kiv duo k~ 
30 dt  3 0 ~  dt  e z ( Z  - 1) + 11 - u p ;  + - ( e z  - 1)- = ~ [ (3.42) 

u i  is defined in Eq. 3.36, from which (as in Eq. 2.17) 

_ f = _ f _ _ k l - - -  du* U* du UjdZ 
dt Uo dt  Z d t  

is obtained. Inserting Eq. 3.43 into Eq. 3.42 and rearranging yields 

(3.43) 

Like Eq. 2.20, Eq. 3.44 is singular at t = 0, which by Taylor expansion can 
be written as 

where 
6 0 ~  Ufo 

P1 = -&- (3.46) 

The solution to Eq. 3.45 for small values of wt is 

z = d;pl Jwt (3.47) 

Eq. 3.45 must be solved numerically for larger values of wt. 

ever, P 1  can be written as (cf. Eq. 3.46) 
The variation in Z depends on the two parameters: P1 and U l m / U f o .  How- 

(3.48) 
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Figure 3.7 Variation of u,, u f ,  and S during a wave period for a / k N  = 10 
and U1,/U~, = 10. cp+ is the phase between maximum shear 
stress and maximum velocity, cp- between minimum shear stress 
and minimum velocity. 

where a is the free stream particle amplitude. Hence, 2 alternatively depends on 
the two quantities a / k N  and UI,/Uf,, 

Fig. 3.7 presents an example of the variation in u f  and boundary layer 
thickness S for specific values of a / k N  and U1,/Uf0 for the special case where the 
direction of wave propagation is the same as the mean current direction. 

When the variation of u f  with time is obtained, applying the momentum 
equation in the mean flow direction (see Fig. 3 .6 )  gives the mean bed shear stress 
r in this direction. The momentum equation in this direction is - 

6 + k N / 3 Q  d 
p-(u COS @ - U o  COS y)dZ = -Tb COS @ f T w c  (3.49) J t l v / 3 0  d t  

where rwc is the current shear stress outside the wave boundary layer, which is 
directed in the z-direction. Integration of Eq. 3.49 with respect to time over one 
wave period yields 
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because the left-hand-side of Eq. 3.40 becomes zero when it is integrated over a 
wave period (no acceleration of the mean flow velocity). 

The apparent roughness k ,  is determined by matching the inner and the 
outer mean current profile in the mean thickness of the boundary layer 6,. This 
is done by combining Eqs. 3.33 and 3.34 to give 

k N  

6 ,  here is the mean value of 6(wt = 71.12) and S(wt = 371.12) (see Fig. 3.7). 

(3.51) 

Model results 

In Fig. 3.8 the variations in k, /kN as the function of U,,/Uf, are shown 
for different values of a l k N .  

Figure 3.8 Variation of k,/kN with ul,/ufc for different values of a / k N .  
Fig. 3.8A: y = 0", Fig. 3.8B: y = 90". 

Fig. 3.8A shows the variations for y = O " ,  while Fig. 3.8B shows the 
corresponding variation for y = 90". It is interesting to note that the curves 
cross each other, which means that the apparent roughness for a strong current 
(i.e. small values of Ulm/Ufc) is the largest for small values of a / k N  (i.e. fast 
oscillations). The converse applies for the case for a weak current. Fig. 3.9 
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Figure 3.9 Variation of k , / kN  with U,,/Uf, for two-dimensional (broken 
line) and three-dimensional (full-drawn line) flow. a / k N  = lo4. 

presents a comparison between the apparent bed roughness for two- and three- 
dimensional flow for the same value of a / l ; ~ .  

It turns out that the apparent roughness always is the largest for two- 
dimensional flow, which is also indicated by the simple model in Example 3.2. 

Fig. 3.10 shows the variation of S m / k  with U,,/Uf, for both 2 0  (y = 0") 
and 3 0  (y = 90") flow: The variations turn out to be nearly identical, the three- 
dimensional boundary layer being slightly larger than the two-dimensional, except 
at the two limits (weak and strong current). 

Finally, Fig. 3.11 shows the variation in U,,/U,, with U,,/Uf, for y = 0" 
and 90". From Figs. 3.8, 3.10 and 3.11, it is easy to describe the flow as explained 
in the example below. 
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Figure 3.10 Variation of wave boundary layer thickness S / k N  with uIrn/ufc. 

Example 3.5: Application of diagrams to find current velocity profiles 

If the boundary layer thickness 6 ,  is small compared with the water depth, 
Eq. 3.33 yields 

( 3 . 5 2 )  

where V is the mean current velocity. 
Figs. 3.8 and 3.11 are now applied in the following way: assuming that V ,  

D ,  U,,, a, and k are known quantities, an initial value of k, can be found by a 
suitable choice of U f ,  in Fig. 3.8 .  If the chosen value of U f ,  is not equal to that 
obtained from Eq. 3.52, a new value of U f ,  must be chosen until convergence is 
achieved. 

If the inner solution is of interest, Uf,, can be easily found from Fig. 3.11. 



74 Chapter 3: Wave-current motion 
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Figure 3.11 Variation of U f c / u f o  with U l n L / U f c .  Fig. 3.11A: y = 0", Fig. 
3.11B: y = 90". 

Example 3.6: Variation in the current friction factor and maximum 
bed shear stress. 

From the graphs in Figs. 3.8, 3.10 and 3.11 it is possible to determine the 
friction factor for the flow. The friction factor for the mean current niotion is 
defined by 

f c=2 ($c )2  (3.53) 

where V/U,, is determined by Eq. 3.52. Besides the data already given in Figs. 
3.8, 3.10 and 3.11, it is also necessary to know the dimensionless water depth 
D l k N .  The variation of j c  is shown in Fig. 3.12 for y = 0" and y = 90" for a 
specific value of D / k N  and a lkr j :  in a strong current, f c  approaches f c o ,  which 
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is the friction factor in a pure current, obtained from Colebrook-White’s formula 
(1937). This is obtained by integration over the depth of Eq. 2.20. For a weak 
current, f c  increases to a higher value, which is given by the limit, 

Figure 3.12 Variation of mean current friction factor fc  a n d  maximum fric- 
tion factor fmax with Lr lm/Ufc .  a / k N  = lo3,  D l k ~  = lo3.  

The parameter UI,/Uf, shown in Fig. 3.12 can be replaced by the more 
easily applicable parameter U1,/V by use of Eq. 3.52. Fig. 3.13 shows examples 
of such diagrams, and clearly indicates what the strengths of waves and current 
must be in order to have wave- or current-dominated flow resistance. 
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Figure 3.13 Variation of t h e  mean current  friction factor with Ul,/V for 
different combinations of n / b ~  and D / k N .  
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3.3 Refined modelling of the wave-current motion 

In the two previous sections, the focus has been on bed friction and flow 
resistance. For this purpose, an integrated approach like the application of the 
momentum equation will be sufficient. 

Kajuira 119681 

Grant 5 Madsen I19791 

Myrhaug (1984) 

6w F ?  ,I- 

Lundgrm 119721 

Christoff-en E Jcc- 
(19851 Model I 

Srntth (19771 

Myrhaug 11982) 

Chrmollersm E Jonssot 
11985) Model I1 

Figure 3.14 Schematical mean eddy viscosity distributions for time-invariant 
eddy viscosity models. (After Justesen, 1988). 

However, as outlined in Chapter 2 for the pure wave boundary layer, several 
more refined models exist in which the exact shape of the velocity profile and 
much more detailed information on the vertical distribution of the turbulence can 
be obtained. However, most of these models involve numerical calculations to a 
large extent. In the model described in Section 3.1, no computation was needed 



78 Chapter 3: Wave-current motion 

at all. And in the model described in Section 3.2, the only numerical work was 
the solution of a first-order ordinary differential equation. 

The following briefly describes how the more refined models are constructed. 
In co-directional wave-current motion, the flow equation can be written as 

(3.55) 

In Eq. 3.55 the pressure gradient is divided into two, namely one origi- 
nating from the mean current motion, and another due to the wave motion and 
determined by 

(3.56) 

where u,  is the wave-induced flow velocity outside the boundary layer. 

water surface (cf. Eq. 3.1) by 
The mean pressure gradient can be correlated to the slope S of the mean 

(3.57) 

In the eddy viscosity models, VT in Eq. 3.55 must be prescribed. As for 
the case of a pure oscillatory boundary layer, several suggestions on the vertical 
distribution of the eddy viscosity have been introduced. Fig. 3.14 shows several 
examples of these suggestions. Common to these models are that they distinguish 
between the wave-dominated layer (inside 6,) and the outer current-dominated 
layer. 111 these models, the wave boundary layer thickness is taken time-invariant 
(in contradiction to the model given in Section 3.2, where the boundary layer was 
allowed to expand with time). 

The computations of the flow pattern are a straight-forward extension of 
the calculations for the pure oscillatory boundary layer, outlined in Chapter 2. In 
the model by Grant and Madsen, the prescribed variation is so simple that the 
flow equation, Eq.3.55, can be solved analytically. 

The flow equation has been solved numerically by a one-equation closure 
(cf. Section 2.3) by Justesen (1988) for the co-directional case and by Davies et 
al. (1988) for the general three-dimensional case. The solution is found by an 
iterative procedure: 

An initial guess at the mean current profile is calculated, and one period of 
oscillation is computed. The shear stresses r, are averaged over this period, and 
the deviation from the desired distribution AT, cf. Eq. 3.1,  is determined by 

A 7  = r - & 12= r z ( z ,  w t ) d ( w t )  (3.58) 

The velocity profile is now corrected by the quantity AD given by 

(3.59) 
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where i 7 ~ ( z )  is the mean eddy viscosity during one period. This procedure is 
repeated until acceptable convergence is obtained, usually after 5-10 periods of 
calculations. Otherwise the solution procedure is similar to that used for the 
one-equation model for pure wave motion. 
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Figure 3.15 Vertical profiles of flow velocity in co-linear case. A: instanta- 
neous profiles at  different phase angles. U1, = 1 m/s. 
B: Time-averaged current profiles. D = 10 m, k~ = 0.5 cm and 
P = 0.035 cm/s2. After Davies et al. (1988). 

Figs. 3.15A and 3.15B show the instantaneous and time-averaged flow veloc- 
ities calculated by Davies et al. (1988). In Fig. 3.15B, the mean pressure gradient 
P has been kept constant, while the near-bed wave-induced orbital motion has 
been given different strengths, thereby giving rise to different flow resistances for 
the current. Hence, the mean flow velocity will decrease with increasing values of 

It can be seen that the profile of the mean flow velocity shown in Fig. 3.15B 
confirms the existence of an inner and an outer logarithmic layer as shown in Fig. 
3.3. 
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A comparison of different wave-current theories has been made by Dyer 
and Soulsby (1988) by testing the different methods through numerical runs. The 
predictions are listed in the table below. 

Table 3.1 Comparison of wave-current interaction theories (from Dyer 
and  Soulsby (1988), slightly modified). k~ = 150 mm.  

Input variables. 

Depth-averaged mean velocity V (cm/s)  

Wave orbital velocity ampli tude Ulm (cm/s)  

Angle between waves and  current y (") 

Mean bed shear-stress 7 (dyn/cm2) 

Eddy-viscosity model (Grant  and  Madsen) 

Momentum-deficit integral (Fredsbe) 

k-equation model (Davies-Soulsby) 

Max bed shear-stress r,,, (dyn/cm2) 

Eddy-viscosity model 

Momentum-deficit integral 

k-equation model 

79.5 

50 

0 

46.7 

31.5 

33.8 

176.9 

120.0 

130.3 

67.2 

100 

0 

47.3 

31.9 

33.8 

377.5 

243.5 

279.6 

61.2 

150 

0 

46.0 

32.9 

33.8 

632.6 

414.4 

488.5 

73.4 

100 

45 

54.8 

34.0 

33.8 

362.9 

240.3 

269.6 

78.4 

100 

90 

57.3 

34.3 

33.8 

317.6 

202.9 

241.6 

It can be seen from the table that the relatively simplified method, developed 
in Section 3.2, gives quite similar results to the more sophisticated turbulence 
models like that by Davies et al. (1988). 

However, one of the advantages of the k-equation model is that it can pre- 
dict the level of turbulent kinetic energy as a function of time and space. This 
is illustrated in Fig. 3.16A. Fig. 3.16B shows the calculated variation in eddy 
viscosity from the same model. 
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Figure 3.16 Vertical profiles a t  different phase angles of (A) turbulent kinetic 
energy and (B) eddy viscosity for the co-linear case. Parameter 
settings are the same as in Fig. 3.15. The dashed lines indicate 
the mean distributions. (After Davies et  al., 1988). 
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Chapter 4. Waves in the surf zone 

The surf zone is the name of shallow water areas where waves break, for 
example on a beach. The wave-breaking is associated with a conversion of the 
energy from ordered wave energy to turbulence and to heat. The surf zone is 
the area with the most intense sediment transport because of the high intensity 
of the turbulence and the shallow water which makes agitation of sediment from 
the bottom easy. Furthermore, the wave-breaking generates strong currents, as 
described in Chapter 5 and 6, which transport the sediment along the coast. 

4.1 Wave-breaking 

As waves propagate into shallower water, the process of shoaling leads to 
increasing wave heights. This process cannot continue, and at a certain location 
the wave breaks. The wave-breaking will typically take place when the wave height 
is about 0.8 times the local water depth. The waves break because their steepness 
becomes very large as the depth becomes shallower. The forward wave orbital 
velocity at the crest becomes large, and the crest topples because it is unstable. 
While the shoaling process is characterized by a very small energy loss, the wave- 
breaking is associated with a very large loss of wave energy. The surf zone along 
the beach is where the wave energy flux from offshore is dissipated to turbulence 
and heat. Due to the strong energy dissipa.tion, the wave height decreases towards 
the shore in the surf zone. 
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The breaking waves can be divided into several different types, the three 
most important are, Fig. 4.1: 

Spilling breakers 
Plunging breakers 
Surging breakers 

Spilling breakers are characterized by the forward slope of the wave top 
becoming unstable. A plume of water and air bubbles slides down the slope from 
the crest. The volume of the plume increases, and it travels with the wave as 
a surface roller. Spilling breakers are also found among waves in deep water, 
where their energy dissipation is an important part of the energy budget for wind- 
generated waves. 

Spilling Air entrainment 
breaker 

- -F - - - It_- - ~ - - -F - - - It-, - ~ - 

Surging Surging 
breaker -7' 

Very steep beach slope 

Figure 4.1 Breaker types. 

For a plunging breaker the crest of the wave moves forward and falls down 
at the trough in front of it as a single structured mass of water or a jet. The 
impact of the jet generates a splash-up of water which continues the breaking 
process and creates large coherent vortices, which can reach the bottom and stir 
up considerable amounts of sediment. The flow caused by entrained air further 
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spreads the sediment over the vertical, and clouds of suspended sediment are often 
observed at a location of plunging breakers. 

Possible modes of the generation of the splash-up have been described by 
Peregrine (1983). Later experiments have shown that the water of the jet continues 
through the water surface to generate the vortices, and that the splash-up consists 
of water originally from the point of plunging (Bonmarin, 1989). The flow field of 
the plunging and splash-up, as described by Peregrine (1983), is shown in Fig. 4.2 
together with the vortices generated by the plunging. 

A. B. 

Figure 4.2 A: The  geometry of the plunging breaker, after Peregrine 
(1983). B: The  continuation of the wave-breaking and the  gen- 
erated vortices. 

In surging breakers it is not the crest of the wave that becomes unstable. 
It is the foot of the steep front that rushes forward, causing the wave crest to 
decrease and disappear. 

The occurrence of the different types of breakers depends on the character 
of the incoming waxes and of the beach. The most important factor is the slope of 
the beach and the steepness of the incoming waves. Spilling breakers occur at  very 
gentle beach slopes and relatively steep incoming waves, while plunging breakers 
are found for steeper bed slopes and less steep waves. Surging breakers are found 
on very steep beaches. 

Galvin (1968) found a relationship between the wave geometry and the 
breaker type. The waves can be characterized by the surf similarity parameter 
(Battjes, 1974), which is the ratio between the beach slope and the square root 
of the wave steepness. The wave steepness can be calculated from the deep water 
wave height Ho or the wave height at breaking Hb. In both cases the deep water 
wave length LO is used in the expressions for [ 

where tan /3 is the beach slope. The following domains were found from Galvin’s 
experimental data: 
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Spilling breakers : lo < 0.5 or & < 0.4 
Plunging breakers : 0.5 < < 3.3 or 0.4 < ( b  < 2.0 
Surging breakers : 3.3 < lo Or 2.0 < [ b  ( 4 4  

Another example of criteria for the different breaker types is given in Fig. 
4.3, which is made by Kjeldsen (1968). This diagram is based on data from Iversen 
(1952), analyzed by Patrick and Wiegel (1955), and on Kjeldsen’s own data. The 
parameters used in Fig. 4.3 are the beach slope and the deep water wave steepness, 
the diagram can therefore be directly compared with Calvin’s (1968) deep water 
relations based on to. Galvin’s relations are shown as dashed lines in Fig. 4.3. 
The difference between the two criteria is considerable, and may be taken as an 
indication of the uncertainty involved in the prediction of breaker characteristics. 

Figure 4.3 Breaker type criteria according to Kjeldsen (1968): fully drawn 
lines, and Galvin (1968): dashed lines. 

After a wave has broken as a spilling or plunging breaker, a transition occurs. 
For the spilling breaker the surface roller grows, and the wave height decreases 
rapidly. For the plunging breaker the jet of water that plunges down pushes 
up a very turbulent mass of water which continues the wave-breaking process. 
In both cases the wave is transformed into a bore-like broken wave, and this 
inner part of the surf zone (Fig. 4.4) can be described as a series of periodic 
bores (Svendsen et al., 1978). The ratio between the local wave height and mean 
water depth decreases from the value of about 0.8 at the point of wave-breaking 
to become almost constant at about 0.5 in the inner zone. Fig. 4.5 shows the 
experimental results of Horikawa and Kuo (1966) at different beach slopes (the 
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slope was constant for each beach tested) together with the empirical relation by 
Andersen and Fredsoe (1983) 

Ax 
D Db 
- = 0.5 + 0.3exp(-O.l1-) (4.3) 

where Ax is the distance inshore of the breaking point, and Db is the water depth 
at  the breaking point. 

Point of wave breaking I 2:: Inner 
zone - 

Figure 4.4 T h e  outer  and  t h e  inner par ts  of t h e  surf zone. 

HID 

4 

Db * 
0 5 10 15 20 

Figure 4.5 Variation in wave height after breaking on  a sloping bot tom.  
Measurements from Horikawa and  K u o  (1966). 

The conditions of the outer zone, with rapid transition of the waves, have 
been very difficult to describe, especially for plunging breakers, and practically no 
theories are available which can be used as basis for a hydrodynamic description or 
sediment transport calculations. The inner zone with the borelike waves has been 
a subject of intense research activity during the last decade. This has led to the 
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development of theories which are very useful as the first steps for understanding 
and calculating the hydrodynamics and sediment transport in the surf zone. As 
no model is available for the outer surf zone, models for the inner surf zone are 
as a first approach often extended to cover conditions all the way out to the 
point of wave-breaking. In many cases, this is not entirely satisfactory, and may 
require field or laboratory data for calibration for a reasonable prediction to be 
obtained; still at present it may be the only feasible way of bridging the gap 
between the inner surf zone and the incoming waves. A further complication is 
that the incoming waves often are irregular, which means that the point of wave- 
breaking and consequently the location of the transition to inner zone conditions 
are varying and are particular for each individual wave. 

Example 4.1: The wave height at the breaking point 

If it is assumed that the waves at the point of breaking can be described by 
linear shallow water wave theory, a rough estimate of the wave height at  breaking 
can be obtained. 

The wave height and length at deep water are HO and Lo. LO is found as 
(cf. Appendix I): 

9 2  
27r (4.4) Lo = -T 

where g is the acceleration of gravity and T is the wave period. 

Db. The criterion for wave-breaking is taken as 
The wave height and water depth at the point of wave-breaking are Hb and 

= 0.8 Hb 

Db 
- (4.5) 

The energy dissipation from deep water to the point of breaking is assumed 

The shore-normal energy flux at deep water Efo is therefore equal to the 
Efo and Efb are found by deep water and 

to be small. 

energy flux at wave-breaking Efb. 
shallow water wave theory, respectively, 

and 
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As Efo = Efb and Db = Hbl0.8 then 

or 

Komar and Gaughan (1972) compared this expression with field and labo- 
ratory data and found better agreement by changing the constant of Eq. 4.9 to 
an empirical value of 0.56 

115 - Hb = 0.56 (2) 
Ho 

(4.10) 

The reason for this adjustment is that linear shallow water theory is inac- 
curate near the breaking point. The waves are more peaked at the crest and more 
flat at  the trough than a sine-curve, cf. cnoidal wave theory or higher order wave 
theory. The wave energy flux of such a less ‘full’ wave profile is somewhat less 
than predicted by linear wave theory for a wave of a given height. 

4.2 Modelling of variation of wave height and water level 
in the surf zone 

In order to describe the sediment transport it is necessary to know the wave 
height, the water motion in the waves, the bed shear stress, the turbulence level, 
and the currents which are induced in the surf zone. An important factor in this 
context is therefore the energy dissipation which on one hand is used to calculate 
the wave height decay, and on the other hand is a measure of the production of 
turbulence in the surf zone. 

First of all, the water motion of the waves in surf zone will be considered. 
So far, it has not been possible to develop any detailed models of this rather 
complex flow phenomenon, so the description of the dynamics of the surf zone must 
therefore be based on highly simplified models for the broken waves. A successful 
conceptual model, which was first applied by Svendsen (1984) and (1984a), splits 
the water into two parts. The main part of the water body is part of the wave 
motion, i.e. the water particles move back and forth with a wave orbital motion, 
whilst the breaking is modelled by a surface roller on the front face of each wave. 
The surface roller is modelled as a mass of water which follows the wave fronts and 
consequently, the water particles of the surface roller have a horizontal velocity 
equal to the wave celerity c. The mass of the water in the surface roller is given by 
the cross-sectional area A of the roller. Fig. 4.6A shows the structure of the wavc 
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according to the model. The elevation of the upper boundary of the water in the 
wave motion is called 7 .  Where there is no surface roller, 9 is the water surface 
elevation, whilst in the presence of a surface roller, 7 is the elevation of the lower 
boundary of the surface roller. 

A. rMean water level 

I” I I  

I1 I11 
I 

C r o s s  section : I 

B. Velocity profiles : 

I1 I11 

Figure 4.6 A: The structure  of a broken wave with a surface roller. 
B: Velocity profiles of the three cross sections indicated. 

The orbital motion of the broken wave is determined by the simplest possible 
theory, linear shallow water wave theory. All quantities are given only at their 
lowest order. 

The wave celerity is therefore estimated as 

c =  &5 (4.11) 

and the horizontal orbital velocity is given by 

C 
u = 9- 

D (4.12) 

Fig. 4.6B gives three examples of the velocity profiles in a broken wave, at  
the wave top (I), at the wave trough (111), and at an intermediate location where 
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the strong forward velocity c of the surface roller can be seen (11). In accordance 
with the linear shallow water wave theory the pressure distribution is assumed to 
be hydrostatic, and the vertical orbital velocity is given by 

(4.13) 

The profile of a broken wave will normally deviate from a sinusoidal curve. A 
better approximation is often obtained by assuming that rj varies linearly between 
the wave top and wave trough, a so-called “saw-tooth profile”. 

Energy flux and radiation stress in broken waves 

Both the surface rollers and the shape of the wave profile are of significance 
for the dynamics of the surf zone, as can be illustrated by the energy flux and the 
radiation stress associated with broken waves, Svendsen (1984). 

When the energy flux is calculated, the contributions from the water in the 
wave motion and from the surface rollers can be found separately and summed to 
give the total. The energy flux of the wave motion E f ,  can be found from the 
assumptions of linear shallow water wave theory 

T D  T D  
Ef, = f 1 1 p’udzdt = $1 1 pgqudzdt  = 

(4.14) 

where H is the wave height, and p+ is the deviation of the pressure from the average 
(hydrostatic) pressure. B is a coefficient which depends on the wave profile. If a 
sinusoidd wave profile is assumed, B is found as 

(4.15) 

where k is the wave number and w is the cyclic frequency. For a saw-tooth profile 
B is 1/12. 

The energy flux associated with the passage of a single surface roller is given 
as 

C‘ PAT (4.16) 

and the mean energy flux is found as 

Ac2 
2T Efr = p- (4.17) 
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The total energy flux is therefore given as 

Ac’ 
E f  = E f w  + E f .  = BpgcH’ + p- 2T 

(4.18) 

The thrust or radiation stress of the waves is an important factor for the 
dynamics of the surf zone. The radiation stress can also be found as one part due 
to the wave motion and another associated with the surface rollers. 

As described in Section 1.3, the radiation stress associated with the wave 
motion is found from the pressure force and from the momentum flux. 

Using the shallow water approximation, the contribution from the pressure 
can be found from the expression for the hydrostatic pressure 

(4.19) 
1 -  1 

-pg (D  + q)’ - ;pgD2dt 1 F p = $ L T :  2 2 
= -pgq2 = -BpgH’ 

and the momentum flux can be written 

T 
pu’dt = Dp(;)? = p g 7  = BpgH’ (4.20) 

The volume of the rollers is so small that they do not contribute significantly 
to the pressure force. The momentum flux associated with the passage of a single 
surface roller is given as 

P A C  (4.21) 

and the mean momentum flux due to the rollers is therefore 

A 
F, = ~ T C  (4.22) 

The total radiation stress is therefore 

3 A 
2 S,, = -BpgH2 + ~ T C  (4.23) 

The subscript zz signifies that Eq. 4.23 represents a normal stress in the 
2-direction (cf. Fig. 1.7). 

Energy dissipation 

The similarities between the front of a broken wave and a bore or a hydraulic 
jump, Fig. 4.7, have led to the idea of expressing the energy loss in the surf zone 
through the dissipation in a bore (Le M6haut6, 1962). It has been found that this 
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/ / / / / / / / / / / / / / / / / I  / / / / / / / / / / / / / / / / / / ,  

Figure 4.7 The  similarity between a broken wave and a bore. 

procedure gives reasonable estimates of the energy loss, and several models use 
the bore analogy to calculate the dissipation. 

The use of the bore analogy assumes a constant velocity distribution over 
the vertical, and no curvature of the water surface (hydrostatic pressure distribu- 
tion). Deviations from this assumption may require some correction terms to be 
introduced in the expressions for the energy loss when calibrating a model to field 
or laboratory data, as discussed by Svendsen and Madsen (1981). 

The energy loss in a stationary hydraulic jump is given by 

P S 4 H  (4.24) 

where q is the specific discharge, and A H  is the head loss of the jump. In the 
following, all expressions are made with the assumption of a uniform velocity 
distribution over the vertical. 

The head loss A H  is given by 

H 3  
A H  = 

4D2 - H 2  (4.25) 

where H is the difference between the water depths at each side of the jump, and 
D is the average water depth through the jump, Fig. 4.8. 

Figure 4.8 The  hydraulic jump. Definition sketch. 
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By changing the frame of reference to a broken wave in the surf zone, the 

q = cD (4.26) 
quantity q can be expressed as 

The rate of energy loss at  each wave front is therefore found as 

(4.27) 

The spacing of the wave fronts is one wave length L ,  and the mean energy 
dissipation per unit bed area is given by 

- pgcDH3 - P@H3 
L(4D2 - H 2 )  - T ( 4 D 2  - H 2 )  

V =  (4.28) 

The propagation velocity of a bore is very close to the linear shallow water 
celerity 0, the difference being of second order in terms of ( H / D ) .  

Example 4.2: The volume of the surface rollers 

A problem which has not yet been completely solved is the determination of 
the volume of the surface rollers. An accurate knowledge of the amount of water 
in the rollers is important because the velocity of the rollers is so large compared 
to the orbital velocities in the wave motion. The analogy between the broken wave 
and a hydraulic jump can be used to make an estimate of the cross-sectional area 
A of the rollers. 

Figure 4.9 Engelund’s (1981) model for the hydraulic jump. 
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Engelund (1981) made a simple dynamic model of the hydraulic jump, which 
is based on the momentum equation. In a hydraulic jump the roller is stationary, 
and the roller is included in the momentum equation as a layer of “dead” water 
which contributes to the hydrostatic pressure, but does not contribute to the 
momentum flux. The idea is to calculate the local height T/+ of this “dead water”, 
so that the momentum equation is fulfilled exactly at each cross section. The 
horizontal projection between cross section I and I1 in Fig. 4.9 then gives 

(4.29) 

where ( D  + 7) is the local depth under the surface roller, and q+ is the local roller 
thickness. D1 and D2 can be written 

DI  = D - H/2 , Dz = D + H/2  (4.30) 

Inserting Eq. 4.30 into Eq. 4.29, using that 7+ = 0 for D + 7 = D2, gives 

q = J g D ( D 2  - H2/4)  (4.31) 

which inserted into Eq. 4.29 gives 

1 gD(D’ - H2/4)  

( D  + 11) = &D + P + 9+)2 + P (4.32) 

and 

In the following it is assumed that the boundary between the stagnant water 
of the roller and the flowing water below is a straight line with a slope of 010. T /  is 
in this way given as 

= xH/l, = X O I ~  (4.34) 

where 1, is the length of the surface roller. 
The flow under the surface roller is divergent, and resembles in some respects 

the flow in a straight walled diffusor. By analyzing the velocity distribution in 
diffusor flows Engelund found that the streamline between the main flow and the 
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Figure 4.10 T h e  analogy between the  flow in a hydraulic j ump  a n d  a sep- 
arated diffusor flow. 

separating flow formed an angle of 10" with the wall bounding the main flow. 
From this, analogy a. was estimated to be tan lo", Fig. 4.10. 

The cross-sectional area of the surface roller is therefore found as 

(4.35) 
A is shown in Fig. 4.11 as a function of HID. With an  accuracy within a 

few per cent the surface roller volume obtained by this model can be calculated as 

H2 HID A = - - -  
010 4 

(4.36) 

No measurements of the surface roller volumes in the surf zone have been 
published. Duncan (1981) has made measurements of rollers in waves that have 
been generated by a towed hydrofoil. Svendsen (1984) approximated these results 
with the relation 

A = 0.9H2 (4.37) 

For the range of wave heights in the surf zone: HID = 0.5 - 0.8, and for 
010 = tan 10" the difference between the two expressions is less than 30%, and both 
expressions niay be used to estimate the amount of water in the surface rollers. 
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Figure 4.11 The  cross-sectional area of the surface roller according t o  the  
model of Engelund (1981). 

- Surf zone - 
Set- up 

Point of breaking 

Figure 4.12 Variation of wave height and the mean water surface in the  
surf zone. 

4.2.1 The wave set-up and set-down 

The strong energy dissipation in the surf zone and the associated decrease 
of the wave height towards the shore give a gradient in the radiation stress. The 
decrease in the radiation stress is balanced by a slope of the mean water surface 
(averaged over a wave period), the wave set-up, as illustrated in Fig. 4.12. The 
magnitude of the wave set-up can be determined by a horizontal projection of the 
momentum equation. 
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The wave set-up or set-down is measured relative to the still water level, 
i.e. the water surface there would be without any waves. The depth from the still 
water level to the bed is called Do, and the wave set-up or set-down is called A D ,  
giving the relation D = Do + A D  between the mean water depth and the still 
water depth; as illustrated in Fig. 4.13. 

lnstantaneou~ 
water surface 

:"er::cewater 

- Stlll r Ip \ IpI  

Figure 4.13 T h e  relation between t h e  mean water depth  a n d  t h e  still water  
depth.  

The horizontal force (per unit width of the beach) due to the slope of the 
mean water is illustrated in Fig. 4.14. The pressure is assumed to be hydrostatic, 
and in Fig. 4.14A where the mean water surface is horizontal, the total horizontal 
pressure force on the control surface is zero. In Fig. 4.14B the horizontal pressure 
force is different from zero due to the slope of the mean water surface. 

A.  
dx 

I-4 

Figure 4.14 T h e  pressure on a control volume. A: horizontal water  surface. 
B: with a wave set-up. 

The net pressure force can be found by applying the Gauss theorem to the 
control volume: the integral of the pressure acting on the surface is equal to the 
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pressure gradient integrated over the volume, giving a net horizontal force of 

The force due to the sloping mean water surface balances the force due to the 
gradient in the wave height: the gradient in the radiation stress. The momentum 
equation gives 

dS,, dP - + - = o  
dx dx 

or 

(4.39) 

(4.40) 

When the wave height and the bed level are known across the coastal profile, 
Eq. 4.40 can be used to describe the variation of the mean water surface. 

It should be noted that the momentum equation Eq. 4.40 does not include 
terms due to bed friction, so that the radiation stress and the mean pressure gra- 
dient balance each other completely. This is allowed for the purpose of calculating 
the mean water surface. It will be shown in Chapter 6 that the mean bed shear 
stress is small as long as there is no significant net current in the cross-shore 
direction. 

Example 4.3: A simple model for the wave set-up 

The magnitude of the wave set-up in the surf zone can be calculated ana- 
lytically by introducing some simplifying assumptions: 

1. The wave height in the surf zone is found as a constant times the local water 
depth 

H = ITD (4.41) 

2. The waves are described by the linear shallow water wave theory. 

The first assumption is in fact an implicit method for modelling the energy 
dissipation in the surf zone, and this example is therefore anticipating Section 4.2.2 
by introducing one of the simplest possible models for the wave height and mean 
water level in the surf zone. 

Under these assumptions Eq. 4.40 reads 

(4.42) 
d ( A D )  - dS,, d 3 dD 

- dx ( G p g H 2 )  = -: pgIi’2D- dx dx p g D 7  - 
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or 

3 
8 

be zero at  the breaker line ( D  = Db) 

A D  = - - Ic2D + constant (4.43) 

The constant is determined from the boundary condition. A D  is chosen to 

n 

(4.44) 
3 

A D  = -Ic2(Db - D )  
8 

The maximum wave set-up is found at the coastline 

3 3 I< 
8 8 

AD,,, = -Iir2Db = -Hb N 0.2Hb ,-- 0.3Hb (4.45) 

The set-up can thus be up to about one quarter of the incoming wave height. 

Example 4.4: The wave set-down 

Outside the surf zone the wave height variation is due to the shoaling pro- 
cess, which as a first approximation can be calculated by assuming that the energy 
dissipation is zero, i.e. that the energy flux is constant. The shoaling causes a 
variation in S,,, and the mean water surface elevation outside the surf zone can 
be found from equation 4.40. 

As energy dissipation has been neglected, Bernoulli's equation is applicable 
outside the surf zone and can also be used to calculate the mean water elevation 
(Dean and Dalrymple, 1984). At the free water surface the Bernoulli equation 
reads 

(4.46) 

where 4 is the velocity potential. The base level for the Bernoulli equation is 
taken to be the still water level, which at every location is given as z = Do. In this 
example, 9 is measured from the still water level. Equation 4.46 can be expressed 
by values taken at z = Do by making a Taylor expansion, only second order terms 
are maintained. 

Time averaging gives 

(4.48) 
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Insertion of u, w, 17 and 4 from linear wave theory gives 

2 1  
tanh(kDo)) ) - 2g 

The dispersion relation 
tanh( kD0 ) 

T 

gives that 
k2g T 2  k _ -  - -g = 
w2 L2 tanh(kD0) 

which inserted in Eq. 4.49 gives 

+c(t)= 

+C(t) H2 k -- 
4 2 sinh(2kDo) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

- 
Choosing ?j = 0 at deep water, C ( t )  shall be taken as zero and Eq. 4.52 implies 
that the mean water surface will become slightly depressed as the waves propagate 
into shallow water, therefore the term ‘set-down’. Applying the shallow water wave 
theory, Eq. 4.52 becomes 

- H2 17 = -~ 
1600  

and at the breaker line (Hb = 0.801,) 7/- is found to be 

(4.53) 

This set-down should be included as a boundary condition for the calcula- 
tion of set-up, if the wave set-up is taken relative to the mean water level at  deep 
water. 
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4.2.2 Surf zone models 

The approximations introduced in Example 4.3 can be taken as an example 
of a very simple surf zone model which gives the variation of the wave height 
and the mean water level across the surf zone. Such models are of considerable 
interest because the local value of the wave height and the water depth will be the 
starting point for a long range of different calculations, such as sediment transport 
and wave-driven currents. For more detailed hydrodynamic modelling the simple 
approximation given by Eq. 4.41 is not sufficient. As can be seen from Fig. 4.5, 
the decay of the wave height, even on a beach with constant slope, is more complex 
than indicated by the constant ratio between wave height and water depth used 
in Eq. 4.41. When more complicated bed topographies are considered like for 
instance a barred coast, it is necessary to develop a model which includes the 
most important physical processes involved. 

If the analysis is restricted to a two-dimensional uniform coast with normally 
incident waves, a situation which can be represented in a wave flume, then the 
water surface elevation and the wave height can be determined by simultaneous 
solution of the energy equation and momentum equation. 

The momentum equation was described in section 4.2.1, and expresses the 
balance between the pressure force from the slope of the mean water surface and 
the gradient of the radiation stress (Eq. 4.40). 

The energy equation expresses the variation in the energy flux, cf. Fig. 
4.15. The energy which is dissipated at  the section between z and z + dx must 
be supplied by a larger energy flux into the section than out of it,  for stationary 
conditions the energy equation reads 

3- - 
- -D 

dx 
(4.55) 

where a is the mean energy dissipation rate per unit bed area. An example of the 
determination of 5 was given in section 4.2, with the assumption that the energy 
dissipation at each wave front corresponds to that in a bore or a hydraulic jump, 
so 

(4.56) 

Roughly speaking, it can be said that the energy equation is used to describe 
the decay of the wave height due to the loss of energy, and that the momentum 
equation then calculates the slope of the mean water surface. Actually, the two 
equations will often be coupled, and the models must be solved together numeri- 
cally. Each of the two equations are accurate for describing the wave height and 
mean water profile. This has been tested by insertion of measured quantities from 
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Dissipation - diss x d x  

Figure 4.15 The relation between the energy flux and the energy 
dissipation. 

laboratory experiments, Stive and Wind (1982). It has, however, proven to be 
a difficult task to provide a sufficiently accurate description of the processes and 
quantities, such as the water surface profile and the pressure and velocity field in 
the waves, in order to make the models give reliable predictions. 

Several models have been developed based on the ideas described above. 
In the following, a few models which are based on different principles and with 
different purposes are outlined and discussed. 

Example 4.5: The model by Battjes and Janssen 

A model was developed by Battjes and Janssen (1978) with the purpose of 
describing natural irregular waves over complex beach topographies with longshore 
bars. The basis for the statistical description of the wave heights is the Rayleigh 
distribution (cf. Section 1.4). The local maximum wave height H,,, is determined 
as a constant times the local water depth, and the fraction Q b  of the waves that 
are actually broken is given by the number of waves which, according to the 
Rayleigh distribution, would have been larger than H,,,. The energy dissipation 
is described by the bore analogy using H,,, as the height of the bore and taking 
only the fraction Q b  of the waves that are broken into account. Because of the 
many uncertainties associated with the conditions in the surf zone, Battjes and 
Janssen (1978) chose to use simple linear wave theory and to introduce coefficients 
which can be calibrated in order to improve the accuracy of the model. The energy 
flux is calculated by the H,,,-value of the wave heights and the energy equation 
is used to calculate the shoreward gradient of HI,,. H,,, is calculated from the 
Rayleigh distribution, which is truncated so that no wave heights exceed H,,,. 
The momentum and energy equation is then used to predict the variation of 77 and 



104 Chapter 4:  Waves in the surf t o n e  

. . . . : Measurements 

loo x/H,,, 0 

100 * 

- : Theory 

.- . . . .f - 
loo x/HrmSo 0 

0.21 

Figure 4.16 Examples of predictions of AD and H,,,, after Battjes and 
Janssen (1978). . . . : measured data. - : numerical results. 

H,,, across the coastal profile by solving the two equations step by step, starting 
at an offshore location with known boundary conditions. 

The model by Battjes and Janssen (1978) has proven to be a good predictor 
for conditions with irregular waves and rather complex topographies. A detailed 
calibration of the model has been carried out by Battjes and Stive (1985). The 
model is able to reproduce the conditions at a longshore bar, where wave-breaking 
ceases in the trough inshore of the bar. Fig. 4.16 shows an example of measured 
and calculated wave heights and mean water surface on a barred profile. H,,,, is 
the deep water value of Hrms. 

Example 4.6: The model by Svendsen 

Svendsen (1984) based his model on the same main principles as Battjes 
and Janssen (1978), but the approach was different. This model is formulated for 
regular waves, and the emphasis is put on the formulation of the wave hydrody- 
namics, for instance by introducing the effect of the surface rollers in the energy 
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Figure 4.17 Measured and calculated wave height and  set-up in the inner 
surf zone, after Svendsen (1984). Beach slope: 1:34. Deep 
water wave steepness: Ho/Lo = 0.024. 

and momentum equations. This gives a more refined model which does not require 
as much calibration. It can be used in the inner surf zone where hydrodynamic 
wave description is valid, but it cannot model the transition through the outer 
zone from the point of wave-breaking to the inner surf zone, and it is not able to 
model complex profiles with longshore bars because the pause in wave-breaking 
inshore of the bar crest is not included in the model. Fig. 4.17 shows an  example 
of measured and calculated wave heights and mean water surface in the inner surf 
zone. It can be seen how the roller contribution gives a significant improvement 
in the description of the wave set-up. The boundary conditions for the model are 
taken at z = 0.8zb well inshore the point of wave breaking, where the inner surf 
zone is expected to begin. 

Example 4.7: The model by Dally, Dean and Dalrymple 

Dally et al. (1985) have developed a model which does not rely on the 
bore analogy for describing the energy dissipation. They base their description 
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on an analysis of the experimental results from Horikawa and Kuo (1966). These 
experiments showed that when a breaking or broken wave enters an  area with 
horizontal bed, the breaking continues, and the wave height decreases, until the 
height reaches a value of about 0.4 times the water depth. Similarly it was found 
that on constant but moderate slopes the wave height asymptotically approaches 
the ratio 0.5 D, cf. Fig. 4.5 and Eq. 4.3. The model therefore requires that there 
is a stable wave energy flux corresponding to a stable wave height of 

H = K D  (4.57) 

The main assumption of the model is then that the energy dissipation is 
proportional to the difference between the actual wave energy flux and the stable 
wave energy flux 

(4.58) 

where I<' is a constant, and linear shallow water wave theory is applied. Eq. 4.58 
is only used if it gives a positive value of 5, otherwise 5 is set equal to zero. 
By using Eq. 4.58 and still applying linear shallow water wave theory, a simple 
differential equation for determining H can be found 

- ( H 2 f i )  d = - s ( H 2 & -  I i 2 D 2 f i )  
d x  D (4.59) 

This equation can then be combined with the momentum equation to form 
a surf zone model. A calibration on the tests of Horikawa and Kuo (1966) gave 
the values 1%' = 0.40 and = 0.15. This model is able to reproduce the pause in 
wave-breaking at a finite wave height on a horizontal bed where the models, using 
the bore analogy for calculating the energy dissipation, give a continuing gradual 
decrease in the wave height due to wave-breaking. 

Example 4.8: Direct simulation of the waves in the surf zone 

A completely different approach can be made by solving the flow equations 
in the surf zone directly. This type of model takes the consequence of the drastic 
variation of waves over the short distance of the surf zone width, and abandons 
the idea of describing wave properties like wave height, wave length and period. 

It is not yet feasible to solve the complete three-dimensional flow equations, 
and the depth-integrated versions must be applied. Numerical models solving 
the depth-integrated flow equations in two horizontal dimensions have for many 
years been used to simulate wave conditions outside the surf zone; for example to 
describe the disturbance inside a harbour due to incoming waves. Typically such 
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a model will solve the equations numerically in a rectangular grid, using a finite 
difference scheme. The model then calculates the water surface elevation and the 
velocity in each grid point for each time step. The distance between the grid points 
and the length of the time steps must be small compared to the wave length and 
wave period. In order to obtain stable solutions for finite amplitude waves, the 
deviation from the hydrostatic pressure distribution must be taken into account 
by including terms describing the effect of vertical accelerations and curvature of 
the streamlines. The resulting equations are called the Boussinesq equations, and 
models which solve these equations are called Boussinesq models. The details of 
Boussinesq models are described by Abbott (1979), Abbott et al. (1978), and by 
Madsen and Warren (1984). 

The strength of the Boussinesq models is that they are flow models which 
describe the water motion, and not models which describe wave parameters. This 
means that, once a model is constructed, it is ‘only’ a matter of prescribing the 
right boundary conditions to make it simulate complex phenomena like waves on 
a current, irregular waves, or waves with finite leiigth of the crests. To extend the 
Boussinesq models to cover the s u r f  zone would therefore be an important contri- 
bution to coastal hydrodynamics. Until now, models have only been developed for 
one horizontal dimension, simulating normally incident waves on a long uniform 
coast. The main issue of surf zone modelling is to describe the strong energy dissi- 
pation due to the wave-breaking. Deigaard (1989) has made an approach based on 
ideas similar to the model for the hydraulic j”mp of Engelund (1981), cf. Example 
4.2. In the following, this model, which has sonie promising features, is described 
in detail. 

Control surface 

----ii, 

- X 
dx  

Figure 4.18 The control. surface for determining the pressure force from the 
roller. 



108 Chapter 4: Waves in the surf zone 

Energy is extracted from the wave motion due to the work done by the forces 
between the surface roller and the water in the wave beneath it. The interaction 
and energy exchange between the surface roller and the wave have been analyzed 
by Cointe and Tulin (1986) for deep water waves. Deigaard and FredsGe (1989) 
made a detailed description of the transfer of energy in the surf zone from the 
wave energy flux, which is evenly distributed over the vertical to the zone near the 
surface where the energy dissipation occurs, mainly in the shear layer beneath the 
surface roller. In the numerical flow model, the effect of surface rollers with known 
geometry is included as an additional force in the depth-integrated flow equations. 
As a first approximation, the effect of a surface roller with local thickness q+ can 
be calculated by assuming a hydrostatic pressure distribution. The net horizontal 
pressure force on the control surface of Fig. 4.18 is found as 

(4.60) 

where 7 is the instantaneous surface elevation of the water taking part in the wave 
motion. The additional pressure force from the roller is thus 

(4.61) 

This pressure term is then included in the momentum equation, and will 
modify the dynamics of the wave motion, simulating the interaction between waves 
and rollers and extract energy from the waves. 

Surface roller 

Water surface, vo'ume\ ,A new ro l l e r  is only formed, 

Figure 4.19 Principles for determining the geometry of the surface roller. 

The geometry of the surface roller at each time step in the simulation is 
determined by a simple procedure, cf. Fig. 4.19. The breaker criterion is expressed 
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by the local slope of the water surface. If a surface roller is not already present, 
it will only be formed if the local water surface is steeper than f f b r .  The lower 
boundary of the roller is assumed to be a straight line with the slope a0 where 
(YO 5 (Ybr.  The surface roller starts where the water surface has the same slope 
as the lower boundary of the roller, Fig. 4.19 and the breaking will cease when 
the maximum slope at the wave front becomes smaller than ( Y O .  The momentum 
contribution given by Eq. 4.61 is multiplied by a calibration factor, Kr, which 
for example shall compensate for inaccuracies in the determination of the surface 
roller geometry. 

The procedure for calculating the effect of surface rollers during the time 
step from t = nAt to t = ( n  + 1)At is as follows 

By extrapolation from the previous time step, the water surface profile ~ ( x )  
is estimated at time t = ( n  + 1/2)At. 
From the water surface profile the location and thickness of the surface 
rollers are determined as described above. 
The momentum contribution from the surface roller is calculated by Eq. 
4.61 for each grid point, and the flow equations are solved including this 
term. 

0 

Fig. 4.20 shows some simulation results for a beach with a constant bed 
slope of 1:30. The beach rises from a still water depth of 1.5 m to 0.3 m. At  
the right boundary the waves are absorbed, whilst at the left boundary, regular 
waves are generated with the height 0.5 m and period 4 s. Figs. 4.20A and B 
show the water surface profile and the surface rollers at different times from 20 s 
to 24 s after the start of the simulation. The calculations have been made with 
(Ybr = 0.33, 010 = 0.176 (= tan lo"), and with I{, = 1.5. The grid size is Ax = 0.25 
m, and At = 0.05 s. 

Fig. 4.21 shows results from a barred coastal profile. The bed slopes are 
1:40, the bar crest level is -0.75 m and the trough is at the level -1.0 m. The 
incoming waves and all model parameters are unchanged from the constant slope 
simulation. In Fig. 4.21 it can be seen how the wave-breaking ceases inshore of 
the bar (no surface rollers) and that smaller waves are formed between the main 
wave crests in the trough region. 

The two examples illustrate some properties of the model which makes it 
attractive for further development. Firstly, it appears physically realistic to relate 
the energy loss to the properties of the surface rollers, which, at least in the 
inner surf zone, play a dominant role in the wave transformation. Secondly, this 
model determines whether or not the waves break from the local conditions in 
time and space. This can be of importance for describing why the wave-breaking 
ceases inshore of a bar, and in the case of irregular waves where a single point 
of breaking cannot be defined a priori. This model is also able to reproduce 
the complete cessation of wave-breaking at a wave height of about 0.4 D, as the 
breaking wave propagates into an area with a horizontal bed. 
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Figure 4.20 Results from a constant slope profile. A: Location of surface 
rollers. B: Water surface profiles. C: Wave height distribution. 
D: Model topography. 

Many new developments are, however, still required before a practical design 
tool is available in the form of Boussinesq models for the surf zone. The main 
drawbacks of the present model are that at the beginning of wave-breaking a large 
surface roller is immediately introduced, which causes some reflection of wave 
energy. It is more realistic to have a gradual development of the surface roller. 
The momentum of the surface roller is also of importance for the dynamics of the 
surf zone (Svendsen, 1984), and to include transfer of momentum to the surface 
rollers from the waves would be an improvement of the model. 

The outer surf zone with plunging breakers and rapid transition of the 
waves cannot be expected to be described in a fully satisfactory manner by any 
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Figure 4.21 Results from a barred coastal profile. A: Location of surface 
rollers. R: Water surface profile. C: Model topography. 

Boussinesq model and depth-integrated model certainly cannot represent a plung- 
ing breaker. The representation of the outer zone may, however, be calibrated in 
order to provide the best possible connection between the incoming waves and the 
inner surf zone. 

The areas where Boussinesq models of the surf zone can be applied are 
manifold. A simple one-dimensional model as presented above can be developed 
to study low period oscillations induced by wave groups (surf beat) and their 
significance for sediment transport and coastal morphology. By incorporating 
surface rollers in a two-dimensional model, a combined model for waves and depth- 
integrated wave-driven currents can be formulated, where the wave motion and 
the mean currents in the surf zone are modelled simultaneously. As described in 
Chapter 5 ,  the state of the art with respect to modelling wave-driven currents is 
to operate with two models (more or less closely coupled), one for the waves and 
one for the current. 
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4.3 Turbulence in the surf zone 

Most of the heavy loss of wave energy in the surf zone is not dissipated 
directly to heat, but is first transformed to high intensity turbulence which is then 
gradually dissipated into heat. The turbulence is important for the exchange of 
momentum (eddy viscosity) and the exchange of matter (eddy diffusivity) and 
must therefore be included in a description of mean current velocities and sus- 
pended sediment concentrations in the surf zone. 

The turbulence is one of the more difficult phenomena to model in the surf 
zone, and until now no method has been proven to give accurate results under field 
conditions. Two different approaches have been suggested to assess the turbulence. 
One is purely empirical, relating the turbulence level to the water depth, the wave 
height and period. The other approach is based on the transport equation for 
turbulent kinetic energy, which has been described in detail in connection with 
the wave boundary layer, cf. Appendix 11. 

In broken waves, turbulent kinetic energy is produced in the surface roller 
near the surface, as well as in the wave boundary layer at  the bottom. The 
energy loss due to wave-breaking is much larger than the energy dissipation in the 
boundary layer, and the eddy diffusivity is therefore much larger outside the wave 
boundary layer, so that more sediment can be carried in suspension away from the 
bed. 

4.3.1 Time- and depth-averaged model 

The first application of the turbulent energy equation to surf zone conditions 
was made by Battjes (1975). Its purpose is to quantify the cross-shore turbulent 
exchange of momentum, and it is therefore sufficient with a depth-integrated and 
time-averaged description. 

It is assumed that the turbulent kinetic energy k and the energy dissipation 
rate e are uniformly distributed over the depth D. A situation at  equilibrium is 
considered, which means that the rate of conversion of energy from one form to 
another is constant: the loss of wave energy is equal to the production of turbulence 
which in turn is equal to the dissipation of turbulent energy. The rate of energy 
dissipation per unit bed area is written as 

D = pDZ (4.62) 

where the turbulent energy dissipation per unit volume is modelled by the expres- 

- 

sion 

(4.63) 
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l d  is the length scale of the turbulence and is taken to be proportional to the water 
depth. Eqs. 4.62 and 4.63 then give the following relation 

- 
V 0; p k 3 f 2  (4.64) 

or 

k 0; ( : ) ‘ I3 (4.65) 

The energy dissipation is estimated from the wave energy loss, cf. Eq. 
4.55, using linear shallow water theory and assuming that the wave height is 
proportional to the water depth 

H = K D  (4.66) 

Eq. 4.65 can then be written as 

By combining Eqs. 4.65 and 4.67 a measure 
obtained 

k c( gD(  g)2’3 

(4.67) 

of the turbulent energy is 

(4.68) 

Example 4.9: Turbulent energy based on the bore analogy 

As an alternative, the wave energy loss could be assessed by the bore anal- 
ogy, cf. Section 4.2. In this case the dissipation can be written 

giving 

- pgD H 3  pgDH3 ’D=- %- 
T ( 4 D 2 - H Z )  4D2T (4.69) 

k 0; H2(&)2’3 (4.70) 
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4.3.2 Variation of turbulence in time and space 

When the purpose of the turbulence modelling is to give the basis for sus- 
pended sediment transport modelling or calculation of velocity profiles, then the 
detailed distribution of the turbulence in time and space is of importance. Labora- 
tory measurements of the turbulence in broken waves indicate that the turbulence 
intensity decreases towards the bed, particularly for the vertical component which 
is of importance for sediment suspension and velocity profiles. The detailed distri- 
bution of the turbulence under broken waves has been modelled by Deigaard et al. 
(1986) using the k-equation. Justesen et al. (1986) combined the description of 
the turbulence from the wave-breaking with the turbulence produced in the wave 
boundary layer. 

The energy dissipation in the wave boundary layer is very small compared 
to the energy loss due to wave-breaking. Nevertheless, it is of vital importance 
to include the boundary layer when dealing with sediment transport. The sus- 
pended sediment concentration is determined from the balance between settling 
and turbulent diffusion. The vertical turbulent exchange factor due to the broken 
waves decreases to zero at the bed, so the turbulence in the wave boundary layer 
is therefore the major factor in determining the concentration profile near the bed 
where the main part of the suspended sediment is found, even in the surf zone. 
The wave boundary layer provides the contact between the bed and the zone of 
high turbulence intensity away from the bed. According to this description, no 
grains are carried in suspension without being agitated and lifted through the wave 
boundary layer by the turbulence there. The wave boundary layer therefore acts 
as a ‘bottleneck’ which must be passed by the sediment going into suspension. 

The transport equation for the turbulent kinetic energy is written, cf. Ap- 
pendix I1 

(4.71) 

Eq. 4.71 includes the time variation in k and the vertical diffusion, whilst 
the horizontal diffusion is neglected under the assumption that the horizontal 
gradients are small compared to the vertical. 

The term ‘PROD’ stands for the production of the turbulent kinetic energy. 
It has two contributions. The first is the well known production which is obtained 
from the flow equation 

PROD k3I2  d’c = ? (2 E )  + ~ - c2 ~ 

dt  dZ U k  dz P e d  

(4.72) 

This contribution is dominant in the wave boundary layer. The second 
contribution is due to the wave-breaking; the estimation of this term is discussed 
in the following. The description of wave boundary layers by turbulence models is 
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Figure 4.22 Location of production of assumed horizontal dis t r ibut ion of 
turbulence in a hydraulic j u m p .  

described in Section 2.3, and in the following only the turbulence originating from 
the wave-breaking is treated in detail. 

It is not yet possible to model the details of the flow pattern in the vicinity 
of the surface rollers, and Eq. 4.72 can therefore not be used to calculate the 
production of turbulence in the surface rollers. Instead the total production rate 
is estimated from the analogy with a bore or a hydraulic jump, and the location of 
the production is prescribed on basis of measurements in a hydraulic jump made 
by Rouse et al. (1958). It is found that the production of turbulence in a hydraulic 
jump is concentrated in a zone below the surface with a thickness of about the 
height of the jump. In the horizontal direction the production is concentrated 
downstream from the toe of the jump over a distance of approximately two times 
the water depth. The actual distribution of the production is taken to be parabolic 
in the vertical as well as the horizontal direction, as indicated in Fig. 4.22. 

When moving from the hydraulic jump, which is stationa.ry but with a 
strong through-flow of water, to the broken waves, which are propagating but have 
a negligible net flow, a conversion must be made from the horizontal coordinate in 
the jump to the time in the rollers. Under the broken waves, consider a column of 
water extending from the bed to the surface. With each passing wave this water 
column is moved back and forth with the horizontal wave orbital motion and it is 
stretched in the vertical due to the vertical orbital motion. Similarly, each time 
a wave front passes, the water column receives a strong production of turbulence 
near the water surface. 

With these assumptions, and the parabolic variatioii in time and space 
indicated in Fig. 4.22, the distribution of the production in time and space is 
given by 

(4.73) 
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where z* is a vertical coordinate, zero at the surface and directed downwards, ST 
is the part of the wave period during which turbulent production takes place, and 
Eloss is the energy loss per unit bed area during one wave period: AHpgD,  cf. Eq. 
4.28. The time in Eq. 4.73 is reset to start at zero each time a wave front passes 
the water column under consideration. The different elements in the description 
of the turbulence in the broken waves are shown in Fig. 4.23. 

C 
Production ,Production 4 

Figure 4.23 Definition sketch describing elements involved in modelling of 
turbulence (to the  left, time-averaged values of production, ver- 
tical diffusion, and dissipation of turbulent energy are shown). 

With a one-equation turbulence model the length scale of the turbulence e d  

is not calculated by the model but must be prescribed. In the upper part of the 
water column the presence of the bed has minor influence on the turbulence, and 
here the conditions are similar to those of free turbulence, and the length scale is 
taken to be constant emax. lmax is of the order 0.1 D. 

Close to the bed the length scale of the turbulence is reduced due to the 
proximity of the bed. In this region the model uses a linear variation with the dis- 
tance from the bed, similar to the near-bed variation of e d  in the case of boundary 
layer flow. The length scale of the turbulence is written as 

(4.74) 

where K is the von Kkrman constant. 
The conditions close to the bed are only represented by a rather crude ap- 

proximation in the model. It is the vertical turbulent velocity fluctuations that are 
damped by the proximity of the bed. The horizontal fluctuations are not reduced, 
except in the oscillatory wave boundary layer. This means that the turbulence 
becomes very anisotropic close to the bed. When dealing with suspended sedi- 
ment or velocity profiles over the vertical, it is the vertical velocity fluctuations 
that are of importance, and the present turbulence model can, with the chosen 
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length scale distribution, be expected to give a more realistic representation of the 
vertical turbulent fluctuations close to the bed than of the horizontal. 

In the model the solution of the transport equation is simplified by neglect- 
ing the horizontal oscillation and stretching the water column. This means that 
the convective terms at the right-hand-side of Eq. 4.71 are neglected, and that the 
equation can be solved in a rectangular domain in time and space. The equation 
is solved in the region 0 5 z 5 D from t = 0 until a periodic solution is obtained. 
The boundary conditions are zero vertical flux at the surface 

- = 0  a t z = D  
dk 
dZ 

(4.75) 

and vanishing turbulence at the bed 

k = O  a t z = O  (4.76) 

The latter boundary condition is equivalent to setting the dissipation of turbulence 
at the bed equal to the production, which is zero for surface-generated turbulence. 
This is in contrast to the situation with turbulence generated by bed shear stress, 
where k approaches a finite value at the bed because the production becomes 
infinite. 

Fig. 4.24 shows examples of calculated distributions in time and space of the 
turbulence under broken waves. The calculations are compared to measurements 
made by Stive (1980). The tests of Stive (1980) have been made on a plane beach 
with a slope of 1:40. Two test series have been made, test 1 with a wave period 
T = 1.79 sand  a deep-water wave height of Ho = 0.159 m, and test 2 with T = 3.00 
s and HO = 0.142 m.The turbulence is represented by the root mean square of the 
horizontal component of the turbulent fluctuations. Fig. 4.25 shows the profiles 
of the measured and calculated time-averaged turbulent kinetic energy. Fig. 4.26 
gives an example of the distribution of the turbulent kinetic energy showing the 
structure near the bed, where the turbulence from wave-breaking interacts with 
the turbulent wave boundary layer, as calculated by the model of Justesen et al. 
(1986). 

Example 4.10: T h e  d is t r ibu t ion  of tu rbulence  close to the b e d  

This example considers the conditions close to the bed in the surf zone, but 
neglects the turbulence from the wave boundary layer. 

Close to the bed the one-equation turbulence model gives only a weak vari- 
ation of the turbulence with time, and the near-bed variation in k can be found 
by steady state calculations. The length scale close to the bed is given by 

ed = c;/4/cz (4.77) 
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Figure 4.25 Measured and calculated time-averaged turbulent kinetic en- 
ergy. Measurements by Stive (1980). In test 1 wave-breaking 
occurs at  z = 35.5 m and in test 2 a t  z = 33.5 m. 

The boundary condition away from the bed is given by 

k = ko at z = zo 

There is no production of turbulence near the bed, and the transport equa- 
tion for k reads 

(4.78) 
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Figure 4.26 Distribution of turbulent kinetic energy in broken and unbro- 
ken waves. Contour plots show the temporal variation of k ,  
and the corresponding time-averaged levels are depicted on the 
right. A: Unbroken waves with only bottom-generated turbu- 
lence; B: Total depth in broken wave; C: Near-bed region in 
broken wave: a l k  = 102 ,gT2 /D = 300, H I D  = 0.5. Turbu- 
lence levels indicated are &/U,,,, x lo3.  
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It is assumed that k varies with a power a of z 

k 
(4.79) 

Using that VT = &&, Eq. 4.78 can be written in non-dimensional form 

inserting Eq. 4.79 gives 

or 

3 a / 2 - 1  

= o  (4.82) 

giving 

(4.83) 

with c2 = 0.08, iJk = 1 and K = 0.4 this gives 

01 = 1.09 

It is seen that according to this model the turbulent kinetic energy varies 
almost linearly with the distance from the bed. Similarly the velocity fluctuations 
vary almost as 

(4.84) 

and the turbulent diffusion coefficient varies as 
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Example 4.11: Discussion of the principles behind modelling turbu- 
lence in spilling breakers 

The turbulence model based on the lc-equation is an example of an engineer- 
ing approach to modelling the turbulence and flow in spilling breakers the model 
being validated by comparison with experimental results. There are, however, 
some basic characteristics of the turbulence which should be taken into account 
when evaluating the present results or considering the development of more so- 
phisticated models. 

When considering the turbulence in the surf zone (spilling breakers and 
broken waves) one can distinguish between four different zones, each with distinct 
turbulent characteristics. The four zones are, cf. Fig. 4.27: 

C 

Figure 4.27 The four characteristic zones of turbulence in waves in the surf 
zone. 

Zone 1. 

Zone 2. 

Zone 3. 

Zone 4. 

The area near the surface roller with an intense production of turbu- 
lent kinetic energy due to the shear between the water in the surface 
roller and in the wave motion. 
The area where the turbulence, remaining from the production zone 
(Zone l), spreads downwards and dissipates gradually until a new 
wave front passes with intensive production in the roller. 
The zone where the structure of the turbulence is influenced by the 
proximity of the bed. 
The turbulent wave boundary layer where production of turbulence 
is associated with the periodic bed shear stress. The thickness 6, of 
the wave boundary layer is small compared to the length scale of the 
outer turbulence, and Zone 4 is embedded in Zone 3. 

In the following, the characteristics of the four zones are discussed with the 
k-equation model as the starting point. 



Turbulence in the surf zone 123 

Zone 1 is characterized by the very intense production of turbulence, which 
takes place in the shear layer at the lower boundary of the surface roller. At this 
location the ordered wave energy is transformed to turbulence. The length scale of 
the locally produced turbulence is small, and the dissipation of turbulent energy is 
considerable. In a shear layer about two third of the turbulence generated appears 
to be dissipated locally (Bradshaw and Ferris, 1965). Zone 1 is located near the 
water surface, and a detailed description of the turbulence is not required for the 
prediction of the circulation current or sediment transport which is most sensitive 
to the near-bed conditions. The turbulence in Zone 1 is therefore not modelled in 
any detail. Zone 1 is included only as a source of turbulence, corresponding to the 
turbulence surviving the strong local dissipation. 

The turbulence in Zone 2, 3 and 4 is modelled by the transport equation 
for turbulent kinetic energy, Eq. 4.71. 

In Zone 2 the vertical spreading and decay of the turbulence are modelled 
by applying the constant length scale emax of order O(0.1D). In reality, the length 
scale of the turbulence cannot be expected to be constant, but rather to increase 
with distance (in time and space) from the location of production, similar to 
grid-generated turbulence. emax is therefore an average value which is calibrated 
to give satisfactory results. The formulation of the transport equation is based 
on the assumption of homogeneous, isotropic turbulence and the measurements 
by Stive (1980) indicate that the deviation of the turbulence from isotropic and 
homogeneous conditions is no more severe than other flow situations which have 
been successfully described by the k-equation. All in all there is reason to expect 
that the distribution of turbulence in Zone 2 can realistically be described by the 
k-equation. 

In Zone 3 the turbulent eddies are influenced by the proximity of the bed. 
Here the flow belongs to a class of situations described as ‘turbulence in a box’, 
which are related by having externally generated turbulence close to a surface 
inhibiting velocity fluctuations normal to it. This problem of shear-free boundary 
layers has received considerable attention during the last twenty years, both with 
experimental (Uzkan and Reynolds, 1967; Thomas and Hancock, 1977; McDougall, 
1979; and Brumley and Jirka, 1987) and theoretical investigations (Hunt and 
Graham, 1978; Birigen and Reynolds, 1981; Hunt, 1984 and 1984A). 

The difference between a free and a fixed surface lies primarily in the bound- 
ary condition for the surface-parallel velocity fluctuations. At a clean free surface 
the fluctuating shear stress is zero, whilst at a fixed surface the velocities are zero, 
giving a near surface boundary layer with fluctuating shear stresses. In the present 
case the difference between the two boundaries may be neglected, as any fluctu- 
ating shear stresses are expected to be small compared to the oscillatory shear 
stresses in the wave boundary layer. 

The thickness of the layer influenced by the bed is scaled by the integral 
length scale of the turbulence away from the bed. Inside this layer the vertical 
velocity fluctuations and the vertical length scale decrease reaching zero at  the 
bed. The horizontal velocity fluctuations increase slightly towards the bed. In 
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Zone 3 the turbulence thus becomes very anisotropic close to the bed, and can 
only be described by the k-equation as a rather crude approximation. In many 
cases, for the description of sediment transport or mean current velocity profiles, 
it is the vertical turbulent exchange factor which is of greatest importance, and 
which should be used for comparison with the results of the k-equation. 

In the model Zone 3 is represented by making the length scale vary linearly 
with the distance from the bed. The variation in l d  is the same as for boundary 
layers with a wall shear stress. This model gives a decreasing turbulent kinetic en- 
ergy and eddy viscosity towards the bed, and in the absence of the wave boundary 
layer (Zone 4) k and VT would become zero at the bed, as described in Example 
4.10. 

The model by Hunt and Graham (1978) predicts the mean square of the 
vertical velocity fluctuations to vary as z 2 / 3 ,  a result supported by several 
experiments, e.g. Thomas and Hancock (1977) and Brumley and Jirka (1987). 
With respect to the length scale the results are less consistent, but it is reasonable 
to assume that the length scale varies linearly with z ,  cf. Hunt (1984) and (1984A). 
This gives a vertical turbulent exchange factor varying as (Hunt, 1984A) 

It is thus seen that the variation of the vertical turbulent exchange factor, 
obtained by considering the anisotropic turbulence close to a wall, does not deviate 
significantly from the VT predicted by the present application of the k-equation 
(cf. Example 4.10). This variation of VT in the surf zone is also supported by 
measurements by Okayasu et al. (1988), who determined VT from measurements 
of the velocity profile of the mean circulation current and of the turbulent Reynolds 
stresses. These measurements clearly show that VT decreases towards zero at  the 
bed, but it is not possible to determine with any certainty which power of z gives 
the best fit. 

Zone 4 is dominated by the turbulence generated by shear stresses in the 
oscillatory wave boundary layer. The conditions in this shear-dominated boundary 
layer is in better agreement with the assumptions behind the k-equation, and the 
turbulence model can be expected to give reliable predictions, as has been found 
in the case of an oscillatory boundary layer without an outer source of turbulence, 
Justesen (1988). 

It can be argued that the turbulent velocity fluctuations of the externally 
generated turbulence and of the shear-generated turbulence from the wave bound- 
ary layer are statistically independent, Bradshaw (1974), Hunt (1984). Therefore 
the most correct procedure may be to model the two phenomena independently 
and add the results, rather than using a coupled model, where a non-linear equa- 
tion, such as the k-equation is applied to describe the two sources of turbulence 
simultaneously. In view of the very crude assumptions which have been made in 
connection with the use of the k-equation, this aspect seems to be unimportant. It 
may, however, be taken as an indication that not much is achieved by introducing 
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more advanced models, as for example a two-equation turbulence model. Any 
improvements to the present rather crude approach may require the application 
of much more advanced models, which for instance can take the anisotropy of the 
turbulence into account. 
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Chapter 5. Wave-driven currents 

In the surf zone the flux of wave energy and the radiation stress decrease 
in the shoreward direction and vanish at the shoreline. Chapter 4 described how 
the radiation stress gradient for normally incident waves creates a slope of the 
mean water surface in the surf zone: the wave set-up. Generally, however, the 
change in the wave momentum flux cannot be balanced by a pressure gradient 
from a sloping mean water surface. In addition to the pressure gradient, shear 
stresses are required, which can only be associated with a mean current. Breaking 
waves can drive strong currents in the surf zone, and the wave-driven currents 
are important for the sediment transport and morphological development in the 
coastal region. 

The earliest theories for wave-driven currents concerned the depth-integra- 
ted velocity. More recently, the velocity profile has been included in the descrip- 
tion, but until now no fully three-dimensional model has been developed which 
can be used to calculate the complete velocity field in a coastal area. 

5.1 The longshore current 

The situation with a current along a straight uniform coast with uniform 
wave conditions was one of the first to be treated by rational methods, and it is still 
important, for example in  connection with modelling of sediment transport along 
the coast. The forces involved in the longshore current are found by considering 
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the force balance on a prismatic control surface with the sides dz and dy, Fig. 5.1. 
In this case z is the shore-normal coordinate, and y is the shore-parallel coordinate. 
Due to the uniform conditions it is not necessary to consider momentum fluxes at 
the two sides parallel to the z-axis. 

The force balance is established in the z-direction as well as the y-direction. 
In the following the different elements in the force balance are discussed. 

Figure 5.1 Top: The coordinate system and the control volume. 
Bottom: The force balance between the radiation stress gradi- 
ent and the bed shear stress. 

Wave-induced forces 

As described in Section 1.3 the radiation stress, or momentum flux associ- 
ated with the wave motion, can be written as a tensor. The flux of shore-normal 
momentum is written S,,, where 
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Fp is the pressure part and F, the momentum part of the radiation stress. a is 
the angle between the shore and wave crests. 

The flux of shore-parallel momentum, the shear component of the radiation 
stress, is written Szy, where 

S,, = F,,, sin 01 cos cy (5.2) 

The shore-normal force on the control surface is found to be 

(5.3) 

The shore-parallel force is 

S z y d y  - (Szy + x d x ) d y  dSZ y = --dzdy d S ,  y 
d x  (5.4) 

Pressure gradients 

The mean water surface can only have a slope in the s-direction due to the 
uniform condition, and there is therefore only a pressure force in the shore-normal 
direction 

d A D  
P, = -pgD-dxdy d x  (5.5) 

where A D  is the difference between the mean water depth D and the still water 
depth Do as described in Section 4.2.1. 

Bed shear stress 

Due to the uniform condition the depth-integrated mean current must be 
zero in the shore-normal direction. As a good approximation the bed shear stress 
‘rb can be taken to be parallel to the depth-integrated flow velocity. The force on 
the control surface from the bed shear stress is therefore 

Momentum exchange 

Momentum is.exchanged across the coastal profile not only because of the 
turbulence created by wave-breaking, but also due to some of the organized water 
motion in the surf zone. The exchange is commonly expressed as a product of the 
velocity gradient and a momentum exchange coefficient 

Mzy = -pED- dVY 
d x  (5.7) 
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where E is the momentum exchange coefficient, and V, is the depth-integrated 
longshore current velocity. 

The force on the control surface is given as 

The force balance in the x- and y-direction 

There are only two terms in the x-direction, the radiation stress gradient 
and the pressure gradient, giving 

This is the equation for the wave set-up, which was encountered previously as 
Eq. 4.40. The only addition is that the wave direction now has to be taken into 
account when determining the cross-shore radiation stress. 

There are three terms in the momentum balance equation for the y-direction 

dx dx 
(5.10) 

This is the equation for a steady uniform longshore current, expressing the equilib- 
rium between the driving (radiation stress gradient) retarding (bed shear stress) 
and redistributing forces. During the last 20 years Eq. 5.10, with only relatively 
minor modifications, has formed the basis for practically all rational approaches 
to describing uniform longshore currents. 

Example 5.1: An analytical longshore current model 

As a baseline example the solution to Eq. 5.10, presented by Longuet- 
Higgins (1970, 1970a), is considered. This model has the advantage that it can be 
solved analytically and is still frequently used, although later improvements have 
been introduced for several of the elements in the solution. 

The wave motion is described by linear shallow water wave theory and the 
wave height in the surf zone is taken to be a constant times the local water depth 

H = K D  (5.11) 

where Ii' is taken as 0.8. The wave set-up is neglected. 
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The shear component of the radiation stress is 

1 sin 01 sin CY s,, = F,sinacosa = -pgH2ccos~-  = E f z -  
8 C C 

(5.12) 

where E f ,  is the cross-shore wave energy flux. The wave direction is determined 
by refraction and according to Snell’s law the term 

sin 01 - 
C 

(5.13) 

is constant. It is thus seen from Eq. 5.12 that the shear radiation stress varies 
with the shore-normal energy flux, or the energy dissipation 

dS,, - d E f ,  s ina  -sina 
- v- 

dx dx c C 
_- (5.14) 

It can also be seen that the driving force is zero when there is no energy 
dissipation. In fact, this result is much more universal than indicated here. It 
can be shown that, when no wave energy is dissipated, the radiation stress gra- 
dients can be balanced by variations in the mean water level without driving any 
mean current, even for complex, non-uniform topographies and wave conditions 
(Dingemans et al., 1987). 

Using linear wave theory, the driving force can be calculated 

sin a 
CCOSCY- - - -- as,, - d p9H2 - ax dx 8 C 

dD sin@ 
N 

PS 5 - - - - i i 2 ~ & Z  - coscy- - 
8 2  d x  C 

5 dD sin(a0) 
- -p X2(gD)3’2-- 

16 dx CO 
(5.15) 

where it has been assumed that a is small in the surf zone (COSCY M 1) and the 
constant in Eq. 5.13 is calculated from the deep water values a0 and co, 

The bed friction is estimated using a quadratic resistance law, based on the 
combined wave orbital velocity and mean current velocity 

where the depth-averaged velocity vector is given by 

I P = { v, + u1 sin a cos(wt) 
UIm cos a cos(wt) 

(5.17) 
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t 
X1 1 0 

Figure 5.2 The velocity distribution according to Longuet-Higgins (1970), 
neglecting momentum exchange. 

The time-averaged bed shear stress in the y-direction is, for 01 << 1 

Tb = pCp Vy Jm (5.18) 

Assuming that V, << Ulm,  the time-averaging gives 

2 
Tb = -pC,U,,V, = 

7r 

(5.19) 

If the momentuni exchange is neglected, the longshore current can be cal- 

- p c , m  1 Ev, H = ;pc,&z 1 KV, 
7r 

culated from the balance between the driving and the retarding force 

or 
57r K sin(a0) v --- gD tan p- ’- 16C, CO 

(5.20) 

(5.21) 

where tan@ is the bed slope. For a beach profile with constant bed slope, the 
current velocity is proportional to the local water depth D ,  and the velocity dis- 
tribution is triangular, as shown in Fig. 5.2. The longshore current velocity at 
the breaker line where the depth is Db, calculated without momentum exchange, 
is an important parameter in the following calculations 

57r K sin( 010) 
= -- gDb tanp- 

16 C, co 
(5.22) 
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The momentum exchange coefficient is estimated as the product of a length 
scale and a velocity scale. The length scale is taken to be proportional to the 
distance from the shore (or the local water depth). The velocity scale is taken to 
be proportional to the wave celerity, c = m, giving 

(5.23) 

where I<, is a constant. With this momentum exchange coefficient the force bal- 
ance in Eq. 5.10 reads 

5 sin(cY0) 
- p  K ' ( ~ D ) ~ / ~  tan@- = PC,@I<Vy 
16 co 7r 

d 
dx 

(5.24) 

When the dimensionless velocity Vl = V, f V O b  is introduced, Eq. 5.24 can 
be written 

5 K,  Db d V1 I<', Db D2 d2V, D = DbV1 + -TT D--T (5.25) 
2 h C, dx KC,tanP d x 2  

Introducing the dimensionless coordinate X I ,  which is defined as 

the problem can be characterized by a single parameter P 

I<, tan p 
P = T -  

KC, 

and Eq. 5.25 now reads 

5 dV1 d2 V1 
v1- -PX1-- - PX?- - 

2 dX1 dX: - x l  

(5.27) 

(5.28) 

Eq. 5.28 is valid in the surf zone. Outside the surf zone the driving force is 
zero, and the right-hand-side of Eq. 5.28 is therefore taken to be zero for XI > 1. 

Eq. 5.28 has the particular solution 

1 
1 - 5P/2 V1 = AX1 = X1 

and the homogeneous solution 

(5.29) 

(5.30) v, = clxIp' + c2xp 
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where C1 and C2 are arbitrary constants, and PI and P2 are given by 

(5.31) 

V1 is thus found to he 

AX1 + C1XIp' + C2X,pZ 0 I X i  < 1 .=( (5.32) 

The arbitrary constants are found from the condition that Vi must be 
hounded for 0 5 X 1  < 00, and the requirement that V1 and $ are continu- 
ous at X 1  = 1, giving 

c3xfi + c4xfz 15 x1 

C3 = 0 ; C4 = A(P1 - 1)/(P1 - P2) (5.33) 

The velocity profiles for different values of P are shown in Fig. 5.3. The 
parameter P describes the significance of the momentum exchange and it can be 
seen how the velocity profile approaches the triangular distribution given by Eq. 
5.21 as P decreases to zero. 

2.0 1.5 1.0 0.5 0 

Figure 5.3 Theoretical form of the longshore current v1 = Vy/VOb as a 
function of x1 = -x/xb and the lateral mixing parameter 
f' = r e .  After Longuet-Higgins (1970a). 
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5.2 Further developments of longshore current models 

Most of the recent models for the longshore current are composed of the 
same elements as the model by Longuet-Higgins (1970), which was described in 
the previous section. The new developments have taken the form of improvement 
in the individual terms in the force balance, described by Eq. 5.10. The later 
more refined models can therefore be described by considering each term of the 
force balance. 

5.2.1 The driving force 

The basic formulation of the forces induced by wave-breaking has not been 
changed since the first models were introduced, based on the radiation stress con- 
cept, Bowen (1969), Thornton (1970) and Longuet-Higgins (1970, 1970a). The 
developments have mainly concerned the description of the wave breaking. 

The description of irregular waves gives an important modification to the 
distribution of the longshore driving force. When the incoming waves have differ- 
ent heights, they will also break at different water depths. Therefore the energy 
dissipation and the longshore driving force will be more evenly distributed than for 
a description based on regular waves, where the distribution of the driving force 
is discontinuous at  the point of wave-breaking. With irregular waves the driving 
force will increase gradually from zero at a large water depth, where the first waves 
begin to break. In the inner surf zone the driving force will approach the regular 
wave force, because practically all waves are breaking/broken here, see Fig. 5.4. 
The smoothing of the velocity profile due to irregular waves is considerable, and 
when irregular waves are considered it becomes much less important to model the 
cross-shore momentum exchange correctly. 

A model including irregular waves has been developed by Battjes (1974) 
using a spectral description. The surf zone model by Battjes and Janssen (1978) 
has also been used successfully as a basis for longshore current calculations, cf. 
Section 4.4. 

Fig. 5.5 shows a comparison between longshore current velocities calculated 
from regular and irregular waves. The irregular wave calculations have been made 
using wave statistics based on the Rayleigh distribution of the wave heights. It 
can be noted how much the irregularity of the waves smooths down the current 
velocity profile. 

The directional spreading of the incoming waves also has significance for the 
driving force. Application of realistic distributions of the wave energy direction 
can give a reduction by up to one half of the total driving force, integrated over the 
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irregular 

Figure 5.4 Distribution of the longshore driving force, regular waves and 
irregular waves. 

Breaker line 

(regular waves) A Vy(m/s) 
- 2.0 I 

- regular wa 

-- irregular waves (without 
momentum exchange) 

Figure 5.5 Longshore current velocities calculated with regular and  irreg- 
ular waves. Deep water wave height: HI,, = 1.2m, T = 
7.5s, a0 = 45". Constant beach slope: t an@ = 0.01. After 
Zyserman (1989). 

coastal profile. It should be noted that the total longshore force is unaffected by 
the application of an irregular wave description assuming unchanged wave energy 
flux, or the use of more sophisticated wave theories in the surf zone, cf. Eq. 5.12, 
which describes the relation between the energy dissipation and the longshore 
driving force. For a given wave energy flux from offshore, the total longshore force 
is the same. 
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More advanced wave descriptions have not led to significantly improved 
longshore current models. This is partly because the finer wave descriptions will 
only redistribute the driving force, as described above, and partly because the 
problem of combining the incoming wave field with a wave model for the inner 
surf zone has not yet been solved satisfactorily. 

In addition to depth refraction, refraction due to the longshore current can 
be included in the wave description (Dalrymple, 1980; Southgate, 1989). The 
current refraction may change the location of the breaker line and thus the distri- 
bution of the driving force over the profile. 

Other driving forces can be included in a model, e.g. wind shear stress and 
a longshore water surface gradient S. The wind will give two components. An 
onshore component to be included in the set up 

where r, is the surface shear stress from the wind, a ,  is the angle between the 
wind and the z-axis, Ulo is the wind velocity 10 m above the sea level, and f, is 
the corresponding friction factor, pa is the air density. 

The longshore component reads 
1 

r, sin(@,) = - p  f u,Z, sin(@,) (5.35) 
2 " "  

A coastal current will often be driven by a mean longshore water surface slope of 
S ,  which gives a longshore driving force of 

r, = pgDS (5.36) 

In many cases, the contributions from wind shear stress and coastal currents 
can be neglected because they are relatively small compared to the wave-driven 
forces. This is discussed further in Example 5.3. 

Example 5.2: The effect of directional spreading. 

In order to illustrate the effect of directional spreading of the incoming wave 
energy, a simplified example is considered. The deep water waves are assumed to 
be composed of two wave trains with the same characteristics, except for the 
wave direction, Fig. 5.6. The mean wave direction is ( Y O .  One wave train has 
the direction N O  + Aa, the other 010 - Aa. The two wave trains are statistically 
independent, and the combined wave energy and radiation stress is found as the 
sum of the two contributions 

1 1 
2 

1 

S,, = SF," sin(2(ao + Aa) )  + -F, sin(2(a0 - Aa))  = 

i~,,, (sin(2(ao + AQ)) + sin(2(ao - A@),> (5.37) 
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Figure 5.6 A wave field composed of two crossing wave trains, 

where $Fm is the momentum part of the radiation stress for each of the wave trains. 
The ratio between the actual S,, and the value for no directional spreading Szyo 
is therefore 

sin(2(ao + Aa)) + sin(2(ao - Aa))  2%- - = cos(2Aa) (5.38) s, yo 2 sin(2ao) 

Szy/Szyo is shown in Fig. 5.7. It is seen that S,, becomes zero for Act = 45", 
where the two wave trains cross each other at a right angle. 

The directional spreading of waves is normally described by use of an energy 
distribution K(Acu) which describes the density of the wave energy as a function 
of the direction of propagation Aa measured relative to the mean wave direction. 

Figure 5.7 Spreading factor versus Acu for two crossing wave fields. 
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Figure 5.8 Spreading function versus @.a. 

The function I<(Aa) must be normalized so that the total energy is still 
described by the non-directional wave spectrum 

(5.39) 

In the general situation the directional spreading may vary with the fre- 
quency in the spectrum, and K is then specified as a function of both the frequency 
and Aa. Several different empirical functions have been developed for describing 
the distribution of the directionally spread energy. A commonly used function is 

(5.40) 

The directional distribution of the wave energy is illustrated in Fig. 5.8 
for different values of the power s. Fig. 5.9 shows the reduction of the shear 
component of the radiation stress as a function of s. For natural storm waves s 
is often estimated to be about 8. According to Fig. 5.9 this corresponds to a 
reduction of the longshore driving force by a factor 0.6. 
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Figure 5.9 Spreading factor versus s 

Example 5.3: Calculation of driving forces from waves, wind shear 
stress, and coastal current 

Consider a coast with a constant slope 1:50 and the following incident wave 
properties. The wave height at the point of breaking is Hb = 1 m and period 
T = 5 s. The waves are breaking at a water depth Db = Hb/0.8 = 1.25 m and the 
deep water wave direction is 010 = 20". Wave set-up is neglected. The waves are 
described by linear wave theory. The wave angle at the point of breaking is found 
by a refraction calculation to be C q ,  M 8'. 

The total longshore driving force is found as 

sin(2ab) Fmb = 158 N/m (5.41) 
1 

sz, = 2 
The wind friction factor is estimated by assuming a logarithmic velocity profile 
and a surface roughness of 5 cm 

(5.42) 

The width of the surf zone is 1.25 . 50 m = 62.5 m. The wind speed which would be 
required to give the same longshore driving force in the surf zone is then estimated 
from Eq. 5.35, assuming that the wind direction corresponds to the deep water 
wave direction 

rw sin20' = 158/62.5 N/m2 = 2.53 N/m2 (5.43) 
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giving 
2.53 N/m2 x 2 u,z, = = 2740 m2/s2 
pafw sin(20") 

(5.44) 

or Ulo = 52 m/s, which is an extremely strong wind compared to the modest wave 
height of 1 m. 

The total longshore driving force in the surf zone associated with a coastal 
current is obtained by integrating Eq. 5.36 across the surf zone 

S pg-S d X '  = -~ 
X pg (62.5 m)' 12'5m 50 2 50 

(5.45) 

where z is the distance from the shoreline. The water surface slope which gives a 
driving force equal to the radiation stress is found as 

S = 158 N/m x 2 x 50/(pg(62.5 m)*) = 4.13 x (5.46) 

For a water depth of 10 m and a bed roughness of 5 cm, a water surface slope of 
4.13 . lop3 corresponds to a current velocity of 

10 m x 30 
V, = x 2.5(1n( o.05 ) - 1) = 3.9 m/s (5.47) 

which is also an extraordinarily strong current. It can be seen from these two 
examples that in many cases the contribution from the wind and coastal currents 
to the driving forces in the surf zone are of minor importance. 

5.2.2 The flow resistance 

While the main principles behind the description of the longshore driving 
force have remained unchanged, the flow resistance term has been subject to a 
considerable improvement. 

The original approach of using a quadratic flow resistance term for the 
combination of the mean current and the wave orbital velocity was not a good 
approximation because of the large difference between the thickness of the wave 
boundary layer and of the mean current boundary layer. Due to the thin wave 
boundary layer, the friction factor for the oscillatory motion is larger than for the 
mean motion. 

An improvement has been to introduce the models for combined wave- 
current boundary layers, as described in Chapter 3. An example of such an appli- 
cation has been presented in the model by Deigaard et al. (1986a). 
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In the present section, only the depth-integrated current velocity Vy has 
been considered. It is, however, not possible to analyze the flow resistance in any 
detail without looking at the vertical distribution of the shear stress, the eddy 
viscosity, and the current velocity. The models for wave-current boundary lay- 
ers do not, however, take the strong turbulence from wave-breaking into account. 
The increase of the eddy viscosity, due to the breaking-induced turbulence, will, 
for a given shear stress distribution, give a more vertical velocity profile with a 
smaller depth-integrated current velocity, compared to the logarithmic mean ve- 
locity profile of the wave-current boundary layer models developed for use outside 
the surf zone. The flow resistance is therefore increased by the turbulence from 
the wave-breaking. 

~ _--- 
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Figure 5.10 Example of velocity profiles for a longshore current calcu- 
lated with and without eddy viscosity contribution from wave- 
breaking. D = 2 m,  H = 1 m, T = 6 s, r b  = 1.8 N/m . 2 

Deigaard et al. (1986a) calculated the velocity profile with and without 
the breaking-induced turbulence. The turbulence was calculated as described in 
Chapter 4. The velocity profiles are shown in Fig. 5.10. The depth-integrated 
velocity is reduced by about 20% when the effect of breaking-induced turbulence 
is included. The use of the wave-current boundary layer model alone, without 
taking the additional turbulence into account, will thus cause an error of about 
20% in the calculated current velocity, a difference which is small compared to the 
general uncertainty associated with longshore current calculations. The difference 
between the two velocity profiles is largest far from the bed, and if the purpose is 
to calculate sediment transport rates, the difference is even smaller, because the 
suspended sediment is mainly concentrated near the bed. 
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The two solid velocity profiles in Fig. 5.10 are calculated from a triangular 
shear stress distribution. As will be seen later in Chapter 6, a constant shear 
stress over the vertical is in fact a better approximation. The use of a constant 
shear stress gives an increase to the depth-integrated velocity of about 2%, when 
the breaking-induced turbulence is included, as indicated with the broken curve 
in Fig. 5.10. 

5.2.3 The momentum exchange 

Considerable effort has been made to improve the description of the cross- 
shore exchange of longshore momentum, but none of the solutions has been entirely 
satisfactory. Still, it must be kept in mind that this term only redistributes the 
momentum without contributing to the total balance, and that the effect of irreg- 
ular incoming waves will smooth out the velocity profile so much that the accuracy 
of the modelling of the momentum exchange becomes much less important. 

Two objections may be brought against the formulation of the momentum 
exchange used by Longuet-Higgins (1970). First, E is related to a global param- 
eter, the distance from the shore, rather than to local parameters. Secondly, E 
increases with the distance from the shore, also outside the surf zone where a de- 
crease of momentum exchange can be expected. The first objection is less severe, 
considering the assumptions made. With a constant beach slope and a fixed ratio 
between the wave height and the water depth in the surf zone both the wave height 
and the water depth in the surf zone are proportional to the distance from the 
shore. 

Many attempts have been made to improve the description of momentum 
exchange, but in all cases the exchange has been formulated with an  exchange 
factor and the gradient in the depth-integrated current. 

Jonsson et al. (1976) calculated E as a function of the local wave conditions. 
The depth-integrated turbulence model for the surf zone, described in Chapter 4, 
was actually developed by Battjes (1975) in order to model E .  The problem with 
a discontinuous E at the breaker line was later overcome by including horizontal 
diffusion of the turbulent kinetic energy (Battjes, 1983). 

A contribution to the momentum exchange, which has been largely ne- 
glected, originates from the ordered mean flow in the surf zone, the circulation 
current. A complete analysis of this mechanism has not yet been carried out. But 
in Example 5.4 the contribution from the water in the surface rollers has been 
assessed. 
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Example 5.4: Momentum exchange in the surf zone, due to orga- 
nized water motion 

Using Engelund’s (1981) model, cf. Example 4.2, the cross-sectional area of 
the surface rollers can be approximated by 

(5.48) 

The acceleration of the surface roller in the x-direction towards the coast 
is small, and the horizontal forces acting on the roller must be close to a balance. 
Three forces acting on the surface roller are considered: gravity ( p g A ) ,  a pressure 
force, P,, and a shear force, T,., on the surface between the roller and the water 
below, Fig. 5.11. 

Figure 5.11 The  forces acting on the surface roller. 

Equilibrium between these forces gives the integrated shear stress along the 
length I ,  of the roller (assuming (YO to be small) 

(5.49) 

The momentum exchange for a situation with normally incident waves act- 

The longshore current is locally described by a linear variation (Fig. 5.12) 
ing with a shore-parallel current is determined as follows: 

v, = v,, + v;x (5.50) 
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Figure 5.12 The longshore velocity distribution. 

The shore-parallel velocity component of the water in the surface roller is 
called V,. The shore-normal velocity of the roller is the wave celerity, c. The shear 
force acting on the surface roller is assumed to be directed against its velocity 
relative to the water below. When V, is not equal to V,, the shear stress acting on 
the surface roller will thus form an angle to the shore-normal direction. Assuming 
that V, - V, is small compared to c,  this angle can be approximated by (V, -V,)/c. 

The shore-parallel momentum equation for the surface roller (per unit length 
of the wave front) then reads 

The translation of the roller in the x-direction with the velocity c gives 

dV, dV, 
dt dx 
- = c- 

which inserted in Eq. 5.51 gives 

(5.51) 

(5.52) 

(5.53) 

In the following the vanishing transient part of the solution is neglected, i.e. 

The flux of shore-parallel momentum through a shore-parallel cross section 
(the shear force) has two contributions from the organized motion considered: 
from the surface rollers and from the average return flow. Due to continuity 
considerations the discharges of these opposing flows are of the same magnitude 
and equal to: qz = A/T .  The time-averaged shear force is calculated as 

c, = o .  

l T  1 
P T 
T"y = -T 1 q,V,dt = --(AVT - AV,) = 

pc2 A A p c 2 A  
(5.54) 

A 
- (Vy - V;(x - -) - V ) = V'-- = EDV,' 
T T, yo T T, 
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Where the momentum exchange coefficient E has been introduced. E is thus found 
to be 

(5 .55 )  

The dimensionless exchange factor, E / D m  for 010 equal to tanlo'  is 
shown in Fig. 5.13 as a function of the relative wave height and dimensionless 
wave period. The result may be compared to the magnitude of the turbulent eddy 
viscosity, which is estimated to be a few per cent of D m  (Stive and Wind, 
1986). 
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Figure 5.13 The dimensionless momentum exchange coefficient as a func- 
tion of HID and gT2/D.  

5.2.4 Longshore current on barred coastal profiles 

The assumption of a constant beach slope is often not a good approximation; 
sandy coasts exposed to a wave climate will often build up barred profiles. Fig. 
5.14 shows an example from the Danish North Sea coast with three bars. A 
longshore current model should therefore be able to describe the absence of wave- 
breaking in the trough inshore of the bar, which for example can be done by using 
the model by Battjes and Janssen (1978), Chapter 4. The calculated velocity 
profiles in Fig. 5.14 is made by the model by Deigaard et al. (1986a). Here the 
height of breaking and broken waves are determined by Eq. 4.3 (letting the depth 
at the crest of the bar govern the height of the broken waves in the trough inshore 
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Figure 5.14 Calculated longshore current profiles on coast with three bars. 
A: Wave conditions are given at the outer breaking point. 

breaking on all bars; B: breaking at two inner bars. 

of the bar). According to this simple formulation the reformed waves immediately 
inshore of a bar will have half the height the water depth over the bar. 

The driving force dS,,/dx is only significant on the offshore face of the 
bars and at  their crests. The calculated velocity profiles have therefore a local 
maximum at each bar. This characteristic velocity distribution is often difficult to 
confirm by field measurements. An example of longshore current measurements 
on a barred beach, from the Super Duck experiments, is shown in Fig. 5.15; these 
measurements presented by Whitford and Thornton (1988) show a clear tendency 
for the strongest longshore current velocities to be located near the bar crest. One 
of the main reasons for deviations from the theoretical velocity profile may be 
that the beach topography deviates from the assumed uniform coast with straight 
shore-parallel depth contours. If the topography is irregular, complex circulation 
currents can be generated, which have a very significant effect on the momentum 
exchange in the surf zone. 

5.3 Wave-driven currents on a non-uniform beach profile 

In the preceding section a longshore wave-driven current was considered. 
The influence of different effects was discussed: irregular waves, wind, momentum 
exchange, barred profiles, etc.. A much more drastic change in the current pattern 
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Figure 5.15 Measurements on a barred profile a t  five locations. From bot- 
tom: A: recorded water depths; B: measured longshore current 
velocities; C: measured shear component of the radiation stress. 
After Whitford and Thornton (1988). 

can be caused by irregularities in the coastal profile along the coast. 
One of the best known examples is the phenomenon of rip channels. On a 

barred profile the wave breaking on the bar will induce a wave set-up, causing an 
increase in the water level inshore of the bar. However, a bar will in many cases 
be interrupted by holes - rip channels - found at more or less regular intervals. 
The wave-breaking is less intensive in the rip channels due to the larger depth and 
because wave refraction may concentrate the wave energy on the bars at  the sides 
of the channel. 

The shoreward decrease of the radiation stress is therefore not the same over 
the bar and in the rip channels, and a balance between the radiation stress and 
the pressure of a constant water level in the trough inshore of the bar cannot be 
obtained at all cross sections along the coast. An offshore-directed flow is therefore 
driven out through the rip channels due to the wave set-up behind the bar. The 
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out-going water flux is compensated by an onshore net flow across the bar. 
In this way the irregular beach profile causes a wave-driven circulation cur- 

rent: shorewards over the bar, seawards in the rip channels, and alongshore in the 
trough towards the rip channels, Fig. 5.16. 

Coast line 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / (  

- ,  * 

-Bar-+ Rip -Bar- Rip I-Bar 
channel channel 

Figure 5.16 T h e  circulation current generated by normally incident waves 
on  a barred coast with rip channels. 

If the waves approach the coast obliquely, the pattern becomes even more 
complex. The waves that break on the bar will exert a longshore driving force 
similar to the conditions on a uniform coast; a longshore current will be generated 
on the bar. The longshore current velocity profile may, however, be strongly 
modified by the shoreward flux over the bar, and some of its longshore momentum 
will be transferred to the flow in the trough. In the trough the flow is feeding 
the seaward flow in the rip channels, and the flow in the troughs may locally 
be stronger or weaker than the longshore flow on the bar, and it may locally go 
against the direction corresponding to the incoming wave direction. An irregular 
beach topography thus contributes many complications in the modelling of flow 
and sediment transport in the coastal zone when planning field measurements or 
interpreting observations. 

Example  5.5: Circulation driven by normally incident waves 

In order to illustrate the order of magnitude of the circulation currents 
generated by normally incident waves, a very simplified model is considered. The 
geometry is illustrated in Fig. 5.17. The length of the bar is 2 L. The width of 
the rip channel is assumed to be so large that the flow behind two neighbouring 
bars does not interfere, and that the water level in the channel corresponds to the 
sea level. This flow situation was considered by Dalrymple (1978), who took the 
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energy dissipation of the mean flow to be caused by bed friction. In the present 
example the energy loss is described as head losses where the flow crosses the bar, 
and where it flows from the trough into the rip channel. 

2 L  L 0 
Y- 

Long shore Ear7 
1 I r ------I Rip- 

ts channel 
Wave breaking 

Figure 5.17 Definition sketch for the simplified model for wave-driven 
circulation. 

The determination of the wave set-up, in the case of no cross-shore current 
across the bar, is described in Chapter 4. With no net current and uniform con- 
ditions, the set-up behind the bar is AD,. An actual set-up A D ,  smaller than 
ADO, will be associated with a net onshore cross current with a specific discharge 
q. The magnitude of the onshore current is estimated by assuming that the energy 
loss is equal to the velocity head of the net discharge over the bar 

(5 .56 )  

or 
q = DcJ2g(AD,  - A D )  (5 .57 )  

where D ,  is the water depth over the bar crest. In this description the bed shear 
stress on the bar has not been taken into account. Including the bed shear stress 
would give a small decrease of the calculated circulation current. 

The longshore flow in the trough inshore of the bar is described by the mo- 
mentum equation for non-uniform flow. The discharge is Q, and the cross-sectional 
area of the trough is A.  The wave set-up is assumed to be small compared to the 
water depths. If the bed shear stress is neglected, the shore-parallel projection of 
the momentum equation for the flow in the trough reads, cf. Fig. 5.18 
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or 
(5.59) 

In Eq. 5.58 the hydrostatic pressure, corresponding to a water surface at  A D  = 0, 
has been omitted at both sides of the equation. Further, it should be noted that 
the cross flow over the bar carries no longshore momentum and is therefore not 
included directly in Eq. 5.59. 

Figare 5.18 Sketch showing the terms i n  the longshore momentum equation 

The continuity equation gives the relation between the longshore and the 
cross-shore current 

- - P  
dQ 
dY 
_ -  (5.60) 

The boundary conditions are that A D  = 0 at y = 0, corresponding to a 
head loss of Q2/ (2gA2)  at the outflow from the trough and Q = 0 at  y = L due 
to symmetry. 

The discharge is found by solving Eqs. 5.57, 5.59 and 5.60. The solution is 

' = s i & ( & y )  - ,a&(&%) ~ o s h ( & y )  (5.61) 
Ad= 

The variation of the longshore velocity V = Q / A  is shown in Fig. 5.19 as functions 
of y and L. 

An impression of the velocity magnitude predicted by this very simplified 
model can be obtained from Fig. 5.20, which shows the velocity scale Vo = ,/= 
as a function of the deep water wave steepness H,/Lo and the still water depth over 
the bar crest, Do, = D,  - A D .  The magnitude of the velocity scale is illustrated 
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Figure 5.19 The longshore current velocity V as a function of y and L. 
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Figure 5.20 The scale for the longshore current velocity VO as a function of 
the depth a t  the crest of the bar and the deep water steepness. 

by taking a typical value of V O / ~  equal to 0.3. A wave height of Ho = 1 m 
then gives Vo = 0.9 m/s and Ho = 3 m gives Vo = 1.6 m/s. 

It is interesting to note from Fig. 5.19 that the outflow discharge at  y = 0 is 
practically constant for LD,/A larger than 1 - 1.5. This sets an upper limit for the 
length of a bar that can be expected to be stable. Consider a bar with existing rip 
channels being maintained by the flushing effect from the flow generated by the 
waves. If a section of the bar had a length corresponding to LD,/A = 3 or longer, 
then a new rip channel formed in the middle of the bar would draw a rip current 
with practically the same strength as in the existing channels, without noticeably 
reducing these. The new channel would therefore be maintained as effectively as 
the existing ones. According to this very simplified model the maximum spacing 
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of rip channels can be expected to be of the order 2 - 3 times AID,, or a few times 
the distance from the shore to the bar. 

Example 5.6: Longshore current with a cross flow 

As illustrated in Example 5.5, circulation currents will be generated on 
a non-uniform beach topography by normally incident waves. In a bar and rip 
channel system, the flow is directed onshore over the bars and offshore through 
the channels. If the waves approach obliquely, a longshore current will be generated 
on the bars, but the cross flow has an impact on the dynamics, which must be 
taken into account. 

In order to illustrate the effect, an infinitely long uniform bar profile, Fig. 
5.21 is considered. Over the bar there is an onshore directed flow with the discharge 
q .  For steady state conditions, the depth-integrated flow equation in the longshore 
direction becomes 

where V, is the depth-integrated velocity in the x-direction, and the longshore 
velocity V, is taken to be constant over the depth. S,, is the shear radiation 
stress and qY is the shear stress in the y-direction. 

Point of wave 
Breaking 

1 
0 

Figure 5.21 Wave-breaking on a bar with a cross flow. 

In Eq. 5.62 the shear-induced momentum exchange is neglected, since the 
purpose of this example is to illustrate the effect of the convective acceleration term 
at the left-hand-side of the equation. The following simplifications are introduced: 
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- The wave angle is small, cosa z 1. 
- The ratio K between the wave height and the water depth is constant. 
- The bed slope tan@ is constant. 
- Shallow water wave theory is used. 
- A linear bed shear stress formula is used: 

T b y  = pI<lvy (5.63) 

With these assumptions the driving force from the radiation stress is found 
(cf. Eq. 5.15) as 

(5.64) 

If there is no cross current, the longshore current at the breaker line is 

where Db is the water depth at the point of wave-breaking. By using VO as a 
velocity scale and X b  as a length scale, Eq. 5.62 is made dimensionless ( X b  is 
defined as Db/ tan p, cf. Fig. 5.21) 

or 

(5.66) 

(5.67) 

The boundary condition to the differential equation is 

which reflects that the water moving into the surf zone has no longshore velocity 
and must be accelerated from zero by the radiation stress gradient. 

The solution to Eq. 5.67 is shown in Fig. 5.22 for different values of the 
coefficient xbIil/q. The mathematical solution is given for 0 5 x/xb < 1, but the 
solution is only valid until the crest of the bar. It is seen that for small values 
of hrlxb/q (that is for a strong cross flow) the velocity profile becomes very flat. 
This is because each water particle moves so fast through the surf zone, where the 
longshore driving force is acting, that the particle is not accelerated to a speed 
comparable to Vo. With increasing values of Icl Z b / q ,  the velocity profile gradually 
approaches the equilibrium profile, shown by the dashed line, where bed shear 
stress locally balances the radiation stress gradient. For small values of I<lZb/q, 
the total bed shear stress on the bar is much smaller than the driving force and 
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\ 

Figure 5.22 Longshore current velocity distribution, for uniform conditions 
with a cross flow. 

a considerable part of the longshore momentum, delivered by the radiation stress 
in the surf zone, is convected to the trough inshore of the bar. The amount 
of longshore momentum which is convected is pqVyl, where V,, is the longshore 
velocity at the crest. 

Modelling of wave-driven currents over a complex topography 

In the general case of obliquely incident waves on a complex coastal topo- 
graphy, it is not possible to use analytical methods to describe the flow pattern. 
It is then necessary to use numerical models to solve the general, depth-integrated 
flow equations for two horizontal dimensions. The flow equations can be written 

momentum in the x-direction: 

87 
+Tbz + pgD- = 0 

dX 

momentum in the y-direction: 

pD(% + Vy% + 
dY 

+Thy + PgD- = 0 
dY 

(5.69) 

(5.70) 
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continuity: 

(5.71) 

Here D is the total water depth, 7 is the water surface elevation (averaged 
over the wave period) relative to a fixed level, T,,, TYy and Tzy represent the 
Reynolds-stresses due to the velocities (turbulence, secondary flows) which are 
not described by the model. The three flow equations combine into a model for 
the flow on a time scale that is large, compared to the wave period. 

The most important driving forces in the present context are the radiation 
stresses, which must be obtained from a separate wave model. At the present state 
of the art, the wave and the current models are most often run independently. This 
means that the wave model is run first, assuming a horizontal mean water surface 
and no current. From the wave model the radiation stresses are calculated. The 
radiation stresses are then included in the current model as driving forces. The 
current model then produces the current velocities and the mean water level in 
the area. By this simplification, the effect of wave set-up and current refraction is 
not taken into account in the wave model. 

Example 5.7: Circulation current on a barred coast with rip channels 

The current velocities over a complex topography can be illustrated by 
examining the model by Zyserman (1989). Zyserman considers a schematized bar 
profile with regularly spaced rip channels. 

Figure 5.23 The configuration of rip channels in the  model by Zyserman 
(1989). 
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Figure 5.24 Longshore current on  a coast with a bar and  rip currents. Lb is 
the distance between the rip channels, from Zyserman (1989). 

The bar profile is composed of two parts with constant slopes, and a discon- 
tinuity at the bar crest. The rip channels have rectangular cross sections through 
the bar with the depth D H  and width Yb, Fig. 5.23. Zyserman introduced a 
number of simplifications in order to develop an analytical-numerical model. For 
instance the cross-shore current over the bar crest is determined by the head loss, 
cf. Eq. 5.57. The important mechanism of cross-shore convection of momentum 
on the bar and in the trough is included in the description. Fig. 5.24 shows the 
profiles of the shore-parallel flow for a case with a bar length of Lb = 180 m and 
a width of the rip channel of Yb = 50 m, the distance from the shore to the bar 
was 90 m. The deep water wave height and angle of approach was 1.2 m and 45" 
and the period was 7.5 s. It can be seen how the current in the trough becomes 
stronger than the longshore component on the bar, and that the flow in the trough 
is directed against the longshore current over a distance of about 1/3 of the spacing 
between the rip channels. 

It is seen that the cross-shore flow over the bar, which is stronger near the 
rip channels than at the centre of the bar, has an impact on the longshore velocity 
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on the bar, cf. 
sediment transport is treated in Chapter 12. 

Example 5.6. The effect of the rip channels on the longshore 

Example 5.8: Detailed modelling of wave-driven currents at an ac- 
tual site 

The site in this example is Pesaro at the Adriatic coast of Italy, at  the 
important tourist area between Arcona and Rimini. The topography in the area 
of interest is given in Fig. 5.25. The present example is based on a study carried 
out for Aquater, Italy, by the Danish Hydraulic Institute, as reported by Madsen 
et al. (1987). 

0 100 200 300 400 500m 

Figure 5.25 Topography of Pesaro site. 

The waves are described by a refraction model which was found to be ade- 
quate, because the effect of wave diffraction is minor in this case. Fig. 5.26 shows 
an example of the refraction calculation, with waves coming from the east (height 
2.3 m, period 8.4 s). The wave orthogonals show a rather smooth wave pattern, 
but with some concentration of incoming wave energy at  certain locations along 
the beach. The wave-breaking and the wave height variation after breaking have 
been described by the empirical wave height index of Andersen and Fredsoe (1983), 
Eq. 4.3. The refraction model thus gives the details of wave height and direction 
over the entire model area. This is the basis for the calculation of the radiation 
stresses and their gradients, included as driving forces in the current model. The 
current is calculated by the model 521 of the Danish Hydraulic Institute, which 
solves the depth-integrated momentum and continuity equations, Eqs. 5.69-5.71 
on a rectangular grid. The numerical techniques used in this modelling system are 
described by: Abbott et al. (1973), Abbott (1979) and Abbott et al. (1981). 

The model area is represented by a rectangular grid,.with a local bed level 
at each grid point. In the present case the model area of 1700 x 750 m is resolved 
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Figure 5.26 Computed wave refraction pattern at  Pesaro. Waves from the 
east. From Madsen et al. (1987). 

in a mesh size of 25 m along the coast and 10 m perpendicular to the coast. The 
flow equations are discretized into finite difference equations in this grid, and the 
equations are solved from one time step to the next, using an implicit numerical 
scheme. In this case a time step of 2.5 s is used, about 1000 s are required to 
obtain steady state conditions. 

Fig. 5.27 shows the calculated steady current pattern, driven by the waves 
of Fig. 5.26. Fig. 5.27A represents the existing situation, while Fig. 5 .279 shows 
a situation with submerged, detached breakwaters, as indicated on the figure. The 
top of the breakwaters is 0.8 m below the undisturbed still water level. It can be 
seen how the breakwaters cause the location of maximum velocities to be shifted 
offshore, because the waves now break on the breakwaters. A system of vortices 
is formed in the lee of the breakwaters. These vortices are related to the gaps 
between the breakwaters. 

5.4 Low frequency oscillations 

Until now, the effect of irregular waves on the wave-driven currents has 
been taken into account by considering only the statistical distribution of the 
wave heights and averaging the contributions from the different wave heights. 
This approach will give a steady wave-driven current because the sequence of the 
incoming wave heights is neglected. In a train of irregulax wind-generated waves 
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Figure 5.27 Computed wave-induced current pattern, at  Pesaro. Wave sit- 
uation as in Fig. 5.26.  A: Present situation. B: With  sub- 
merged, detached breakwaters. 

the high and low waves will normally appear in groups, with typically 4-8 waves 
in each group. Fig. 5.28 shows an example of a wave train where the wave groups 
are illustrated by the dashed curve which is the envelope of the wind waves. The 
wave groups will propagate in the same direction as the waves but with the group 
velocity cg, which is half the wave celerity for deep water waves and is equal to 
the .wave celerity for linear shallow water waves (cf. Chapter 1). 

Infragravity waves, edge waves, surf beat 

The existence of the wave groups gives rise to second order waves with 
periods corresponding to the period of the groups. Due to their long periods they 
are termed infragravity waves. Some of the mechanisms behind the generation of 
infragravity waves are outlined in the following. 

The radiation stress is a function of the wave height and is therefore varying 
along the wave train in phase with the wave groups. The gradients in the radiation 
stress must be balanced by variations in the mean (wave-averaged) water surface 
and by accelerations of the water, resulting in a low mean water surface under 
groups of high waves where the radiation stress is high and a high mean water 
surface under the small waves where the radiation stress is low. This mechanism 
is analogous to the wave set-down caused by wave shoaling as described in Section 
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Figure 5.28 The wave groups and the associated mean water level. 

4.2.1. Therefore a train of second order waves travels with the irregular waves 
with a celerity corresponding to the group velocity of the irregular waves and 
with a wave length of the same order as the length of the wave groups. These 
low-period waves are called bound long waves. As the wave train approaches the 
shore, the height of the bound long waves will drastically increase as the group 
velocity approaches the phase velocity of the short period waves in the shallow 
water. The significance of the bound long waves is therefore increased as the 
waves progress into shallower water (Longuet-Higgins and Stewart, 1962). The 
existence of infragravity waves was first noticed in the nearshore area, where slow 
oscillations or ‘surf beat’ was observed (Munk, 1949 and Tucker, 1950). 

When the short waves come into the surf zone and loose height and energy 
due to the wave-breaking, they can no longer balance the bound long waves that 
have been following them, and the long waves are then released from the short 
waves. If the short waves have approached the coast perpendicularly, the long 
waves will now normally be reflected from the coast and propagate in the offshore 
direction as free long waves. If the short waves approach the coast at  an angle, 
the long waves may still be reflected and propagate into deeper water. In many 
cases, however, the large difference between the wave period of the long waves and 
that of the short ones makes it impossible for the reflected long waves to reach 
deep water. When the bound long waves are released and reflected near the surf 
zone, they will be refracted as they move into deeper water. This refraction is 
determined by their own long period and it may turn them around to move in 
the shore-parallel direction before they reach very deep water, as sketched in Fig. 
5.29. In this case the long waves are unable to leave the coast; this is called the 
‘trapped mode’. If the reflected long waves can propagate into deep water, it  is 
termed the ‘leaky mode’. The reason for the long waves being trapped, even if 
they have approached from deep water, is that during the approach they were 
bound to the short waves and were thus following their refraction determined by 
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the short wave periods. The trapped waves will then progress along the coast in 
the form of three-dimensional edge waves, with a wave height decreasing with the 
distance from the shoreline. 

bound 
Wong wave 
yN short released long wave 

/ -  

in the trapped mode 

/ \ 
- d. gwav:/ / \ \ ’  

\ I  9 1  +’ 
/ / / / /  / / / / / / / / / / / / / / / / /cwt/li/e 

Figure 5.29 Long waves released in the trapped mode. 

Figure 5.30 The wave height and mean water surface (set-up) for large 
(fully drawn lines) and small (dashed lines) waves, equilibrium 
conditions. 

Another mechanism generating low-period waves in the trapped or the leaky 
mode was first considered by Symonds et al. (1982). It is related to the wave- 
breaking. When the irregulas waves break, the force associated with the radiation 
stress gradient will vary in strength with the height of the breaking waves. In a 
quasi-steady situation this will result in a larger set-up in the surf zone when the 
large waves break than when the smaller waves break, cf. Fig. 5.30. In reality, 
the typical period of the wave groups will be so short that the situation in the surf 
zone is dynamic, with low frequency waves being generated by the time-varying 
forcing from the breaking of the irregular waves. Fig. 5.31 shows an  example of a 
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Figure 5.31 Calculated infragravity wave over a barred profile, over one 
half of the  period of t.he wave groups, Tg. After Symonds and  
Bowen (1984). 

low frequency wave generated by the time-varying location of the point of wave- 
breaking on a coastal profile with one bar, Symonds and Bowen (1984). A model 
which combines the effect of a time-varying break point position and the effect of 
the incident long waves was presented by Schaffer (1990). The model describes 
oblique incidence with the possibility of trapping as well as normal incidence. It 
is found that the two effects are of the same order of magnitude. 

In many situations the low frequency waves may be expected to play an  
important role in the coastal morphology (cf. Hunt and Johns, 1963, Holman and 
Bowen, 1982). but until now 110 quantitative models describing their significance in 
terms of sediment transport rates have been developed, and much of the support 
for their importance has been indirect. For example it has been suggested that 
the distance from the shorehe  to a longshore bar corresponds to the wave length 
of a standing long wave, Bowen (1980). 

Far infragravity waves - instability of longshore currents 

All the long waves described above are gravity waves, which means that 
the important forces in their dynamics are pressure, inertia, and gravity. It has 
therefore been possible to determine the dispersion relation, which is the relation 
between the wave length and the period, for these waves. Recently field measure- 
ment,s have detected waves that progressed in the longshore direction, but did not 
follow the dispersion relation for any known type of gravity wave, Oltman-Shay et 
al. (1989). The wave periods were of the order 10’s which is in the low frequency 
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domain, but the wave lengths were much too small (of the order 10’m) to comply 
with any known theory for gravity-driven waves. 

It has been proposed (Bowen and Holman, 1989) that an explanation for 
the occurrence of these waves, which are termed Far Infra Gravity Waves (FIG- 
waves) because of their very long periods compared to the wave length, might 
be an instability mechanism in the wave-driven longshore current. In the study 
by Oltman-Shay et al. the FIG-waves were only observed in connection with a 
longshore current, and the direction of propagation was always the same as the 
direction of the current. The stability of the longshore current was investigated by 
Bowen and Holman (1989) by adding a small perturbation to a steady longshore 
current and then finding the development with time from the depth-integrated 
flow equations neglecting the effect of gravity and bed friction. The flow equations 
were linearized so that only first order terms of the perturbation were maintained. 
The initial exponential growth or decay of the perturbation was then predicted 
by the solution to the linearized flow equations. The perturbations were taken to 
be periodic in the longshore direction and the wave length that gave the fastest 
growth rate was interpreted as representing the FIG-wave that would emerge in 
a given situation. The instability mechanism that gives rise to the growth of the 
perturbations is connected to the velocity distribution of the longshore current, 
and it is found that the instability only exists because the vorticity of the longshore 
current velocity field has a maximum and the FIG-waves predicted by this model 
can therefore be described as shear waves on the longshore current. 

The fastest growing perturbations had a typical longshore wave length of 
two times the width of the surf zone and a celerity of 1 /3  of the maximum longshore 
current velocity. 
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Chapter 6. Current velocity distribution 
in the surf zone 

In Chapter 5 wave-driven currents were considered with the emphasis on 
the depth-integrated velocities. In this chapter their detailed three-dimensional 
structure will be analyzed. This concerns not only the velocity distribution of the 
depth-integrated wave-driven currents, which is of importance for the magnitude 
of the suspended sediment transport, but also the secondary currents normal to the 
mean flow direction, which become zero when integrated over the depth. Because 
of these secondary currents, the velocity vectors will deviate from the shore-parallel 
direction of the depth-integrated longshore current. In the surf zone, the velocity 
near the surface has an onshore component, while the near-bed velocity has an 
offshore component. The secondary circulation currents are therefore important 
for the sediment transport normal to the coastline and for the development of the 
coastal profile. 

In hydraulics the discharge of a pipe or a conduit can be calculated from 
only the driving pressure gradient and the friction factor. However, if the details 
of the velocity distribution are required, it is necessary to determine the shear 
stress distribution over the cross section of the pipe. Similarly, the first step for 
determining the velocity distribution of wave-driven currents is to analyse the 
shear stress distribution. 
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6.1 Normally incident waves, shear stress distribution 

As a starting point, the situation with normally incident waves on a uniform 
coast is considered. This equates to the situation represented in a wave flume. 
It was first noted by Dyhr-Nielsen and Sarensen (1970) that shear stresses and 
currents could be caused by the variation in the wave height across the surf zone. 
Their argument can be briefly summarized as follows: 

The two most important forces integrated over a wave period in the surf 
zone are the radiation stress gradient and the pressure gradient due to the set-up, 
cf. Section 4.2.1, where the wave set-up is calculated for the condition where the 
two forces balance each other. 

This balance is, however, not perfect. If the two forces do not have the 
same vertical distribution, shear stresses must be introduced in order to obtain 
a balance, and thpse shear stresses will then be associated with a mean current 
velocity profile. 

I 
Figure 6.1 The  vertical distribution of the horizontal forces in the  surf 

zone. ( 1 )  The pressure part of the radiation stress. (2) The  
momentum part of the radiation stress. (3) The pressure gra- 
dient due to  the set-up. 

The distribution of the two forces is illustrated in Fig. 6.1 for the case of 
linear shallow water waves. The pressure gradient due to the wave set-up is evenly 
distributed over the vertical 

aP - = -pgs  
i 9 X  

The momentum part of the radiation stress is also evenly distributed over 
the vertical, as the horizontal orbital velocity is constant over the depth. The 
pressure part of the radiation stress is, however, located at the surface, between 
the wave top and wave trough levels. This can be seen from the time-averaged 
pressure, which under trough level is equal to the hydrostatic pressure under an 
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undisturbed water surface at mean water level. The radiation stress due to the 
pressure must therefore be located above the wave trough level. 

In this way there is an indication that the waves in the surf zone induce a 
shear stress distribution and a mean circulation current. A mathematical model 
using these principles was developed by Dally and Dean (1984). Svendsen (1984A) 
introduced the effect of the surface rollers in the model, and Stive and Wind 
(1986) have made careful experimental investigations of the different terms in the 
momentum balance. Deigaard and Fredsoe (1989) made a modification of the 
theoretical shear stress distribution by including an important contribution from 
the vertical flux of the horizontal momentum. 

In the following, the vertical distribution of the shear stress in the surf zone 
is derived. It is assumed that the energy dissipation due to the wave-breaking is 
totally dominant over the dissipation in the near-bed wave boundary layer. 

The water motion 

The water motion in the waves is described according to the model outlined 
in Section 4.2. The pressure is assumed to be hydrostatic, and the horizontal 
orbital velocity u is constant over the depth. The wave profile is described as a 
cosine function. This is a simplification, but other wave profiles may be intro- 
duced by use of Fourier series, and the final result, in the form of the shear stress 
distribution, is not affected by the wave profile. 

where 7 is the water surface elevation, H is the wave height, k is the wave number, 
and w is the cyclic frequency. Here and in the following only the lowest non-zero 
term in ( H I D )  is maintained. In addition to the wave motion, surface rollers, each 
with the cross-sectional area A ,  follow each wave front, travelling with the phase 
velocity c of the waves. 

When calculating the orbital velocity u it is important to include the effect 
of the variation in the wave height. Due to the energy dissipation the wave height 
decreases towards the shore. Over a short distance a linear approximation can be 
applied 

H = H,, + x ~ ;  (6.3) 

where x = 0 at the location considered, and H = Ho at x = 0. The continuity 
equation integrated over the depth reads 
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Eqs. 6.2, 6.3 and 6.4 give the following expression for u 

H c  HI . (cos(kz  - ut) - -sin(& - ut)) 
k H  

u =  
2 D ( 1 +  ( H I / k H ) 2 )  

FZ - H c  (cos( kx  - ut) - - H1 sin( k z  - ut)) 
2 0  k H  

Eq. 6.5 can easily be verified by insertion in Eq. 6.4. It has been assumed 
that the variation in the wave height is weak 

H I  - << I 
k H  

Eq. 6.5 shows that there is a small phase difference between u and v because 
of the non-uniform wave conditions: when the wave height decreases towards the 
coast, water is transferred from the wave tops to the wave troughs, and u cannot 
be exactly zero, where 7 is zero. It should be noted that Eqs. 6.2 and 6.5 do not 
fulfill the flow equation 

(6.7) 
du _ -  at --gz 

because the pressure from the surface rollers should be included in the flow equa- 
tion. It is the pressure from the surface rollers that extracts the energy from the 
waves and thus gives the gradient in the wave height. 

As u is constant over the vertical, the continuity equation gives a vertical 
wave-orbital velocity which increases linearly with the distance from the bed 

z dq zwH 
D d t  2 0  

sin( k s  - ut) w = - - = -  

In addition to the wave motion there is a small slope on the mean water 
surface: the wave set-up, cf. Section 4.2.1. The actual wave surface elevation is 
therefore 

H 
2 

17 = - COS( kZ - W t )  + SZ (6.9) 

where S is the set-up, which is of the order 0(( HID)’) .  

of the roller is given by 
The local thickness of the surface roller is v+, and the cross-sectional area 

A = c L  q + d t = c T F  (6.10) 
T 
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The shear stress distribution 

From the presented description of wave kinematics the shear stress distribu- 
tion can be found by using the momentum equation on the control surface shown 
in Fig. 6.2. The control surface is fixed in space and has horizontal and vertical 
sides. Its width is dx, and it extends from the level z into the air above the wave. 

,Control volume 

I-?' Water surface 

u t LA 

Figure 6.2 Control volume (Eulerian description) to  which the  momentum 
equation is applied. 

The momentum equation is a vector equation which contains integrals over 
the volume and the surface area of the control surface 

p g d V  = 

p Z  (.'. d A )  - l p d A +  pg'dV + d f  -.I, (6.11) 

where d i  is the area vector of a surface element, directed out of the surface, and 
d5? is the force from the shear stress acting on a surface element. Eq. 6.11 states 
that the acceleration of the mass in the volume of the control surface is equal to 
the sum of the momentum flux through the surface, the pressure force, the gravity, 
and the shear stress force acting on the control volume. 

In the following, only the horizontal projection of Eq. 6.11 is used, and the 
equation is averaged over one wave period. Only the lowest order terms in ( H I D )  
are maintained. It should be noted that the control surface extends into the air, 
and that all terms in Eq. 6.11 become zero above the instantaneous level of the 
water surface. Each of the elements in Eq. 6.11 can now be evaluated: 

The left-hand-side becomes zero after time-averaging, because the waves are 
periodic, i.e. no momentum is added to the system during one wave period. 
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The time-averaged momentum flux can be written 

d u  2 dv d + P(. + z d x )  ( D  - + 7 + -dx) dx + p++ p-(cc7+)dx d X  - puwdz % 

d c2A 
dx ( cT } ( D  - z ) +  - __ - UW dx E 

2 ) ( D - z ) + - ( ~ )  d cA 
dx 

H c  HL . zw H 
- - (cos( kx - w t )  - - sin( k z  - w t ) )  - sin( kx - w t )  

2 0  k H  2 0  

2H H l g  1 d c A  c H ~  zwH 1 
p{  T $ D  - 2) + ~ ( r )  + -----}dx 2Dk 2 0  2 

= 

+ p g H H : ( -  1 - - - ) } d x  l z  
4 8 0  

(6.12) 

where e'is a horizontal unit vector. 
The pressure is found from the hydrostatic pressure distribution 

The two last terms describe the gradient in the pressure force due to the 
shoreward change in the surface roller geometry, and have been demonstrated to 
be small by Svendsen (1984). The rollers are important because of their large 
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velocity, but their volume is small compared to the volume of the wave profile. 
Using the expression for the wave profile, Eq. 6.2, the pressure force is calculated 

__ 
e'. L p d A = p g ( v z  817 + (- 817 + -) a17+ ( D - z )  

a x  a x  

H H1 H k  
2 2 2 

p g  ( ( S x  + - cos( kx - w t ) )  ( S  + - cos( kx  - w t )  - - sin( kx - w t ) )  

+ S ( D  - z ) ) d x  z 

(6.14) 

The gravity force becomes zero as a horizontal projection is used. The 
only shear stress force which is non-zero is due to the shear stress acting on the 
horizontal bottom of the control surface 

e'. L d ? =  - Tdx 

where 7 is the shear stress being described. 
The momentum equation can now be written 

(6.15) 

0 = -p-(-)dx d c A  - pgHH:(A - - - )dx  l Z  
dx T 4 8 0  

8 
or 

(6.16) 

(6.17) 

where Efw is the energy flux of the wave motion. 

tions: 

decaying wave motion in the surf zone. It has a trapezoidal shape. 

constant over the depth. 

The mean shear stress in the surf zone is thus composed of three contribu- 

The first is due to the pressure and momentum fluxes associated with the 

The second is due to the change of momentum in the surface rollers, and is 
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T.* 

The third is due to the slope S of the mean water surface, the wave set-up. 
It has the triangular distribution which is well known from uniform channel flow 
in hydraulics. 

The three contributions are illustrated in Fig. 6.3 for the special case where 
the wave set-up exactly balances the radiation stress gradient, giving a mean bed 
shear stress of zero. The calculations have been made for a wave height H I D  = 0.6 
and a wave period T 2 g / D  = 300. The surface roller volume has been calculated 
according to the model by Engelund (1981), cf. Example 4.2. 

T* 

Figure 6.3 Variation in r* = - T / ( & p g q )  with depth. 

It is clear from Fig. 6.3 that with a non-zero near-surface shear stress it is 
impossible to find a value for the wave set-up which balances the radiation stress 
gradient without causing shear stresses over the vertical. These shear stresses will 
in turn drive a circulation current. 

Near the mean water surface (at the wave trough level), z x D the shear 
stress becomes 

(6.18) 

where ;is is the rate of loss of wave energy per unit bed area. 
In Eq. 6.18 the first contribution is due to the pressure and momentum 

flux of the wave motion, and the second, which was first recognized by Svendsen 
(1984), is due to a change in the momentum of the surface rollers. This expression 
is generally applicable for deep water or shallow water waves, and for a non-uniform 
steady wave condition as considered here or for an unsteady wave condition, e.g. 
waves decaying after a storm. For a uniform unsteady wave situation the near- 
surface mean shear stress can be written as (cf. Phillips, 1977; Longuet-Higgins, 
1969; Liu and Davis, 1977) 

- 1 d E  p d ( c A )  
‘Ts = - -- c dt L dt 

(6.19) 
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where E is the wave energy per unit bed area (cf. Eqs. 1.35 and 1.37) 

1 E = - p g H 2  
8 

(6.20) 

It must, however, be kept in mind that these expressions (Eqs. 6.18 and 
6.19) are only valid for waves where the energy dissipation occurs near the water 
surface. If the energy dissipation is located at another level, the shear stress 
distribution will be different, as discussed in Example 6.1. For instance, in the 
case of energy dissipation in a near-bed wave boundary layer, it is in fact possible 
to find a value of the wave set-up which does not give any shear stresses over the 
entire water depth outside the wave boundary layer itself. 

6.2 Normally incident waves, the undertow 

Consider a steady situation with regular waves breaking on a coast. For 
normally incident waves the vertical distribution of the mean shear stress in the 
broken waves was determined in the previous section. In the surf zone the waves 
cause an onshore directed flow due to two mechanisms, the wave drift, described in 
Example 1.2, and the surface rollers carrying water shorewards. In a strictly two- 
dimensional situation the shore-normal discharge is zero. Therefore the shoreward 
discharge caused by the waves must be compensated by a current in the offshore 
direction. While the shoreward discharge lies near the mean water surface (rollers 
and Eulerian drift), the return current has its maximum near the bed. This circu- 
lating current with its offshore-directed flow near the bed is called the undertow. 
A detailed determination of its velocity distribution can be made by solving the 
flow equations taking the mean shear stress distribution into account. The un- 
dertow is limited to the surf zone, partly because outside the surf zone no surface 
rollers transport water towards the coast, and partly because the energy dissipa- 
tion occurring mainly in the near-bed wave boundary layer is weak and does not 
cause shear stresses outside the wave boundary layer. The situation with energy 
dissipation in a boundary layer is treated in Example 6.1 and in Chapter 11. In 
the following the distribution of the undertow is determined. 

If the higher order convective terms are neglected and linear shallow water 
wave theory is used, the horizontal flow equation can be written as 

du 133 1 a 
dt p a x  p a 2  
_ -  - + - - (T - T )  (6.21) 

where u is the horizontal flow velocity, 5 is the periodic pressure variation due to 
the wave motion, and T is the turbulent shear stress. T is the time-averaged shear 
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stress, which is given by Eq. 6.17. The periodic pressure variation p" can be found 
from the wave-orbital velocity u g  outside the wave boundary layer 

(6.22) 

It is seen from Eq. 6.22 that the time average of p" is zero. That is because 
the mean pressure gradient associated with the mean water slope is included in 
the expressions for the mean shear stress (cf. Eq. 6.17). 

The instantaneous shear stress is determined through the eddy viscosity 

7- au - = v t -  
P 

Thus Equation 6.21 can be written as 

(6.23) 

(6.24) 

It is seen that, except for the term 7, Eq. 6.24 is identical to the equation 
used for the calculation of the wave boundary layer, Eq. 3.55, and that it is similar 
to the equation used for analysing the combined wave and current boundary layer, 
where 7 is caused only by mean water slope. Equation 6.24 can thus be used over 
the entire water column, including the oscillatory boundary layer near the bed. 
For a hydraulically rough bed with a roughness I"N the boundary condition is 

u = 0 for z = k ~ f 3 0  (6.25) 

and the near-surface boundary condition is 

(6.26) 

where the subscript s indicates a near-surface value. 

balance the driving forces 
By taking the time-average of Eq. 6.24 it is seen that the turbulent stresses 

(6.27) 

In some cases Equation 6.24 is used to determine the near-bed current 
velocity profile assuming the eddy viscosity and the flow velocity are independent 

(6.28) 

This equation can, however, only be used as a rather crude first approxima- 
tion, because the eddy viscosity and flow velocity will be correlated in the near-bed 
wave boundary layer, and a complete solution can only be obtained through Eq. 
6.24. 
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Determining the set-up 

The solution of Eq. 6.24 will give a velocity distribution of the mean current 
for a given distribution of the driving force 7. The distribution of 7 depends on 
the slope of the mean water surface, the wave set-up S. In the present case S 
is an unknown parameter which must be determined by considering the depth- 
integrated continuity equation. The net discharge is calculated from the mean 
flow velocity integrated over the depth 

q = JCDlldL (6.29) 

The net discharge will vary with 7 and is thus a function of S. The actual 
value of the mean water slope S is the one that gives the correct net cross-shore 
discharge. In the strictly two-dimensional case the net cross-shore discharge is 
zero, which is the situation represented by a wave flume. Zero cross-shore discharge 
does not imply that is also equal to zero, because the wave motion itself gives a 
discharge which must be compensated by the mean current. 

A 

B ki. T 

k 5 

Figure 6.4 The  mean shear stress and mean velocity distribution. A: Ex- 
act balance between set-up and radiation stress gradient. B: 
Increased wave set-up. 

The wave motion is associated with a mass drift. For linear shallow water 
waves the drift can (cf. Example 1.2) be expressed by 

- 
qdrift = Du2/c = c B H 2 / D  (6.30) 
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where B is the shape factor of the wave profile, cf. Section 4.2. In addition to 
the mass drift, water is transported in the surface rollers, as found by Svendsen 
(1984), giving a mean discharge of 

In order to obtain a zero discharge the circulation must balance these two 

(6.32) 
contributions 

q = - (qdrift + qroller) 
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Figure 6.5 Measured and calculated mean current, zero net flow. Mea- 
surements by Svendsen et al. (1987). From Deigaard et al. 
(1991). 

How this is achieved is illustrated in Fig. 6.4. First the shear stress dis- 
tribution shown in Fig. 6.3 is considered] where the set-up exactly balances the 
radiation stress gradient. In this case the time-averaged shear stress is zero at  
the bed and positive over the entire vertical. The mean current velocity is also 
positive (on-shore) over the vertical, and q is positive. Equation 6.32 is therefore 
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not satisfied with this mean shear stress distribution. By increasing the set-up the 
near-bed shear stresses become negative, and a circulation current is generated 
with an offshore-directed near-bed velocity. The equilibrium set-up then makes 
the circulation current fulfill the continuity equation (6.32). The equilibrium set- 
up is only slightly different (of the order 10%) from the set-up which balances the 
radiation stress gradient. The traditional method for calculating the mean water 
level, which is based on this balance, can therefore be used as a good approxima- 
tion, as long as no information on the velocity distribution is required. 

00042 0083 0038 2 

00083 0076 0033 2 

B 

0135 0080 2 

00042 0135 0080 2 

00083 0135 0080 2 

00133 0135 0080 2 

-oio -0.65 o 0.65 0.b o k  

Figure 6.6 Measured and calculated velocity profiles in case of a mean 
current. Measurements by Buhr  Hansen and Svendsen (1986). 
From Deigaard et al. (1991). 

Fig. 6.5 shows a comparison between measured undertow velocities and 
calculated velocity profiles. The measurements have been made by Svendsen et 
al. (1987) in a closed wave flume with zero mean flow. The beach profile had a 
constant slope of 0.029. The experimental set-up is also sketched in Fig. 6.5. 

The mean shear stress is determined by the method described in Section 
6.1, with the small contribution from the streaming in the wave boundary layer 
included in the mean shear stress, cf. Section 2.4. The volumes of the surface 
rollers are determined by Engelund's (1981) model, cf. Example 4.2. The eddy 
viscosity is determined by the one-equation model described in Section 4.3.2 with 
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a coupled modelling of the turbulence generated by the broken waves and in the 
near-bed wave boundary layer. The flow has been calculated by the unsteady flow 
equation 6.24, and the mean current is found by time-averaging the velocities. 
The wave profile has been assumed to be described by the saw-toothed profile, 
corresponding to a B-value of 1/12, cf. Section 4.2. It is seen from Fig. 6.5 that 
the agreement between the measured and calculated velocity profiles is good for 
the three inner cross sections, while it is less good for the cross section P4  closest 
to the breaking point. 

Experiments with a net current have been carried out by Buhr Hansen and 
Svendsen (1986) in a wave flume with a bar profile. Water was pumped from the 
trough inshore of the bar to an offshore point near the wave generator, creating 
an onshore-directed net current. Tests have been carried out for four different 
discharges : q = 0.0042 m2/s, q = 0.0083 m2/s, q = 0.0133 m2/s and q equal zero. 
The comparison has been made for two points, A: at the crest of the bar with zero 
bed slope, and B: 3.6 m offshore of the crest, with a bed slope of 0.028. Generally 
the agreement between measured and calculated profiles is good, especially at  the 
crest, where the net discharge is relatively more significant because of the smaller 
water depth. 

In these examples it has been assumed that on a time scale larger than 
the wave period the water motion is steady. No model has yet been developed to 
describe the vertical distribution of the velocities in an unsteady motion, as for 
instance in the case of low period oscillations associated with irregular incoming 
waves. The results derived in this section can, however, still be used in connection 
with an unsteady model to give the variation in time and space of the driving 
forces due to the energy dissipation in the broken waves. 

Example 6.1: Energy dissipation in the wave boundary layer 

In Section 6.1 it was stated that the calculated mean shear stress distri- 
bution is only valid for situations where the energy dissipation takes place near 
the mean water surface. This is the case for broken waves where the near-surface 
shear stress is directly related to the energy loss, cf. Eq. 6.18. In this example the 
opposite situation is discussed: waves with energy dissipation taking place only in 
the near-bed wave boundary layer. 

The mean shear stress can be determined by the same principles for both 
cases, but there are significant differences in the water motion, which change the 
vertical transfer of horizontal momentum. As described in Section 2.4 the non- 
uniformity of the wave boundary layer causes a vertical displacement of the fluid 
above it. 

The displacement gives an additional vertical velocity outside the wave 
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boundary layer of (cf. Eq. 2.94) 

rb w, = -- 
PC 

(6.33) 

where Tb is the instantaneous bed shear stress. For linear shallow water waves 
this additional velocity is constant over the vertical outside the wave boundary 
layer and gives a deformation of the wave surface. Inside the wave boundary layer 
the displacement decreases becoming zero at  the bed. By combining w, with the 
horizontal orbital velocity an extra contribution to the ?iiii term in the momentum 
equation is found 

(6.34) 

The numerator in Eq. 6.34 is, however, equal to the energy dissipation in 
the wave boundary layer, cf. Chapter 2, and can therefore be expressed by the 
wave energy flux 

(6.35) 

By including this additional UW term in the momentum equation, the shear 
stress distribution, given by Eq. 6.17, is modified to 

(6.36) 

with the surface roller contribution also being omitted, as only non-broken waves 
are considered. 

In this situation, with energy dissipation near the bed, it can be seen that 
the mean shear stress becomes zero near the mean water surface, and that the 
set-up can now balance the momentum flux due to the wave height decay. For a 
set-up given by 

1 H d H  
2cpgD dx 8 D  dx 

- 1 dE S = - - f w -  (6.37) 

the shear stress becomes exactly zero over the entire water depth outside the wave 
boundary layer. Inside the wave boundary layer the mean shear stress increases 
towards the bed due to the streaming, as described in Section 2.4. 

It may be noted that the set-up given by Eq. 6.37 is only one third of the 
set-up required to balance the radiation stress gradient, as described in Section 
4.2.1. The remaining two thirds of the radiation stress gradient are balanced by 
the mean bed shear stress of the streaming. 
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Example 6.2: Three-dimensional shear stress distribution 

Until now only the two-dimensional situation, which can be represented in 
a wave flume, has been treated. The same principles can, however, be used to 
determine the mean shear stress distribution in a three-dimensional situation. In 
the following the simplest three-dimensional shear stress distribution is discussed, 
but not all details of the calculations are worked out. 

A uniform coastal profile with waves approaching at an angle a is now 
considered. At the location in question, the bed is horizontal, and the waves are 
broken as they progress through the section of interest. The applied coordinate 
systems are shown in Fig. 6.7. The z-axis is perpendicular to the coastline, 
with the positive direction onshore. The y-axis is shore-parallel, and the z-axis is 
vertical with origin at the bed. 

The waves approach the coast with an angle a between the wave crests and 
the y-axis. The z‘, y’  coordinate system is aligned with the waves, the z‘-axis 
being in the direction of wave propagation and the y‘-axis parallel to the wave 
crests. 

coast line 

Figure 6.7 The coordinate systems used for the three-dimensional a n a  
lysis. 

The water motion 
The water motion in the waves is analysed with the same assumptions as 

used in the two-dimensional case. The horizontal orbital velocity in the direction 
of propagation uzl is therefore similar to Eq. 6.5 

(6 .38 )  
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The vertical orbital velocity is given by 

d r l z  H w  z . 
d t D  2 D 

w = -- = _- sin(kz' - w t )  (6.39) 

The two orbital velocity components are thus similar to the results obtained 
from the two-dimensional analysis, but the three-dimensionality gives a small, but 
significant correction to the velocity in the y '-direction. In the two-dimensional 
case the velocity perpendicular to the direction of propagation is of course zero. In 
the present case, the wave height is decreasing in the shoreward, x-direction, and 
as the conditions are uniform along the coast, the wave height H is constant for a 
given value of x. Because of the angle between the wave crests and the y-axis, this 
means that the wave height varies along the crests of the waves. The water surface 
slope along the wave crests gives a velocity component, which can be determined 
by the flow equation 

-- dv, I 317 7 dH 
dt - -gdy' 

= - g - - l  = 
H aY 

(6.40) 9 g aH cos(kz' - wt)  = -H: sinacos(kx' - w t )  
2 dy' 2 

giving 

v,, = -- gH' sin a sin(kz' - w t )  
2w 

assuming that H is only a function of z, and that 

(6.41) 

- - sin a (6.42) dY ' - -  
dX 

The wave-orbital motion is thus seen to form ellipses in the horizontal plane 
due to the wave height decay towards the coast. The orbital velocities in the x- 
and y-direction are found by projection of u,! and vyt  

u = uzt cosa - vy1 s ina  = 

H c  
2D 

(6.43) SH' . 2 +-sin asin(kx' - w t )  
2w 

v = U,I  s ina  + v , ~  COSQ = 

H c  HI - (cos(kr ' - w t )  - - cos a sin(tx ' - w t )  
2 0  kH 

-- gH' sin a cos a sin(tx ' - w t )  (6.44) 
2w 

In addition to the wave-orbital motion the rollers carry water with each 
wave crest. The water in the rollers has a velocity of c in the 2'-direction and a 
mean specific discharge of A / T .  
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The shear stress distribution 

187 

The shear stresses are determined by establishing the momentum equation 
for the box-shaped control volume shown in Fig. 6.8. 

The horizontal shear stresses, rZ2 and r,,, are determined by projecting the 
momentum equation on to the x- and y-axis. The new terms in the momentum 
balance relative to the two-dimensional analysis are the momentum fluxes through 
the control surface described by the term Iv. It is assumed that the shear stresses 
acting on the vertical sides of the control surface are negligible compared to r,, 
and rzy. This assumption is justifiable over large parts of the surf zone. 

Figure 6.8 The control surface used to determine the shear stresses. 

By using the approximations introduced in the two-dimensional analysis, 
the projection of the momentum equation on the x-direction can be written 

~ 

87 cos2a - pgq- - pg(D - 2)s -p- - 
dx T 85 (6.45) 

Each term in Eq. 6.45 can be evaluated by the expressions for water motion. 
The first term on the right-hand-side is calculated in a similar manner to the 
two-dimensional case 

(6.46) 
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The second term is zero, due to the assumption of uniform conditions along the 
coast. The third term is calculated from Eqs. 6.39 and 6.43 

z F 2 H H ;  (- cos2 a + sin2 a )  
D 16 

(6.47) 

The fourth term is not manipulated further, and the fifth, again similar to 
the two-dimensional case, gives 

(6.48) 

Combining all the terms gives the following expression for r,, 

cos2 a - pg(D - z)S -% (d (6.49) 

which can be seen to be similar to the two-dimensional expression for a = 0 

tum eauation 
The shore-parallel component of the shear stress is found from the momen- 

d D  
dY 

rZy = - p - l  v2dz - 

- & ( p $ ) c o s a s i n a - p g L  drl 
aY 

(6.50) 

Due to the uniform conditions the first and the fifth term in Eq. 6.50 are zero. 
The second and the third term are calculated as follows 

(1 - % ) ~ 2 H H ~ c o s a s i n a  (6.51) 

and 
H w  z 1 ( H c  Hl gH;) p v W =  p - - -  - __ cosas ina  = 

2 0 2  2 D k H  2w 

(6.52) --- Pg2HH;cosasina 
0 8  

giving a constant rzy  over the vertical 

(6.53) 
d A  

Pg d ( H 2 )  cos a sin a - p -  d3: (+) cos a sin a 
8 d x  ,rZY = 
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The result of this analysis is a shear stress r,, that is qualitatively similar to 
the shear stress distribution found for the two-dimensional case, and a longshore 
shear stress T , ~  which is constant over the vertical. This field of driving forces gives 
a combination of a longshore current and an (often weaker) cross-shore circulation. 
This flow situation has been treated by Svendsen and Lorenz (1989), who used a 
slightly different shear stress distribution. 

The velocity profile of the longshore flow can be determined from the as- 
sumption of a constant driving force over the vertical, cf. Section 5.2.2, and the 
circulation flow is rather similar to the two-dimensional undertow described in 
Section 6.2. The bed shear stress given by Eqs. 6.49 and 6.53 is similar to the 
total driving forces determined from the radiation stress gradients, cf. Section 5.1. 
The near-surface shear stress is given by 

(6.54) 

where 5 is the mean surface shear stress vector and 7,, and is the surface 
shear stress in the 2- and y-direction, respectively. 

When comparing Eq. 6.54 to Eq. 6.18 it is seen that the near-surface shear 
stress has the same magnitude for both cases, and is in the direction of wave 
propagation. The magnitude of the surface shear stress is related to the loss of 
wave energy 5 and the change of momentum in the surface rollers, as given by 
Eq. 6.18. 

Example 6.3: The magnitude of the surface shear stress 

It is remarkable that the magnitude of the near-surface shear stress is found 
to be the same in the two- and three-dimensional analysis, and it is of interest to 
investigate if this relationship (Eq. 6.18) is general. The cases treated so far are 
the simplest possible, with a horizontal bed, and even here the calculations are 
rather extensive. The work would become much more complicated if the effects 
of shoaling and refraction were to be included even on a long uniform coast. It is 



190 Chapter 6: Current velocity distributzon an the surf zone 

Figure 6.9 The  surface along which the shear stress is determined. 

therefore not feasible to extend the calculations with the fixed control surface to 
the general case. Instead a simple, heuristic approach is adopted. 

Consider the variation with time of a water column under the action of the 
wave shown in Fig. 6.9. The near-surface shear stress is evaluated at the wave 
trough level by the momentum equation. As only the lowest order non-zero term 
in ( H I D )  is of interest, the shear stress could, at any instance, just as well be 
evaluated at the surface of the wave motion: z = D + 7. Similarly, the difference 
between the horizontal shear stress at the surface and the shear stress following 
the tangent of the surface is negligible. 

At the order considered it is therefore just as good to take the time-averaged 
shear stress along the wave surface, the thick line at Fig. 6.9, as at  the wave trough 
level z t .  Over the main part of the wave the surface shear stress is zero as it is 
only in contact with air. But under the surface rollers the waves are subject to a 
shear stress due to the weight of the surface rollers. 

The shear stress at  the boundary between the roller and the wave can be 
determined by assuming hydrostatic pressure in the surface roller, as shown in Fig. 
6.10. The pressure at the interface is 

P: = 7+PS (6.55) 

and the shear stress is calculated to be 

giving 

(6.56) 

(6.57) 

The mean surface shear stress is then found by averaging T~ over the wave 
period. 

In the present model of the broken wave, the surface roller is treated as 
a separate body of water and a shear layer is thus found between the surface 
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Figure 6.10 Forces acting on a vertical column of the roller. 

roller and the water in the wave motion, as sketched in Fig. 6.11. The energy 
dissipation in a shear layer is equal to the product of the shear stress at the 
centerline multiplied by the velocity difference across the shear layer. As only 
the lowest order terms in ( H I D )  are considered, the velocity difference across the 
shear layer can be taken as the wave celerity c. The dissipation therefore becomes 

v = r,c (6.58) 

This gives a mean surface shear stress of 

(6.59) 

which is identical to Eqs. 6.18 and 6.54, except that variation in the momentum 
of the surface rollers has not been taken into account in this simple analysis. 

I layer 

Figure 6.11 The shear layer under the surface roller. 

If no surface rollers are present, i.e. no energy dissipation near the surface, 
the mean surface shear stress is zero according to Eq. 6.59. This is in agreement 
with the analysis of wave dissipation in the near-bed boundary layer made in 
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Example 6.1. The same is found when considering wave shoaling, which can be 
described by potential flow theory and therefore cannot be associated with shear 
stresses. 

The simple analysis made in this example is more general than the calcu- 
lations using the momentum equation. The waves may be refracting and shoaling 
in addition to the breaking, the water depth may be large or small compared to 
the wave length, and the waves may be regular or irregular. 
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Chapter 7. Basic concepts of sediment 
transport 

7.1 Transport modes 

This chapter gives a short introduction to the basic concepts of sediment 
transport mechanisms. The application of these concepts to describe the sediment 
transport in the surf zone is outlined in the next chapters. 

It is common to split the sediment transport modes up into three parts: 

0 Bed load 
0 Suspended load 

Wash load 

The wash load consists of very fine particles which are transported by the 
water and which normally are not represented in the bed. Therefore, the knowledge 
of bed material composition does not permit any prediction of the rate of wash 
load transport. Hence, when the term “total sediment discharge” is applied, the 
wash load is neglected. 

Of the total sediment load a distinction between two categories is made, 
the bed load and the s u s p e n d e d  load. No precise definitions of these terms have 
been given so far, but the basic idea of splitting up the total sediment load in two 
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parts is that, roughly speaking, two different mechanisms are effective during the 
transport. 

The bed load is defined as the part of the total load that is in more or less 
continuous contact with the bed during the transport. It primarily includes grains 
that roll, slide, or jump along the bed. Thus the bed load must be determined 
almost exclusively by the effective bed shear acting directly on the sand surface. 

The suspended load is the part of the total load that is moving without 
continuous contact with the bed as a result of the agitation of fluid turbulence. 

7.2 Sediment properties 

The sediment transported in the coastal zone usually contains particles 
ranging from gravel or sand down to very small particles classified as silt or clay. 
The very fine fractions are carried as wash load. 

The subject of this and the following chapters is to consider non-cohesive 
sediment. This covers usually the particles in the range from sand (0.06 mm to 
2 mm) to gravel (2 mm to 20 mm), and the following brief account of sediment 
properties is devoted to these fractions exclusively. From a hydraulic point of view 
the most important sediment properties are related to size, shape, and specific 
gravity. 

7.2.1 Particle size characteristics 

The most usual and convenient method for the analysis of particle size dis- 
tribution is the sieve analysis, which is applicable for particle sizes not smaller than 
0.06 mm. An adequate number of representative sediment samples is analyzed, 
and the result is presented as a frequency curve (Fig. 7.1) or as a cumulative 
frequency curve (distribution curve, Fig. 7.2). 

In the frequency or probability density function curve in Fig. 7.1 the ab- 
scissa represents the sieve diameter d,, and the ordinate the concentration of the 
total sample contained in the corresponding intervals of the d,. Very often the dis- 
tribution curve of sediments approaches the normal probability curve when plotted 
as in Fig.7.1, so that the distribution function is log-normal and given by 

in which ug is the geometric standard deviation given by 

u g  = d G K  
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Figure 7.1 Frequency or probability density function of a log-normal grain 
size distribution. d50 = 0.25 mm. ug = 1.5. 

In Eq. 7.1 d50 corresponds to the median, i.e. 50 p.c. by weight being 
finer (and 50 p.c. coarser). Similarly, in Eq. 7.2, d16 and d g q  correspond to the 
diameter of which, respectively, 16 and 84 p.c. are finer. 

In the cumulative (or grain-size) curve in Fig. 7.2 the ordinate indicates 
how much per cent (by weight) of the total sample is finer than the diameter d, 
of the abscissa. 

-i/~,, *, 
20 

0.1 0.2 0.4 1.0 d ( m m )  

.I,,: 0.1 0.2 0.4 I . O d ( r n r n )  

Figure 7 . 2  Grain-size distribution curve for a log-normal grain size distri- 
bution for d50 = 0.25 mm and ug = 1.5. A: Semi-logarithmic 
plot. B: Plot on probability paper. 

The grain-size curve, shown in Fig. 7.2, is obtained from Eq. 7.1 by inte- 
gration to be given by 
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F(d) = P{d' < d} 

= Iw f(d')dd' 
d 

in which Erf is the error function, defined by 

2 y  
Erf(y) = J;; 1 e-"*dx 

On probability paper, Fig. 7.2B, Eq. 7.3 forms a straight line. 

Table 7.1 Values of d,, d,, df and W ,  for typical sand fractions (from 
Engelund and Hansen, 1972). 

d, 
mm 

0.089 
0.126 
0.147 
0.208 
0.25 
0.29 
0.42 
0.59 
0.76 
1.25 
1.8 

d, 
mm 

0.10 
0.14 
0.17 
0.22 
0.25 
0.30 
0.46 
0.64 
0.80 
1.4 
1.9 

df 
mm 

0.10 
0.14 
0.16 
0.22 
0.25 
0.29 
0.40 
0.55 
0.70 
1.0 
1.2 

w,( 10°C) 
m/s 

0.005 
0.010 
0.013 
0.023 
0.028 
0.033 
0.050 
0.077 
0.10 
0.15 
0.17 

W , ( 2 O 0  C) 
m/s  

0.008 
0.013 
0.016 
0.028 
0.033 
0.039 
0.058 
0.084 
0.11 
0.16 
0.17 

Another measure of particle size different from the sieve diameter is the 
spherical diameter d,, defined as the diameter of a sphere having the same volume 
as the given particle. In practice d, is determined by weighing a counted number 
of particles from a certain fraction of the sample. 

This measure does not take any account of the shape of the sediment grains, 
for which reason the so-called fall diameter df is a more satisfying parameter. 
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The fall diameter of a particle is defined as the diameter of a sphere having 
the same settling velocity in water at 24°C. For a fixed particle volume d f  will be 
greater for angular grains than for rounded grains, so that this size measure takes 
some account of the shape. 

Table 7.1 lists a number of simultaneous values of d,, d, and d f  for some 
typical fractions of natural sand. The ratio between d, and d, is nearly constant, 
which is very natural when the shape of the grains is not too much dependent on 
the grain size. The fall diameter d f ,  however, becomes significantly smaller than 
d, and d, for the larger grains. 

7.2.2 Specific gravity 

The specific gravity ys of the grains is the parameter which exhibits the 

The ratio 
smallest variation under natural conditions. 

s = rslr > (7.5) 

in which y denotes the specific gravity of water at  4°C is called the relative density. 
For natural sediments, s is usual very close to 2.65. 

7.2.3 Settling velocity 

The settling or fall velocity w, of a grain is. defined as the terminal velocity 
attained when the grain is settling in an extended fluid under the action of gravity. 

The fall velocity w, depends on several parameters, the most important are 
grain size, specific gravity, shape, and the dynamic viscosity of the fluid. 

The drag force F on a submerged body is given by the general expression 

in which CD is the drag coefficient, p the density of the fluid, V the relative 
velocity, and A the area of the projection of the body upon a plane normal to the 
flow direction. 

Consider now the settling of a single spherical particle of diameter d. The 
combined action of gravity and buoyancy gives the force 
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which under equilibrium conditions must be balanced by the drag, so that we 
obtain the following equation 

from which 

w s  = \i"(s 3cD - (7.9) 

For a single spherical particle in an extended fluid the value of C D  depends 
on the grain Reynolds number 

(7.10) wsd R=- 
v 

exclusively. 
In Fig. 7.3 the value of C D  for a number of typical sand fractions is plotted 

against the grain Reynolds number R. For the sake of simplicity C D  is defined by 
the expression 

F = -cDpw:-d2 (7.11) 
1 x 
2 4 

20 

10 

5 

2 

1 
1 5 10 50 100 500 1000 

R = w,d/V 

Figure 7.3 Variation in drag coefficient with Reynolds number for natural 
sand. 

The relationship depicted in Fig. 7.3 can be expressed by 

C D  = 1.4 + 36/R 

from which an analytical expression for ws can be obtained. 

(7.12) 
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Example 7.1: Fall velocity of fine sediment 

For very small values of R Stokes' law will apply: 

F = Srpdw, , 

corresponding to the expression 

CD = 24/R 

Under these circumstances Eq. 7.9 becomes 

(s - l)gd2 
w, = 

1% 

(7.13) 

(7.14) 

(7.15) 

Example 7.2: Effect of high concentrations on fall velocity 

If the sphere is not single but one of many particles settling simultaneously, 
the observed fall velocity w, is smaller than the above expression indicates, the 
ratio ws/w,, being a function of the volume concentration c .  w,, is the fall velocity 
of a single grain in a fluid of infinite extension. From experiments by Richardson 
and Zaki (1954) the variation is found to be 

where 
n = 4.35R-'.03 
n = 4.45R-O." 
n = 2.39 

0.2 < R < 1 
1 < R < 500 
500 < R 

(7.16) 

Usually, c is much smaller than 1, so Eq. 7.16 can be written as 

w, = w,& - n c )  (7.17) 

Fig. 7.4 shows this effect graphically. 

jrezvan
Highlight

jrezvan
Highlight

jrezvan
Rectangle

jrezvan
Rectangle

jrezvan
Rectangle

jrezvan
Highlight

jrezvan
Rectangle

jrezvan
Rectangle

jrezvan
Highlight

jrezvan
Highlight



Critical bed shear stress 201 

C 
0 , I  t 

0 0.2 0.4 

Figure 7.4 Reduction in fall velocity at large concentrations. 

7.3 Critical bed shear stress 

In the following, steady flow over a bed composed of cohesionless grains is 
considered. These grains will not move at very small flow velocities, but when the 
flow velocity becomes large enough, the driving forces on the sediment particles 
will exceed the stabilizing forces, and the sediment will start to move. This flow 
velocity is called the critical flow velocity. 

A now classical solution to the problem was offered by Shields (1936). His 
analysis was based on dimensional analysis. The threshold of particle motion is 
supposed to be attained for a given ratio between driving and stabilizing forces. 

The driving forces on a sediment particle resting on other particles on an 
originally plane horizontal bed are the tractive stress T~ (horizontal) and the lift 
force, see Fig. 7.5. 

The horizontal drag FD, created by the flow, consists of skin friction acting 
on the surface of the grain and form drag due to a pressure difference on the up- 
and downstream sides of the grain because of flow separation. From the elementary 
theory of drag it is known that 

1 7 T  

2 4  
FD = - p C D - d 2 U 2  (7.18) 

where U is a characteristic velocity near the bed, d is the grain diameter, and C D  

is the drag coefficient which is known to depend on the local Reynolds number. 
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In the following it is assumed that the shape effects are accounted for sufficiently 
well by using the fall diameter. 

z 
4 / 

Figure 7.5 Forces acting on grains resting on the bed. 

Generally, a lifting force FL in excess of the natural buoyancy is also created 
by the flow. This lift is partly due to the curvature of the streamlines which locally 
will decrease the pressure to be lower than the hydrostatic pressure at the top of 
the grains. Further, the flow separation also involves a positive lift force on the 
grains. The lift force is given by a similar expression as Eq. 7.18, so the driving 
forces can be given in the following form 

1 7 r  
2 4  

Fo = - p c ~ - d ’ ( ~ U ~ ) ~  (7.19) 

in which U; is the friction velocity due to the friction directly acting on the bed 
surface (skin friction), while C D  and N are non-dimensional coefficients. cvU; is the 
flow velocity at a distance of the order of magnitude d from the bed. Assuming the 
validity of the ordinary velocity distribution in rough channels (cf. Example 2.2), 
01 must be of the order of 10. The factor CD stands for a drag (and lift) coefficient. 

The stabilizing forces can be modelled as frictional forces acting on a par- 
ticle. For a non-moving particle resting in the bed this can not exceed 

(7.20) 

in which W is the submerged weight of the particle, and pus is the measure for 
the maximum friction between the grain and the surrounding grains. This can be 
taken as equal to 

P s  = tan(&) (7.21) 

where 4Ls is the static friction angle (angle of repose) for the sediment. 
The particle can remain resting on the bed without moving as long as the 

driving forces are smaller than the maximum retarding force, given by Eq. 7.20. 
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This means that the particle will not move as long as U; is smaller than U f c ,  
where U f ,  is determined by 

or 

1 7 T  7r 

2 4  6 
-pco-d2(atUfc)2 = 4 7 s  - l ) p g p L ,  (7.22) 

(7.23) 

The parameter on the left-hand-side is called the critical Shields parameter, 
and is defined by 

(7.24) 

The term on the right-hand-side of Eq. 7.23 is, despite a weak function 
of the Reynolds number, a constant quantity which Shields found to be of the 
order 0.05 for sand placed smoothly on a horizontal bed. Fig. 7.6 shows some 
of Shields’ experimental observations which relate 8, to the Reynolds number Re 

For large values of Re the critical value increases to about 0.06. 

0.2 

0.1 

0.06 
0.04 

0.02 

0.01 
1.0 2 4 6 10 20 40 100 400 1000 

Re = U;d/v  

(7.25) 

Figure 7.6 The Shields diagram giving the threshold value OC as a function 
of Re. 
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Example 7.3: Effect of a transverse bed slope on the critical Shields 
parameter 

If sand grains are placed on a bed with a transverse slope, it is easier for 
them to move. So the critical Shields parameter will be reduced. 

Figure 7.7 Driving forces on a particle placed on a bed with transverse 
slope. 

While the driving drag forces in the flow direction remain unchanged, an  
additional driving gravity force given by 

FT = W sinp (7.26) 

now acts perpendicularly to the drag force, see Fig. 7.7. At the same time, the 
maximum stabilizing force is reduced to 

F, = Wps  cos p (7.27) 

because the component of gravity force perpendicular to the bed is reduced by a 
factor cos 0. Now the critical bed shear stress Bc or critical friction velocity U,, is 
determined by Jm = F, (7.28) 

where FD, is the critical drag force. By use of Eqs. 7.18, 7.26 and 7.27, Eq. 7.28 
reads 
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or 

From Eqs. 7.22 and 7.23 it is seen that 

(7.30) 

(7.31) 

where the index co indicates the critical Shields parameter on a bed with no slope. 
Inserting Eq. 7.31 together with Eq. 7.20 into Eq. 7.30 finally gives 

(7.32) 

Example 7.4: Effect of a longitudinal slope on the critical Shields 
parameter 

The principles outlined in the foregoing section are easily transferred to the 
case where the bed has a slope y in the flow direction. Now, the critical bed shear 
stress is determined by 

FD, + FT = F, (7.33) 

or 
1 7 r  
2 - p c u q d 2 ( d 7 f c ) 2  + W siny = Wps cosy (7.34) 

which, similarly to the former example, can be rearranged to 

(7.35) 
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7.4 Bed load transportation 

One of the first theoretical approaches to the problem of predicting the 
rate of bed load transport was presented by H.A. Einstein (1950). One of the 
most important innovations in his analysis was the application of the theory of 
probability to account for the statistical variation of the agitating forces on bed 
particles caused by turbulence. 

If the magnitude of the instantaneous agitating forces on a certain bed par- 
ticle exceeds the stabilizing forces on the particle, the particle will begin to jump, 
roll, or slide along the bed until it becomes deposited downstream at a location 
where the magnitude of the instantaneous forces is smaller than the stabilizing 
forces. Based on experimental observations, Einstein assumed that the mean dis- 
tance, travelled by a sand particle between erosion and subsequent deposition, 
is simply proportional to the grain diameter and independent of the hydraulic 
conditions and the amount of sediment in motion. 

The principle in Einstein’s analysis is as follows: the number of particles, 
deposited in a unit area, depends on the number of particles in motion and on 
the probability that the dynamical forces permit the particles to deposit. The 
number of particles eroded from the same unit area depends on the number of 
particles within the area and on the probability that the hydrodynamic forces 
on these grains are sufficiently strong to move them. For equilibrium conditions 
the number of grains deposited must equal the number of particles eroded. In 
this way, a functional relation (bed load function) is derived between the two 
non-dimensional quantities. 

and 

(7.36) 

(7.37) 

where Qb is the rate of bed load transport in volume of material per unit time and 
width. Hence, a? is a non-dimensional form of bed load discharge, while 0‘  is the 
non-dimensional tractive stress (the Shields parameter) due to skin friction. 

R.A. Bagnold (1954) pointed out one of the shortcomings in Einstein’s for- 
mulation by stating the following paradox. Consider the ideal case of fluid flow 
over a bed of uniform, perfectly piled spheres in a plane bed, so that all particles 
are equally exposed. Statistical variations due to turbulence are neglected. When 
the tractive stress exceeds the critical value, all particles in the upper layer are 
peeled off simultaneously and are dispersed. Hence the next layer of particles is 
exposed to the flow and should consequently also be peeled off. The result is that 
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all the subsequent underlying layers are also eroded, so that a stable bed could 
not exist at all when the shear stress exceeds the critical value. 

Bagnold explained the paradox by assuming that in a water-sediment mix- 
ture the total shear stress r' would be separated in two parts 

7' = 7 F  f 7G (7.38) 

where TF is the shear stress transmitted by the intergranular fluid, while TG is the 
shear stress transmitted because of the interchange of momentum caused by the 
encounters of solid particles, i.e. a tangential dispersive stress. The existence of 
such dispersive stresses was confirmed by his experiments. 

Figure 7.8 Distribution of fluid shear stress and grain shear stress in uni- 
form open channel flow. 

Bagnold argues that when a layer of spheres is peeled off, some of the spheres 
may go into suspension, while others will be transported as bed load. Thus a 
dispersive pressure on the next layer of spheres will develop and act as a stabilizing 
agency. Hence, a certain part of the total bed shear stress is transmitted as a grain 
shear stress r ~ ,  and a correspondingly minor part as fluid stress ( r ~  = r' - 76). 

Continuing this argumentation, it is understood that exactly so many layers of 
spheres will be eroded that the residual fluid stress r~ on the first immovable 
layer is equal to (or smaller than) the critical tractive stress rc. The mechanism 
in transmission of a tractive shear stress T greater than the critical is then the 
following: T~ is transferred directly from the fluid to the immovable bed, while the 
residual stress r' - T~ is transferred to the moving particles and further from these 
to the fixed bed as a dispersive stress. 
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Example 7.5: Bagnold’s experiments 

Bagnold (1954) measured the dispersive stress in a mixture of fluid and 
sediment particles (spheres with a density equal that of the water in order to 
avoid disturbing centrifugal forces). The mixture was placed between two co- 
axial cylinders of which the one was fixed while the other (outer cylinder) could 
rotate. The spacing between the two cylinders was small compared to their radii. 
As a result a nearly uniform distribution of the shear stress was obtained in the 
mixture. The shear stress as well as the normal stress acting on the cylinder wall 
were measured. The experiments were carried out for the same rotation speed 
of the cylinder with and without sediment in the fluid. Therefore, the dispersive 
tangential and normal force due to the presence of sediment was obtained as the 
difference between the two above mentioned measured quantities. 

The dispersive stresses originate from exchange of momentum between the 
particles because of collisions resulting in movement of the particles transversely 
to the mean flow direction. 

Bagnold suggested that the dispersive stresses could be described mathe- 
matically by a relationship between two non-dimensional parameters, namely 

and 

(7.39) 

(7.40) 

In both equations X is the so-called linear concentration related to the real volu- 
metric concentration c by 

= . , ~ ( i  + 1/x13 (7.41) 

in which c, is the maximum value for the volumetric concentration. For natural 
sand, this number is around 0.65. Geometrically, d/X is a measure for the average 
distance between two grains approaching zero for the most dense packing. 

7.40 is a kind of Reynolds number for the 
sediment, because the square root of the stresses (like the usual friction velocity) 
defines a velocity scale. N appearing in Eq. 7.39 is a measure for the shear in the 
flow. 

The measured relations between N and G are depicted in Fig. 7.9. Two 
different values for G are given, namely G, and G,, where G, represents the 
dispersive shear stress, while G, is the dispersive normal stress. 

If the dispersive shear stresses first is considered, it is seen that at  large 
values of N the relation between G2 and N on double logarithmic scale approaches 

The parameter given by Eq. 
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Figure 7.9 Variation in dimensionless grain shear stresses G with N .  

a straight line with the slope 2:l. Here, the relation between N and G can be 
rewritten as 

TG = 0.013p~(Xd)~ (g)’ for N >450 (7.42) 

At low values of N ,  the relation between G2 and N approaches another 
straight line with a smaller slope, namely 1:l. Here, the corresponding expression 
similar to Eq. 7.42 becomes 

(7.43) 
du 

TG = 2.2A3f2pv- for N < 40 
dz 

Savage and McKeown (1983) later suggested that this last expression be modified 
to 

(7.43a) 2 du 
TG = 1.2X pv- 

dz 

Eq. 7.42 corresponds to the so-called inertia-region in which the intergranu- 
lar collisions occur so often and with such a strength that the inertia of the grains 
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will dominate the transfer of dispersive stresses. In this region, the fluid viscosity 
is of no importance. 

Eq. 7.43, on the other hand, corresponds to the viscous region where the 
fluid viscosity becomes important. Here the concentration of sediment is so weak 
that the velocity of the grains is mainly determined by the interaction with the 
fluid rather than by the momentum transferred by intergranular collisions. 

In Fig. 7.9 the dimensionless dispersive normal stress G, is plotted. The 
relation between the dispersive shear stresses and normal stresses can be written 
as 

TG = CG tan(d‘d) (7.44) 

in which c$d can be viewed as a dynamic friction angle. In Bagnold’s experiments 
it was found that tan(q5d) was around 0.75 in the viscous region and decreased to 
about 0.32 in the inertia-dominated region (see also Example 7.8 for a discussion 
of $d). 

7.4.1 Bed load transportation close to incipient motion 

Fernindez Luque (1974), (see also Fernindez Luque and Beek, 1976) has 
argued against some of Bagnold’s ideas and has developed a consistent theory for 
the transport of bed load on a plane bed considering the motion of individual 
particles. His theory is supported by a series of careful experimental observations. 

One of his issues is that close to incipient particle motion (small transport 
rates) only the topmost grains will be eroded, and the bed load will not effectively 
reduce the fluid part of the turbulent bed shear stress. This can hardly be expected, 
either, since in these conditions the moving bed load particles cover only a small 
portion of the bed surface. According to Luque’s model, the bed load particles 
reduce the maximum fluid shear stress at the bed surface to the critical value T, by 
exerting an average reaction force on the surrounding fluid. Hence, the bed load 
forms a kind of protective shield at higher bed load concentrations, which control 
the erosion rate. 

From these considerations it is possible to construct a bed load formula in a 
relatively simple way (Engelund and FredsGe, 1976). The model is, as the consid- 
erations on the critical Shields’ parameter Section 7.3, a kind of model equation 
containing time-averaged quantities rather than an exact description of the forces, 
which is of fluctuating character. 

The bed load particles are transported with a mean transport velocity U e ,  
when they are moving. Hereby, the agitating forces (drag and lift) are given by 

(7.45) 
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This expression is similar to Eq. 7.19, and the symbols are the same. The 
stabilizing forces are like Eq. 7.20 given by 

Fs = W/1d (7.46) 

in which pd represents the dynamic friction, given by 

where $bd is the dynamic friction angle for the bed load sediment. 

lizing forces 
The model equation then expresses the equilibrium of agitating and stabi- 

(7.48) 1 7 T  2 7 T  

6 
ipcDzdz[oi U; - u,] = -pg(s - 1)d3pd 

which gives 

in which 

(7.49) 

(7.50) 

and 8' is the Shields parameter, Eq. 7.37. While in Shields' experiments it was 
intended to place the sediment regularly in the bed, naturally placed sand will 
have particles which are more exposed to the flow than others. 

As a particle lying on the bed is easier to move than a particle located in 
the bed, it must be expected that 00 < 8,. From his experiments Luque found 80 
to be $Ic, so that Eq. 7.48 may be written 

+ = 10 [l - 0 4 1  
Uf 

(7.51) 

taking CY = 10, as suggested earlier. Eq. 7.51 is compared with measurements by 
Luque (1974) and by Meland and Normann (1966) in Fig. 7.10. 

Ftom the knowledge of mean particle velocity, an expression for the rate of 
bed load transport q b  can now be derived under the assumption that the bed load 
is the transport of a certain fraction p (= probability) of the particles that may 
be in oiie single layer. As the total number of surface grains per unit area is l / d  ', 
we get 

or, after insertion of Eq. 7.51 

(7.52) 

( 7.53) 
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Figure 7.10 Experiments on t h e  t ransport  velocity U B  of bed load particles. 

This is made non-dimensional by the divisor d w  
@pB N 5 p [ d F -  0.7&] (7.54) 

An estimate on p can be obtained based on the assumption that only the 
part T~ of the total shear stress T is transferred directly to the immobile bed as 
skin friction, while the residual part T - T,  is carried as drag on the moving bed 
particles and indirectly transferred to the bed by occasional encounters. This idea 
leads to the equation 

T = Tc + nFo (7.55) 

where FD is the average drag on a single moving bed particle, while n is the number 
of moving particles per unit area. If this expression is divided by pg( s - l )d ,  and 
FD is estimated as 

F D  pg(s - l ) g d 3 p d  (7.56) 
A 

-iT 
@c + - p d p  (7.57) 

A 
the result becomes 

8’ = 8, + - p d  (nd’) 
6 6 

Luque’s experiments give empirical information about p ,  as the measure- 
ments comprise @ B ,  8’ and B c ,  so p can be evaluated from Eq. 7.54. A comparison 
between Eq. 7.57 (with p d  = 0.8 and 8, = 0.045) and the measured values of p is 
shown in Fig. 7.11. 

Besides the measured values of p by Luque some additional data, obtained 
from Guy et al. (1966), (the Fort Collins data), are included. From Fig. 7.11 it is 
seen that Eq. 7.57 shows good agreement with measured values for small values 
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of the Shields’ parameter. At larger values of 8’ however, Eq. 7.57 falls below the 
Fort Collins data. This seems reasonable, because Eq. 7.57 for larger values of 
8‘ becomes larger than unity, which is the upper limit of p ,  corresponding to the 
situation where all particles in the bed load layer are moving. 

In the Fort Collins series, four runs (corresponding to “standing waves”) 
are marked by triangles in Fig. 7.11. In these runs the transport rate was large 
but still largely occurring as bed load. The fact that they all gave values of p 
close to unity is an experimental support for the idea that p approaches unity for 
increasing values of 8’. 

1 .o 0 

v Fort Collins (standing waves) I 
0 Fort Collins (dunes) 

0.1 0 

7 v  

0.001 0.01 0.1 1 .o 
-P 

Figure 7.11 Probability p versus non-dimensional effective shear stress 6‘ .  
Solid line: Eq. 7.57. Dashed line: Eq. 7.58. 

By accepting a limiting value of p = 1, the expression for p has to be 
modified, for instance to the following expression 

(7.58) 

which is about equal to Eq. 7.57 for 8 close to 8, and approaches unity for large 
values of 6 ‘ . 

If Eq. 7.55 can not be 
fulfilled at large values of 8’ because of the limiting value of n. For this reason, 
other mechanisms must be included in the transfer of shear stress to the bed at 
higher values of 6 ‘ .  In the coming sections, two different mechanisms will be 
investigated, namely (i): The occurrence of bed load in several layers (sheet flow), 
and (ii): The influence of dispersive stresses from suspended sediment. 

7.58 is adapted, the force balance given by Eq. 
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Figure 7.12 Comparison between Eq. 7.59 and Meyer-Peter's formula, Eq. 
7.60. 

Keeping p from the expression Eq. 7.57, the bed load formula Eq. 7.54 now 

(7.59) 

This formula is depicted in Fig. 7.12 for pd = 1.0 and pd = 0.65, as shown in Fig. 
7.12. For pd = 1.0 the formula, given by Eq. 7.59 becomes close to the widely 
used semi-empirical formula of Meyer-Peter and Miiller (1948) 

@ B  = 8(e' - ec):  (7.60) 

However, both formulae overestimate the bed load transport at high shear 
stresses. 

Example 7.6: Bed load transport on a (small) transverse slope 

A bed load particle moving along a bed with a transverse slope p will move 
in a different direction than that of the flow, see Engelund and Fredsoe (1982). 

The angle between the direction of particle movement and the flow direction 
is called 4,  see Fig. 7.13. This angle can be found from the following force balance 
considerations: In the longitudinal direction the force balance is described by the 
equation 

Fo COS($l) = wp,j COS p (7.61) 
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Figure 7.13 Particle motion on a transverse slope 

Here $1 is the angle between the particle path and the drag. As shown in 
Fig. 7.13, the drag force acts in the direction determined by the relative velocity 
between flow velocity and particle velocity. This velocity is called U ,  and by simple 
geometry (cf. Fig. 7.13) is 

u, cos( $1 ) = au; cOs $ - U B  

= CYU; - UB (7.62) 

as the angle $ has to be small. Inserting Eq. 7.62 into Eq. 7.61 and taking 

1 7 r  

2 4  
FD = - p C D - d 2 U :  (7.63) 

give similarly to the derivation of Eq. 7.48 

CYU; 
(7.64) 

in which 60 still is given by Eq. 7.50. In the present derivation the transverse slope 
/3 and $1 are assumed small, so cosp and cos(g1) M 1. $1 is from geometrical 
considerations (see Fig. 7.13) given by 

(7.65) 

Next, the transverse force balance is considered. Because the dynamic fric- 
tion is directed opposite to the particle path, the transverse balance is given by 

W sinp = Fo sin($1) (7.66) 
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By use of Eq. 7.61, this can be written as 

Hereby, Eq. 7.65 finally gives 

Eq. 7.67 can be written as 
tan /3 t a n $ % $ = -  
tan $ 

in which 4 is a measure for the friction angle, given by 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

As seen from Fig. 7.14, experiments indicate that the constants appearing 
in Eq. 7.70 should be calibrated to give 

t a n 4  = 1.6 f i  (7.71) 

. 

0 0.1 0.2 

Figure 7.14 The friction angle 4 versus 8'. Experiments: filled circles: 
Zirnmermann and Kennedy (1978), open circles: Wan (1981). 
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7.4.2 Bed load transport and suspended bottom concentra- 
tion at high shear stresses 

In Section 7.1 we defined the bed load as that part of the load which is 
more or less in continuous contact with the bed during the transport. At small 
transport rates, this transport occurs in one single layer of particles moving over 
the fixed bed, as modelled in the previous section and sketched in Fig. 7.15A. At 
larger transport rates, however, some of the particles either go into suspension, 
Fig. 7.15C, or the particles move as bed load in several layers, Fig. 7.15B. 

A B C 

Figure 7.15 Different modes of sediment transport: A: bed load a t  small 
shear stresses. B: sheet flow. C: suspended sediment. 

The distinction between bed load and suspended load can now be made as 
follows: the bed load is that part of the load which is travelling immediately above 
the bed and supported by intergranular collisions rather than by fluid turbulence 
(Wilson, 1966). The suspended sediment, on the other hand, must then be that 
part of the transported particles which mainly is supported by the fluid turbulence. 

A complete description of this complex behaviour still awaits to be made. 
In the following, two simplified approaches to solve the problem are described: 

Influence of suspended load 

A very simplified extension of the model, described in Section 7.4.1 for weak 
bed load transport, was suggested by Engelund and Fredsoe (1976). They included 
the dispersive stress from the suspended load into Eq. 7.55, which now becomes 

T '  = Tc + nFo + 7-G (7.72) 

in which TG is the dispersive stress given by Eq. 7.42. In Eq. 7.72, the bed load 
is assumed only to consist of one single layer of particles. The remaining load 
is suspended load, where the concentration decays very fast away from the bed. 
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Hence, the velocity gradient can, as a first approximation, be  assumed to be nearly 
unaffected by the presence of sediment, so 

du u' - , A  . -  

dz K Z  
(7.73) 

The dispersive stress acting on the bed must depend on this velocity gradient 
calculated for a value of z in order of one particle diameter d 

z = a i d  (7.74) 
where 011 = O(1). Inserting Eqs. 7.42, 7.73 and 7.74 into Eq. 7.72 gives 

(7.75) 

where X b  is the linear concentration of suspended sediment at  bed level, cf. Eq. 
7.41. In non-dimensional form, Eq. 7.75 becomes 

(7.76) 

after Eq. 7.56 is introduced. 

ments of momentum transfer to the immobile sand surface if p is known. 

rates, we assume p to be unity and find that 

Hence this model provides a method for calculation of Cb from the require- 

When 8 ' becomes very large, corresponding to large suspended transport 

(7.77) 

For ordinary sand with s = 2.65 and K N_ 0.4 we get 
X b  = 2.1601~ (7.78) 

For a1 = 2 (i.e. the velocity gradient in Eq. 7.73 is taken 2d above the bed), X b  

becomes 4.32, which corresponds to the volumetric bed concentration Cb = 0.35. 
This is estimated to be a reasonable maximum value for suspended sediment in 
motion. Theoretically, Cb can be as large as 0.65, but this corresponds to firm 
packing and does not allow free motion of the particles. 

If the variation in p given by Eq. 7.58 is adapted, cb can be found from 
Eq. 7.76 for all O'-values. Fig. 7.16 shows an example on such a relation. For 
8' < 0.1, Cb becomes extremely small, while Cb approaches 0.35 for large values of 

Fig. 7.17 shows the sensitivity in the predicted bed concentration (by Eqs. 
7.41, 7.58, and 7.76) with pd. It is seen that at small 8'-values, the predicted 
cb-value strongly depends on pd. 

nder debate which value of pd will give the best agreement 
between theory and data. Garcia and Parker (1991) compared different theoretical 
and empirical expressions for the bed concentration with laboratory data and 
found that the present suggested method with pd = 1.0 gave too small a bed 
concentration at small @'-values. Hence, a value of pd around 0.50 to 0.65 seems 
more appropriate. 

8' .  

It is still a lii 
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Figure 7.16 Bed concentration cb versus 8 ' ,  assuming Bc = 0.05, s = 2.65, 
and f i d  = 0.50. 
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Figure 7.17 Sensitivity in predicted bed concentration to  pd. 

Example 7.7: Einstein's approach 

The above presented dynamic approach is quite different from one of the 
first suggestions on how to determine cg, namely the geometrical one by Einstein 
(1950). He simply suggested that the bed concentration was proportional to the 
concentration of bed load particles and hence given by 

(7.79) 

Here q B / u B  represents the volume of bed load particles per unit area, while 
2d is the thickness of the bed layer, which Einstein took to be equal to two grain 
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diameters. Now, applying Eq. 7.52 gives 

where p is given by Eq. 7.58. Eq. 7.80 is also plotted in Fig. 7.16. It is interesting 
to see that this and the former quite different approach give quite similar results. 

The above mentioned models may be insufficient in connection with coarse 
sediment: one criterion for a particle to go into suspension is that its fall velocity 
w, is not so big compared to the near wall velocity fluctuations that it cannot be 
kept in suspension. The vertical turbulent fluctuation near the wall is in order of 
U;, so usually the criterion for a particle to be moved in suspension is 

W S  
- < 0.8 - 1 
u; 

(7.81) 

For coarse sediment, this restriction can not be fulfilled even for quite high 
values of O ' ,  and instead the sediment will be transported in several layers as bed 
load, the particles being supported by intergranular collisions, as sketched in Fig. 
7.15B. This transport mode is usually called sheet flow. 

Thickness of the sheet layer 

The mechanism that the sediment is supported by intergranular collisions 
can be used to give information on the thickness 6, of the sheet layer. The vertical 
force balance for the solid particles in the sheet layer reads 

!!% = -pg(s - 1)" 
dz  

(7.82) 

in which the left-hand-side represents the vertical gradient in the dispersive normal 
stresses, and the right-hand-side represents the submerged weight of the sediment. 
Integrating Eq. 7.82 across the sheet layer gives 

(7.83) 

where index b and 6 represent the value at the bed and at  the sheet layer surface, 
respectively. If the dispersive stress at the top of the sheet layer is neglected, and 
if the relation 

7; = gG,b tan( '$d) (7.84) 

is used for the relation between bed shear stress and normal bed stresses, Eq. 7.83 
becomes 

(7.85) 
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Wilson (1987) and Hanes and Bowen (1985) assumed the vertical distribu- 
tion of sediment in the sheet layer to vary linearly as 

c = co - q c o  - cs) (7.86) 
6, 

in which Cg is the concentration at the top of the sheet layer and co the maximum 
concentration. If the influence of suspended sediment above the sheet layer is 
neglected, the upper concentration C6 can be put equal to zero, and Eq. 7.85 gives 

(7.87) 
2r; 

PS(S  - 1)co tan(&) 
6, = 

or 
(7.88) 

from which it is seen that 6, increases proportional with B ‘ ,  (Wilson, 1987). Hanes 
and Bowen (1985) obtained the more general expression 

(7.89) 

7.86 and allowing a variation in 4 through the sheet layer (see 

_ -  6, 201A(4d) - 
d (CO +c6) 

by using Eq. 
Example 7.7). In Eq. 7.89, A($,) is defined by 

where 4 b  and 46 are the value of the dynamical friction angle at  the bed and the 
sheet layer surface. 

Velocity distribution inside the sheet layer 

One of the main difficulties in establishing a sediment transport formula for 
the load in the sheet flow layer is to calculate the velocity of fluid and grains in 
the sheet flow layer. 

Only very few experimental data are available today, and most of the the- 
oretical work is therefore developed on a quite speculative background. A few of 
the suggestions are briefly described below. 

A: Wilson’s model 

Wilson (1987) calculated the velocity profile in the sheet layer by application 
of a mixing length theory, taking 

(7.91) 
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cf. Eq. 2.68. K ,  which for clear water flow is 0.4, may be different in the sheet 
flow. TF can be calculated as 

(7.92) T F  = T i  - TG 

The rc-variation is found by 

TG = tan(4d) pg(s  - 1)cdz la 
whereby the fluid shear stress is estimated to vary like 

Eqs. 7.91 and 7.94 now give 

(7.93) 

(7.94) 

(7.95) 

Close to the bed, this equation has the asymptotical solution 

which combined with the concentration profile Eq. 
transport rate given by 

(7.96) 

7.86 (with cg = 0) suggests a 

or 

In dimensionless form this gives 

(7.97) 

(7.98) 

(7.99) 

taking tan(4d) M 0.32. 
However, it is still open to debate whether a mixing length approach based 

on the fluid shear stresses, like that presented above, describes the real nature of 
the fluid flow in the sheet layer, because the fluid to a large extent is controlled 
by the moving solid particles in the sheet layer. Further, the mixing length might 
rather be correlated to the vertical exchange of particles between different layers 
in the sheet layer, which in turn results in a similar opposite exchange of fluid. 
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1 .o - 

Figure 7.18 Velocity profiles in the sheet layer, after Hanes and Bowen 
(1985). 

B: The model of Hanes and Bowen 

Hanes and Bowen used a different approach to determine the velocity dis- 
tribution in the sheet layer. They applied Bagnold's expression 

(7.100) 

to relate the grain shear stresses and the velocity gradient. With a known value 
of TG it is possible to calculate the velocity profile. 

Fig. 7.18 shows examples on the calculated dimensionless velocity profiles, 
obtained from Eqs. 7.77 and 7.100 for two different values of the bed concentration 
c6 of suspended sediment at the top of the sheet layer. The velocity gradient 
is smallest near the stationary bed where the concentration is highest. As the 
concentration decreases away from the bed, the velocity gradient increases in order 
to maintain a constant shear stress. The flow velocity Us at the top of the shear 
layer is obtained from Eqs. 7.86 and 7.100, and from the calculations it is found 
that 

6, N u; (7.101) 

The transport in the sheet layer is found as the product of concentration 
and velocity integrated over the sheet layer thickness 6,. This gives 

(7.102) 

The absolute values of the parameters in Eqs. 7.101 and 7.102 are not given, 
as they, in a complex way, depend on the conditions in the suspension or saltation 
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layer above the sheet layer. This description is also included in the Hanes-Bowen 
model. 

It can finally be mentioned that the approach by Hanes-Bowen differs from 
the Engelund-Fredsoe model for suspended sediment, described earlier in this sec- 
tion, in the following sense: In the EF-model the bed concentration of suspended 
sediment is determined by requiring TG = 7 b  - T~ N 78 at large 7-values and the 
velocity gradient being determined by the usual logarithmic shape. Thus the bed 
concentration Xb can be determined. 

In the Hanes-Bowen model, on the other hand, the concentration is instead 
assumed to be given in advance, whereby Eq. 7.94 gives the required velocity 
gradient. 

In more complete models, such assumptions can be avoided, but the com- 
plexity of the models increases very much at the same time. An example of a more 
complete model for the sediment-fluid mixture based on the constitutive equations 
for two-phase flow is that by Kobayashi and Seo (1985). 

Example 7.8: Variation in the ratio between normal and tangential 
stresses in the sheet flow 

Movlng plate 

4 
0 

Figure 7.19 Couette-flow of solid particles. 

Savage and Sayed (1984) and Hanes and Inman (1985) pointed out that the 
angle q!J which determines the ratio between normal and tangential stresses by 

T '  = CT tan(q!Jd) (7.103) 

probably is not constant through the sheet flow layer. A simple example can 
illustrate this: consider a Couette-flow between two parallel plates, the lower being 
in rest and the upper moving with a certain constant speed in its own plane. Only 
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grains are present between the two plates, so all stresses are due to intergranular 
collisions. (This flow can be started by moving the plate over grains initially being 
in rest. As the flow develops, the upper plate must be allowed to move slightly 
up, due to the normal forces from the moving grains). 

In such a Couette-flow, the tangential shear stress is constant over the depth, 
while the normal stresses decrease in the upward direction because the weight 
above decreases away from the bed. In this example it is easy to see from Eq. 
7.103 that 4,j cannot be constant over the vertical. 
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Chapter 8. Vertical distribution of sus- 
pended sediment in waves 
and current over a plane 
bed 

This and the following chapter describe how the suspended sediment is 
distributed vertically by waves and current turbulence. The presence of bed forms 
like ripples and sandwaves complicates this description. However, these bed forms 
are generally washed out at  large shear stresses (or, strictly speaking, at  large 
Shields parameters), and the bed becomes almost plane. This plane bed case is 
very important because the main part of the sediment transport takes place at  
large Shields parameters. This chapter considers only the plane bed case, while 
the influence of bed forms is introduced in the following two chapters. 

8.1 Vertical distribution of suspended sediment in a 
steady current 

Consider a steady flow over a plane bed. In this case, the temporal mean 
values of the velocity are parallel with the bed, and the sediment is kept in suspen- 
sion by turbulent fluctuations. The classical approach to calculating the vertical 
distribution of suspended sediment is to adapt the same mixing length concept as 
outlined in Example 2 2 .  
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Consider uniform sands with a settling velocity w,. In a turbulent flow, 
these sands are assumed to settle relative to the surrounding water by their fall 
velocity. Now, following the concepts of the mixing length theory, fluid and sand 
will be transported from a lower level I where the (volumetric) concentration of 
suspended sediment is c - a ldc /dz  up to a higher level I1 where the concentration 
is c -+ i l d c / d z .  

Z 

4 
c-, 

A I I 
*A . .  . .  . . .  . . .  . . . ., 

. . . . ._ 
,. . . .: t.... :...:.. 

7 / / / / / / / / / / / / / / / / / / / -  

Figure 8.1 Suspended sediment in turbulent flow. 

This exchange is caused by an upward fluid discharge q through A-A, which 
is a cross section parallel with the bed and located between level I and 11. The 
fluid will transport the following amount of sediment up through A-A 

qu. = (w' - ws) (c - 

in which w' is the vertical velocity fluctuation of the fluid. 
The upward transport is compensated by a corresponding downward trans- 

port of fluid and sediment. Analogous to Eq. 8.1, the downward sediment trans- 
port is given by 

In the case of a steady situation, qu and q d  must be equal, which gives 

1 dc 
2 d z  

cw,  + -w'l- = 0 

Here 
1 
2 -w'l  N ql (8.4) 

The term ql is the same as that evaluated in mixing length theory, see 
Example 2.8. Eq. 2.73 yields 

r du 
q l =  -1- 

P dz 
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In steady channel flow the vertical shear stress distribution is given by 

and the velocity gradient by 
du U f  
dz K Z  
_ - -  - 

Due to the presence of suspended sediment, a small deviation in the log- 
arithmic shape of the velocity may occur, so Eq. 8.7 is - especially for large 
concentrations - an approximation as described in Example 8.3. From Eqs. 8.3 
and 8.7, the following differential equation in c is obtained 

cw, + K U f Z ( l  - ;)$ = 0 

which by integration gives 

This distribution is usually called the Vanoni-distribution, and the parame- 
ter ws/(tcVf) the Rouse parameter. cb is the reference concentration of suspended 
sediment a distance b above the bed. Usually b can be taken to be 2d, see Section 
7.4.2. 

Example 8.1: Solution of the vertical distribution by the eddy vis- 
cosity concept 

From Eqs. 2.61 and 2.73 the mixing length and eddy viscosity are connected 
by 

V T  = ql = K U f Z  1 - - (8.10) 

which is the generally accepted distribution of eddy viscosity for steady channel 
flow. Inserting Eq. 8.10, Eq. 8.8 can be written 

( 3 

(8.11) 
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dc 
dz -v - 

t I . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

Figure 8.2 Settling and diffusion of sediment 

The two terms in Eq. 8.11 are easy to interpret: the left term w,c represents 
the settling of the suspended grains through a unit area parallel to the bed, see 
Fig. 8.2. The other term v.rdc/dz represents the diffusion of suspended sediment. 

The diffusion is characterized by spreading of matter proportional to a dif- 
fusion coefficient and the negative gradient of the concentration. From Eq. 8.11 it 
is seen that the eddy viscosity can be taken as the mixing, or diffusion coefficient. 
However, it can be argued that the mixing of sediment is not completely analogous 
to the mixing of water. For this reason, it is convenient to introduce the following 
relationship 

EY = PUT (8.12) 

where E ,  is the mixing coefficient for solid material and p is a factor which must 
depend on the sand size and the level of turbulence. One important reason for 
/3 to deviate from unity might be caused by the sediment settling out of the 
surrounding water before the water loses its earlier composition by mixing, as 
discussed in Example 8.2. Another important contribution may occur from the 
centrifugal forces having a larger effect on the sediment grains with their larger 
density than on the fluid particles. Based on measurements by Coleman (1981), 
van Rijn (1984) suggested that /3 should be given by 

(8.13) 

However, the variation in /3 is still not totally clear (Van de Graaff, 1988). 
For high concentrations, Eq. 8.11 must be modified to take into account 

that the sediment grains occupy a certain fraction of the total volume. This implies 
that when a certain volume of sediment w,c settles through a unit area, this volume 
must be replaced from below by water and sediment. Here the concentration is 
also approximately c, so the volume of solid matter transported up through the 
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unit area is c(cw,). Hence Eq. 8.11 becomes 

(8.14) 

which corresponds to a decrease in the fall velocity w, equal to a factor (1 -c) .  This 
partly explains the measured reduction in w,  at high concentrations as described 
in Example 7.2. 

Example 8.2: Some considerations on the relation between the tur- 
bulent diffusion coefficient and the Rouse number 

In this example, two mechanisms are presented which may explain the de- 
viation of p appearing in Eq. 8.12 to be different from unity (Deigaard, 1991). 

A. Turbulent exchange of sediment 

By using mixing length theory the derivation of the vertical concentration 

The water in the vertical exchange is moving with a velocity w which is 
profile can be extended as follows: 

approximately equal to the vertical turbulent velocity fluctuations U f .  

w = auf (8.15) 

where 01 is a coefficient of order one. 

an eddy. The volume X of the exchanged water per event at the level z is 
A single event of vertical exchange is considered as a simplified picture of 

x = 4 3  (8.16) 

in which 011 is a coefficient and 1 is the mixing length. It takes the time 1/(201U,) 
to travel from the level z - 1/2 to z (see Fig. 8.1). The sediment concentration at 
the start is given by c-  il2; cf. Eq. 8.1. As the water volume travels from 2-112 
to z it loses the sediment that settles out from it. A characteristic horizontal area 
of the volume is 0 1 2 1 ’ ~  and the amount of sediment lost is 

1 
a ~ 1 2 - w , ( ~  - Ac) 

2auf 
(8.17) 

where A c  is defined as 2212. 
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At the same time the water volume gains the sediment that settles into 
it. The gain is related to the average concentration C of sediment in the water 
surrounding the water volume of exchange 

2 -  ff212-wsc = 
2ff Uf 

w,(c - Ac/2) (8.18) a#---- 
2cuUf 

1 

The sediment concentration at level z of a water volume which has travelled up- 
wards is thus 

1 1 
= - { f f 1 1 3 ( c  - ac) - 01212-ws(c - n c )  

f f 1 1 3  2ffUf 

1 + a 2 l 2 - w S ( c  - Ac/%)} = 
2ffUf 

c - n c + -  f f213  w,nC - = c - ( l - - - ) n c  ff2 ws 
4 3  4@uf 4fflff Uf 

(8.19) 

Correspondingly, the sediment concentration at level z of a water volume 
after travelling downward is 

This gives a vertical net flux of sediment 

dc 
- E s  - 

dz 
giving a sediment exchange factor of 

(8.20) 

(8.21) 

(8.22) 

It can be seen that these simple kinematic considerations lead to a sediment 
exchange factor which is always smaller than the momentum exchange coefficient 
(cf. Eqs. 8.3 and 8.4), with difference proportional to ws/Uf. Mechanisms that 
give a E,  which increases with w, are considered in the following section. 
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B. Convective sediment exchange 

Until now only exchange due to turbulent diffusion has been considered, 
where the upward flux of sediment is proportional to the gradient in the concen- 
tration. Instead the flux could be governed by a convective transport. In the 
following a very simple model for convective transport is considered. The model 
is not intended to be a quantitative representation of a real situation, but only an 
illustration. Situations where convection of sediment can be of importance are for 
instance: 

A. W a v e  r ipples:  During the first half wave period sediment is transported 
both as bed load and in suspension in the boundary layer along the upstream 
side of each ripple. The sediment passes the ripple crest and is suspended in the 
vortex on the lee side. In the next half wave period the vortices with the sediment 
move away from the bed and are dissolved, and at the same time a new boundary 
layer is formed at the present upstream side of the ripples. The vertical flux 
of sediment carried in the vortices is clearly not a diffusion process (for a more 
detailed description, see Chapter lo). 

B. T h e  b u r s t i n g  process:  In turbulent boundary layers a significant part of 
the momentum transfer is related to large coherent fluid motions, which can cause 
a vertical convection of suspended sediment (Sumer and Deigaard, 1981). 

Figure 8.3 Exchange of sediment by convection. A: a mass of water rises 
B: exchange with surrounding water gives with velocity w. 

decreasing sediment concentration. 

The main element of the simplified model is that fluid volumes are moving 
upward with a period T,. In case of a bed with wave ripples T, will be half of the 
wave period. The volume per unit bed area is A,  and the sediment concentration 
in the volume is c1, see Fig. 8.3. The total volume of the upward moving fluid 
is small, and c1 is much larger than the concentration c of the surrounding fluid. 
The upward convective discharge is thus 

A 
qup = - T, 

(8.23) 
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As a fluid volume moves upward, it exchanges water (and sedimeht) with 
the surroundings. The time scale for the exchange is re, giving an exchange rate 

(8.24) 
A 

of 

r e  

This means that the volume loses an amount of water A/re per unit time with 
sediment concentration c1 and receives the same amount of water with a much 
lower concentration, giving a variation of the concentration in the volume of 

- 

d ( c i A )  dcl A 
C 1  -A -  = -- 

dt dt r e  
-- (8.25) 

It is assumed that the volume moves upward with the constant velocity w. 
Thus t in Eq. 8.25 can be substituted by z/w giving a variation with the level of 

Eq. 8.26 gives 

c1 = c1oeXP(-$) 

(8.26) 

(8.27) 

where c10 is the concentration in the volume when it starts its upward motion at  
z = 0. For a steady situation (averaged over Tc)  the settling of sediment in the 
surrounding fluid must balance the vertical convection 

(8.28) w,c = qvpc1 = -c1 

Eq. 8.28 gives the vertical distribution of suspended sediment in the main water 
mass 

A 
TC 

(8.29) 

which determines the suspended sediment concentration profile. 
If a concentration profile, given by Eq. 8.29, is measured, and then analyzed 

in order to determine the turbulent diffusion coefficient; that is, the concentration 
profile is assumed to be determined by the diffusion equation 

dc 
d z  

E,- = - w,c (8.30) 

after which, inserting Eq. 8.29 in 8.30 gives an estimated turbulent diffusion coef- 
ficient of 

= w,wre (8.31) 

which implies an apparent diffusion coefficient that increases with the settling 
velocity of the sediment. 

E ;  = -s w c  - - wsco exp(-z/wTe) 
- 

d c / d z  co ( - l /wr , )  exp(-z/wre) 
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Example 8.3: Vertical distribution of graded sediment 

The vertical distribution given by Eq. 8.9 is derived for uniform sand. For 
graded sediment, Eq. 8.9 is often used with a fall velocity based on the mean 
diameter of the sediment transported in suspension. This mean diameter can be 
found as follows: first a criterion for a particle able to go into suspension is needed. 
The simplest approach is that given by Eq. 7.81 

W, = 0.8U; (8.32) 

where wc is the critical fall velocity above which sediment is not able to go into 
suspension. 

As an illustrative numerical example consider a flow along a plane bed 
consisting of sand with d50 = 0.25 mm and crg = 1.5. This corresponds to the 
grain distribution curves shown in Fig. 7.1 and 7.2. The friction velocity in the 
flow is assumed to be 0.04 m/s. Now the sediment must have a fall velocity 
smaller than 0.032 m/s in order to be able to go into suspension. At 20°C, Table 
7.1, gives that the critical fall diameter is df,cr = 0.24 mm. From the particle-size 
distribution curve, Fig. 7.2, it is found that this corresponds to 48% being finer. 
The mean diameter of suspended sediment is then found from the 48/2 = 24% 
fractile, which gives 

A more refined method has been suggested by Engelund (1975). He divides 
the sediment with a fall velocity lower than w, into equal fractions (by volume), 
and the relative vertical distribution of each fraction is calculated on the basis of 
the mean fall velocity of each fraction. 

The bed concentration of each fraction is obtained from the following two 
requirements: 

= 0.19 mm. 

(i) the sum of the bed concentrations must be equal to that obtained using the 
mean diameter d50, 

and 

(ii) only sediment which is moderately graded is considered. In this case it can 
be assumed that the particles in suspension will keep the original composi- 
tion. Hence the integral 

I = I D  cdz (8.33) 

should be the same for all the chosen fractions. 

In practice two or three fractions are sufficient. 
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Example 8.4: Density effects at large concentrations 

The presence of suspended sediment near the bed gives rise to a vertical 
gradient in density, which will slightly modify the velocity profile as pointed out 
by, among others, Einstein and Chien (1955) and Coleman (1981). Because the 
concentration of suspended sediment decreases away from the bed, the fluid be- 
comes stabilized, and work must be spent on the fluid to mix it because it requires 
additional potential energy. The frictional effect of the turbulence is consequently 
slightly reduced. A discussion of the importance of this effect on the modification 
of the velocity profile is given by Soulsby and Wainwright (1987) who quantified 
the stabilizing effect by the Monin-Obukov parameter 

(8.34) 

Here, p' is the fluctuating part of the density around its time-mean value p 
(which as an approximation - can be taken as p )  and w' is the fluctuating component 
of the vertical velocity, so p'w' becomes the upward flux of density. The Monin- 
Obukov parameter is therefore a term describing the ratio of potential energy 
required to mix the density gradient to the turbulent kinetic energy supplied by 
the shear at a certain level. 

The presence of this stabilizing parameter changes the velocity gradient by 

- Uf - -(1 + 4.7M) 
dU 

d(Znz) K 
(8.35) 

using an analogy to changes in the velocity profile of the atmosphere due to density 
changes caused by variations in temperature. 

Soulsby and Wainwright suggested that the influence of density effects can 
be disregarded for 

A4 < 0.03 (8.36) 

The parameter M can further be related to the vertical distribution of 
sediment by the following considerations: The fluctuation in density can be related 
to the fluctuation in volumetric concentration c' by 

- p" = p(s - 1)c'w' (8.37) 

In the case of equilibrium, the upward diffusive flux is balanced by the downward 
settling flux, so 

(8.38) 
dc 

c'w' = cw, = &,- 
a Z  

- 
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in which the eddy diffusion concept has been introduced. Taking the sediment 
diffusion coefficient to be equal to the eddy viscosity and 

VT = K u f  Z (8.39) 

the Monin-Obukov parameter becomes 

(8.40) 

where C b  is the reference concentration at the level b above the bed. 
From this equation the influence of density gradients can be evaluated for 

different values of vertical levels, grain diameters, and friction velocities. Soulsby 
and Wainwright carried out a detailed discussion on the variation in A4 with d and 
U f ,  with the reference concentration based on the expression suggested by Smith 
and McLean (1977) 

(8.41) 

in which y1 is a constant (- 1.56 x The stratification effects are most 
pronounced for fine sediment combined with large shear stresses. 

More important than the damping effect on the velocity profile is the damp- 
ing effect on the diffusion coefficient for the sediment particles. Van Rijn (1984) 
expressed the diffusion coefficient by 

(8.42) 

in which Van Rijn suggested that /3 should be given by Eq. 8.13 based on cali- 
brations with the data far away from the bed by Coleman (see also Example 8.2). 

(8.43) 

in which co = 0.65 is the maximum bed concentration. This expression is empiri- 
cally based on the measurements by Einstein and Chien (1955). 

Fig. 8.4 shows how the incorporation of Eqs. 8.22, 8.24 and 8.25 into the 
diffusion equation, Eq. 8.11, changes the Vanoni profile as given by Eq. 8.9. The 
bed concentration is based on the Engelund-Fredsoe (1976) formula, Eqs. 7.58 and 
7.76, which for the selected examples, gives quite high concentrations just above 
the bed and hence has a large influence on the &factor in Eq. 8.42. In Fig. 8.4 
the fall velocity is given by 

w, = ws0( l  - c)4 (8.44) 

as suggested by van Rijn (1984). This formula is quite like Eq. 7.16 and based 
on the same data. From Fig. 8.4 it can be seen that the calculations suggest 
significantly less sediment enters suspension due to density effects, the main con- 
tribution arising from the large near-bed concentrations. However, Eq. 8.42 is not 
verified at these large concentrations. 
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Figure 8.4 Calculated vertical profile of suspended sediment. Dashed line: 
Vanoni profile (Eq. 8.9). Solid line: Modified Vanoni profile 
due to density effects (van Rijn, 1984). Input data: d = 0.15 
mm, w,, = 0.018 m/s, D = 8 m. 

8.2 Distribution of suspended sediment in pure oscilla- 
tory flow 

In a pure oscillatory flow, the turbulence is restricted to the thin oscillatory 
boundary layer investigated in Chapter 2. Because the flow in this case is unsteady, 
it is necessary to apply the complete continuity equation for suspended sediment 
which for the plane case reads 

dc dc a ( a ( a d c )  
- =ws-+- E - + -  & - 
dt dz  dz  dz  ax dz 

(8.45) 

where the left-hand-side represents the rate of change in the concentration of 
suspended sediments, the first term on the right-hand-side represents the settling 
of suspended sediments, and the two last terms the vertical and horizontal sediment 
diffusion. 

The last term on the right-hand-side can usually be neglected, because the 
vertical gradient in c is much larger than the horizontal one. Further, the left- 
hand-side of Eq. 8.45 can be approximated by 

dc dc dc dc dc 
- + u- + w- N - 

dt dt dx dz dt 
_ -  - (8.46) 

because the convective terms are higher order terms which can normally be ne- 
glected. Hence, the diffusion equation is reduced to 

ac a -=ws-+- & - 
dC 
at a z  a*( 3 (8.47) 
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Example 8.5: Solution of the time-averaged continuity equation for 
suspended sediment 

Time-averaging of Eq. 8.47 gives 

(8.48) 

or 
~ 

- ac 
aZ (8.49) w,c+&,- 1 0  

in which C is the time-averaged value of the concentration at a certain level z above 
the bed. Inserting a time-independent value for E~ into Eq. 8.49 gives 

a? 
az (8.50) w,c+ E,- = 0 

This equation can easily be solved with known vertical variations of E,. Such an 
expression was suggested by Lundgren (1972), who constructed the expression 

(8.51) 

where V,,,,, = the maximum shear velocity during one wave period, f w  = the 
wave friction factor and 61 = the mean boundary layer thickness. Eq. 8.51 is 
empirically based on the measurements by Jonsson (1963). Since Eq. 8.51 is the 
mean averaged value over one wave period, Eq. 8.50 can easily be solved to give 

(8.52) 

However, the assumption that the eddy viscosity is time-invariant is usually 
an oversimplification because - ac x 

E,- # E,- 
dz dz  (8.53) 

This can be illustrated by the following example: 
A periodic motion is considered which during the first half-period T / 2  has 

a constant flow velocity V, and during the second half-period has zero velocity. If 
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T is assumed to be so large that the time-scale for the settling of suspended 
sediment is much sinaller than T ,  the correct distribution will be 

(8.54) 

where U f l  is the friction velocity according to the mean flow velocity V1, and C b l  the 
bed concentration determined from the conditions at flow velocity V1. If, instead, 
the diffusion equation based on the mean eddy viscosity during the total period 
of motion is solved then the eddy viscosity will only be half the eddy viscosity for 
the flow velocity Vl, consequently Eq. 8.50 gives 

2w 

(8.55) 

where Cb2 is a nominal concentration different from C b l .  It can easily be seen that 
even by an appropriate choice of c,z, Eqs. 8.54 and 8.55 cannot be identical. 

Substitution of a time-averaged eddy viscosity may also lead to significantly 
incorrect predictions of the resulting sediment transport in combined wave-current 
motion. 

For unsteady flow, the instantaneous amount of sediment in suspension is 
not determined by the instantaneous value of the bed shear stress, because the 
sediment takes some time to settle after being picked up from the bed. This 
means that the sediment transport must be determined by 

D 
qs = $ iT 1 ucdzdt (8.56) 

where u and c are the instantaneous vertical velocity distribution and the con- 
centration distribution, respectively. Because of the lag between velocity and 
concentration, Eq. 8.56 differs from 

D 
q1 = 1 Ucdz (8.57) 

where U is the average velocity and C the average concentration (over one wave 
period). 

For the reasons given in the preceding example, the correct approach for 
solving the vertical distribution of suspended sediment in unsteady flow will be to 
solve the complete version of Eq. 8.47, calculating the time and space variations 
in c during one wave period. Using this approach it will be possible to take into 
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account the time variation in the eddy viscosity and to introduce the boundary 
condition at the bed in a more rigorous manner. 

Fig. 8.5 shows the result of such a calculation. The flow description is based 
on the momentum integral method for the wave boundary layer, see Section 2.2. 
In this description, the variations in bed shear stress and boundary layer thickness 
were calculated at  each phase during a wave cycle. From this information, the 
instantaneous value of the eddy viscosity can be taken as 

b’T = &lU;lz(1 -Z/6) (8.58) 

where both U; and 6 vary with time. Taking E,  = V T ,  Eq. 8.47 must now be 
solved numerically. The boundary conditions being 

(i) The time variation in c must be periodic, so 

c(t ,  z )  = c(t + T ,  z )  

(ii) At the water surface, there must be no vertical flux, so 

(8.59) 

(8.60) 

However, because of the very limited vertical extent of the wave boundary 
layer, Eq. 8.60 will in practice always degenerate into 

c-+O for 2 - 0 3  (8.61) 

(iii) The last boundary condition is related to the bed concentration of sus- 
pended sediment. As it appears from Chapter 7, this problem still does 
not have a completely satisfactory solution, even for the more simple ca,se 
of steady current. In the following, the Engelund-FredsGe (1976) approach 
(see Section 7.4.2) for the bed concentration has been applied. It relates 
the bed concentration at z = 2d to the Shields parameter 

where this relationship is given by Eqs. 
unsteady flow, Eq. 
instantaneous bed shear stress. 

7.58 and 7.76. In the case of 
8.62 is used as the bed boundary condition for the 

Fig. 8.5 shows the variation in c with time at different distances from the bed 
for a specific run. The bed roughness k N  has been set to 2.5d, so z / k N  = 0.8 
corresponds to z = 2d. The ordinate indicates the relative concentration C/Cb,max, 

where q m a x  is the bed concentration for U f  = U;,max. 
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Figure 8.5 Variation in concentration with time a t  different levels from the  
bed for a / k N  = 3916, Qkax = 1.45 and w,/Ulm = 0.018. 
(Fredsoe et  al., 1985). 

Just above the bed, the maximum concentration occurs at the same time as 
the maximum bed shear stress occurring, as described in Chapter 2, at  a phase 4 
before the maximum wave velocity outside the boundary layer. Increasing distance 
from the bed causes the maximum concentration to lag more and more behind the 
maximum bed shear stress, the suspended sediment reacting to changes in the flow 
with a certain lag, because it takes some time for the sediment to settle after it 
has been picked up from the bed. 

Furthermore, Fig. 8.5 shows that the variation in c follows an  asymmetric 
pattern: the rise in concentration occurs much faster than the fall, for two reasons: 
First, the variation in U f  is asymmetric, see Chapter 2. However, this contribution 
is not very important, as can be seen from Fig. 8.5, as the variation in the bed 
concentration for z / k N  Y 0.8 is nearly symmetric. The reason is that the bed 
concentration is insensitive to changes in bed shear stress if 6” is sufficiently large 
(see Fig. 7.16). 

The second contribution to the asymmetric shape arises because the rise in 
the concentration is very rapid when the sediment is brought into suspension and 
pushed away from the bed during periods of large bed shear stresses, while the fall 
in concentration simply occurs because the sediment falls towards the bed at  the 
fall velocity w, with almost no turbulence present. 
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Figure 8.6 Comparison between measured and predicted variation in c 
during one wave period 1.8 cm above the bed. Fig. A: Ex- 
perimental data: dso = 0.19 mm, a = 1.86 m, T = 9.1 s 
(from Staub et al., 1984). (These da t a  correspond to the non- 
dimensional data in Fig. 8.4). Dashed-dotted curve, Fig. A: 
Gradation of sediment incorporated. Fig. B: Comparison be- 
tween three different hydrodynamic approaches to  estimating 
E,. (Justesen and Freds@e, 1985). 

Fig. 8.6 shows a comparison between the results shown in Fig. 8.5 and the 
time variation in the concentration measured by Staub et al. (1984), who applied 
a mechanical suction system to measure the concentration. It is seen that both 
the asymmetric behaviour and the amplitude in the variation of the normalized 
concentration c/C during a wave cycle confirm the theoretical predictions. 

As outlined in the last part of Example 8.3, the effect of including the 
sediment gradation in the theory is indicated by a dashed-dotted curve in Fig. 
8.6A. The suspended sediment has been divided into three fractions. 

Figs. 8.7A and B depict the average concentration over one wave period 
at different combinations of the dimensionless parameters a / k N ,  w,/U~,,,,, and 
Om,,. From the figure it is noticed that changes in 0Lax are only important close to 
the bed. The fully-drawn curves are those predicted from theory setting QLax = 10, 
while the dashed ones are based on OAax = 1. 

8.7, the value 6 1 / k  indicates a measure of the 
mean value of the turbulent boundary layer thickness, 61 being the boundary layer 

On the ordinate in Fig. 
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Figure 8.7 Theoretical vertical distribution of the average concentration C 
in pure wave motion. A: a / k N  = lo3.  B: a / k N  = lo4.  The 
fully drawn line corresponds to e,!,,,, = 10, while t he  dashed 
line corresponds to @Aax = 1. (Fredsde et al., 1985). 

thickness at wt  = n/2 (maximum wave-induced velocity outside the boundary 
layer). It is seen that a significant amount of sediment may be present above this 
mean boundary layer thickness. 

Other hydrodynamic approaches 

Instead of adopting the eddy viscosity variation given by Eq. 8.58 obtained 
from the momentum integral method, VT can be obtained from more refined models 
like those described in Section 2.3. In Fig. 8.6B three different models for VT have 
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been used to solve the diffusion equation, Eq. 8.47, for the same data as those 
used in Fig. 8.6A. Besides the one mentioned above, the other approaches are: the 
eddy viscosity found from mixing length theory and from a one-equation turbulent 
model (k-equation). As seen from Fig. 8.6B, the latter two approaches predict 
slightly smaller variations in the concentration during a wave cycle, because the 
predicted time variation in the eddy viscosity is smaller, as described in Chapter 
2. 

0’ I I 
1 o - ~  5 5 10-2 5 10-1 

Figure 8.8 Predicted vertical mean Concentration distribution C. Experi- 
ments by Staub et al. (1984). 

In Fig. 8.8 the predictions of the time-averaged vertical distribution of the 
concentration C from the same three different models are shown. These predictions 
are compared with measurements by Staub et al. (1984), showing the average 
concentration for the data at different distances from the bed. The line surrounding 
each experimental point indicates the uncertainties in the measurement. These 
uncertainties arise from the inexact determination of the bed level, which varies 
slightly with time, even through a single wave period. 

It is seen that the more refined hydrodynamic models predict a slightly 
larger concentration of suspended sediment away from the bed. The experimental 
data base is, however, too limited to confirm which theory should be preferred. 

Example 8.6: Discussion on the bed boundary condition 

Some researchers are not in favour of the bed boundary condition given by 
Eq. 8.62 in the case of unsteady flow, and prefer instead the instantaneous bed 
concentration to be given by a so-called ’pick-up function’, also called the gradient 
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boundary condition. This is based on the following considerations (Parker, 1978): 
The vertical flux of sediment at the height z above the bed is given by 

ac 
az Flux = -E,- - W,C (8.63) 

Just above the bed, this flux must be equal to the amount of sediment 
eroded from the bed into the fluid, E, minus the amount of sediment deposited 
from the fluid into the bed, Dep. Because the vertical flux must be continuous at  
the bed 

-W,C - E,  - = E - D e p  (8.64) 

Now, it is argued that the mechanism for bed deposition is the fall velocity, 

Dep = wScIz , zd  (8.65) 

” ac I z = 2 d  

so 

whereby Eq. 8.64 becomes 

-&.el = E 
” z = 2 d  

In steady uniform flow, there is zero flux and hence 

- W , C - & , ~ ~  = o  
” r=Zd  

(8.66) 

(8.67) 

In this case, Eqs. 8.66 and 8.67 give 

E = W,cb (8.68) 

In unsteady (or non-uniform) flow, E must be evaluated as a function of 
flow conditions in order to solve Eq. 8.66. Suggestions concerning the function E 
for the wave case is for instance given by Nielsen (1979). However, no experimental 
verification of the time variation in the suggested variation in E is available today, 
and the bed concentration boundary condition, Eq. 8.62, can easily be translated 
into another suggestion for the appearance of the unknown function E. 

The implications of the two bounday conditions can be illustrated by a 
specific example as suggested by Parker (1978): he considered an example where 
uniform steady flow in a channel has developed. If, for simplicity, the diffusion 
coefficient E,  is assumed to be a constant quantity, i.e. independent of the height 
z ,  then the diffusion equation 8.47 reads 

ac azc 
w,- f&,- = o  az az2 

(8.69) 

With the requirement of no flux through the water surface, Eq. 8.60, and 
with the bed boundary condition, Eq. 8.66, Eq. 8.69 has the solution. 

W 
(8.70) 
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Parker imagined that this channel flow was subjected to a uniform rain of 
particles from above the water surface, so there would be a constant downward 
volumetric flux I through the water surface. The concentration can now be writ,ten 
as 

c( z )  = co( z )  + e( z )  (8.71) 

8.70. The overload concentration also satisfies the where c, is given by Eq. 
diffusion eauation 8.47 

and the boundary condition for e at the water surface becomes 

[u,,e+E,3 = I  
z=D 

(8.72) 

(8.73) 

If the bed concentration boundary condition is used, cb must remain un- 
changed in spite of the additional supply of sediment from above, because the bed 
shear stress is unchanged. Hence 

L 2 d  = O 

The solutions of Eqs. 8.72 - 8.74 give 

(8.74) 

(8.75) 

If, on the other hand, the gradient boundary condition is used, the rate of 
erosion is unaffected by overloading, so 

(8.76) 

which together with Eqs. 8.72 and 8.73 gives 

(8.77) 

The results of these two imaginary cases are shown in Fig. 8.9. In Fig. 8.9A 
it is seen that the gradient condition (b.c. I) implies that overloading can be felt 
identically over the whole depth, while the bed concentration boundary condition 
(b.c. 11) implies that overloading is mostly felt at  the water surface. 

If the supply is very heavy as sketched in Fig. 8.9C and D, the situation 
can occur where the concentration will decrease close to the bed if the bed con- 
centration condition is used, see Fig. 8.9D. This seems intuitively wrong, but it 
must be mentioned that in the case of vanishing E,, both Eq. 8.75 and Eq. 8.77 
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Figure 8.9 Solution for steady uniform overloading. A and C: gradient 
boundary condition. B and D: bed concentration boundary 
condition. Fully drawn line: concentration profile without sup- 
ply from above. Dashed line: concentration profile with supply 
from above. 

describe a uniform distribution of sediment through the depth which is easily seen 
to be the correct solution. 

On the other hand, if a suction system at z = D is considered instead 
of a supply system, the gradient boundary condition implies that even the bed 
concentration of suspended sediment will decrease, while the bed concentration 
conditions give the more reasonable result that the concentration close to the bed 
far and away from the suction system is nearly unaffected. 

In  unsteady f low, similar considerations can be made: If a hypothetical case 
is considered in which the flow velocity is suddenly reduced to zero from a certain 
steady value where 6 = 00 ,  then the bed concentration condition gives the result 
that Cb drops instantaneously from C b ( 6 0 )  to zero. However, all the sediment in 
suspension before the change in flow velocity occurs cannot settle faster than the 
settling velocity UI,. This means that in the still water the time evolution of cb at 
the distance b above the bed is determined by 

~ b ( b , t )  = c(b+ A z , ~  - At) (8.78) 

in which AZ = w A t .  
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This equation simply states that the suspended sediment settles without 
changing the shape of its profile. 

The previous example corresponds to the overloaded case. The underloaded 
case corresponds to the flow situation where the fluid velocity is suddenly increased 
from zero to a certain flow velocity where I9 = 60: here it is possible for the bed 
concentration to obtain the new value cb(I90) immediately because the suspended 
sediment only has to be transported a very small distance (of the order of one 
grain diameter) from the bed. 

From the considerations given above it seems reasonable to apply the bed 
concentration condition for waves provided that the concentration profile close to 
the bed is underloaded (negative vertical concentration gradient), while the bed 
concentration in the case of a positive concentration gradient should be determined 
by Eq. 8.78. 

Hence the resulting boundary conditions become 

cb = max{cb(6”), c(b + w,At, t - At)} (8.79) 

el= 052 

0 n;/4 rc/2 3K/4 K 

Figure 8.10 Effect of choice of boundary condition for the sediment con- 
centration. Solid lines indicate the results obtained using Eq. 
8.79, whereas the dashed lines show results by using the bed 
concentration condition (b.c. I). Input data: a / k N  = lo3 and 
w,/U~,,, = 0.038. (From Justesen et al., 1986). 

The correct choice of the bed boundary condition is, however, in practice not 
very important: Fig. 8.10 shows the effect of the selected boundary condition: the 
dashed line in Fig. 8.10 is the result obtained by applying the bed concentration 
boundary condition, while the fully drawn line is obtained from Eq. 8.79. It is 
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seen that the effect of the different boundary conditions is limited to a few grain 
sizes away from the bed. 

8.3 Vertical distribution of suspended sediment in com- 
bined wave-current motion 

The presence of a current together with the waves implies that the turbu- 
lence will now be present over the whole flow depth, cf. Chapter 3. It is quite 
easy to extend the approach from the preceding section to cover the general wave- 
current case, still solving the unsteady diffusion equation, Eq. 8.45, together with 
the boundary conditions. In the diffusion equation Eq. 8.45, the diffusion coef- 
ficient cs,  which is taken equal (or proportional) to the eddy viscosity VT,  must 
now be determined from the hydrodynamic approach given in Chapter 3. 

Mean Concentration in 
combined wave current 

k"10-6 10-5 .,o-A 10-3 . , 6 2  70-l 

Figure 8.11 Calculated mean concentration profile in combined wave- 
current motion. H = 1.7 m. T = 12 s, V = 0.20 m/s. 
d50 = 0.07 mm and D = 7 m. The field experiments are 
taken from Kirkegaard and Sorensen (1972). The dashed line 
is the solution for the same parameters except that  the current 
has been set equal to zero. (From Fredsoe et al., 1985). 

Fig. 8.11 shows the result of such a calculation in which the eddy viscosity 
is evaluated from the integrated momentum equation approach, cf. Section 3.2. 
This is done as follows: 
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In the outer region, the eddy viscosity is assumed to be parabolic and inde- 

E ,  = K2Ufc(l - z / D )  (8.80) 

where U f ,  is the current friction velocity, which is related to the average value of 
the bed shear stress in the current direction by the relation 

pendent of time 

(8.81) 

Inside the wave boundary layer, the eddy viscosity is assumed time depen- 

- 
rb = PUqc 

dent. Here, the eddy viscosity is taken to vary as 

(8.82) 

so E~ has the same parabolic shape as Eq. 8.58 for the pure oscillating boundary 
layer, but equates to the outer eddy viscosity given by Eq. 8.75 at  the top of the 
boundary layer. 

The bed boundary condition Eq. 8.62 is based on the instantaneous value 
of Tb calculated for the combined wave-current motion. 

The influence of the current is easily vizualized from Fig. 8.11. The solid 
line is the theoretical solution for the time-averaged concentration C, while the 
broken line shows a calculation based on the same data, except for the current 
which has been set equal to zero. It is easily seen that the presence of suspended 
sediment far away from the bed is due to the presence of the current, while close to 
the bed, the presence of a persistent current does not greatly change the predicted 
concentration profile because the turbulence in this layer is mainly caused by the 
wave motion. 

Fig. 8.12 presents a more general diagram. In the combined wave-current 
motion, three additional parameters are necessary in order to define the flow sit- 
uation compared to pure wave motion; the angle y between the current direction 
and the direction of wave propagation, the dimensionless flow depth D / k N  and, 
finally, the strength of the current compared with the strength of the near-bed 
wave-induced flow velocities. The latter can, for instance, be represented by the 
dimensionless quantity U l m / U f c .  If UI,/Ufc approaches zero, the motion ap- 
proaches the pure current situation, and the distribution of the sediment will be 
equal to the well-known Rouse-Vanoni distribution. On the other hand, if U,,/Uf, 
approaches infinity, the situation will correspond to the case of pure wave motion, 
so the distribution will approach the one described in the previous section. This 
behaviour can be seen from Fig. 8.12 where the parameter a / k N  held at  100, 
while the parameter U I m / U f c  is varied. The solid lines are those for y = 0 (cur- 
rent direction is the same as the direction of wave propagation). It is interesting 
to note that for some intervals (around U l m / U f c  N 10 ) the bed concentration 
decreases for a fixed value of Omax. This is because the near-bed wave and current 
motions are of the same order in this interval, so when the wave-induced motion is 
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Figure 8.12 Theoretical vertical distribution of the average concentration C 
in combined wave-current motion. a / k N  = 100. OL,, = 10. 
w,/Uf,,,, = 0.6. (From Freds6e et al., 1985). 

opposite to the current motion, the bed shear stress becomes small during nearly 
half a wave period. If y = go", this phenomenon does not occur. 

For UI,/Ujc = 10, Fig. 8.12 furthermore shows the variation in C with y. 
The three-dimensional case clearly exhibits a greater sediment suspension. 

From the model of suspended sediment together with a model for the flow 
velocity in combined wave-current it is easy to calculate the resulting sediment 
transport in combined wave-current motion by use of Eq. 8.56. Fig. 8.13 shows 
some examples of the results of such a calculation for different combinations of 
dimensionless parameters. 

Example 8.7: Suspended sediment in irregular waves 

In the case of irregular waves, representative values for the wave height and 
wave period are usually applied so mathematical modelling can be performed with 
regular waves. 

When selecting the regular waves that best represent the irregular train, a 
possible criterion would be that the amount of sediment brought into suspension 
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Figure 8.13 Transport of suspended sediment in the case of co-directional 
flow. 

should be the same for the two conditions, i.e. 

regular irregular 
(8.83) 

where the overbas denotes time-averaging. 

transported sediment; i.e. 
However, it is of greater engineering interest to require the same amount of 

regular irregulaI 
(8.84) 
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Figure 8.14 Comparison between the mean suspended sediment transport 
due t o  regular or irregular waves, analysed by a mathematical 
model. (Zyserman and F reds~e ,  1988). 

where u is the resulting velocity obtained from the vectorial sum of the velocity 
of the steady current U ,  and the wave-induced velocity Uo. 

8.84, the current velocity can be an additional parameter in the 
problem under consideration. However, for small flow velocities compared to the 

In Eq. 
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wave-induced velocities, this dependence on U appears to be weak. 
Zyserman and Fredsee (1988) made simulations with the mathematical 

model described above, using a time series based on irregular waves represented by 
a Pierson-Moskowitz spectrum. Fig. 8.14 shows the results of a series of numerical 
tests. In all tests, the mean velocity of the current is taken equal to 10% of the 
root mean square value of the near-bed wave velocities. 01 in Fig. 8.14 is defined as 
the ratio between q, calculated on the basis of the regular wave and qs determined 
on the basis of the irregular wave train. In the left half of Fig. 8.14, the variation 
of 01 with the height of the representative regular wave is depicted. Three different 
values have been chosen, namely the mean height H ,  the root mean square value 
HI,, and finally the significant wave height H,. In the right half of Fig. 8.14, the 
variation in a with different selected values of the wave period is shown. 

From the analysis it turns out that the best representation of the mean 
suspended sediment transport of the series over the whole range of values of g,,, 
studied is given by the combination of HI,, and T,. 

8.4 Vertical distribution of suspended sediment under 
broken waves 

Inside the point of breaking, the surface-generated turbulence results in a 
much higher level of turbulent kinetic energy, especially close to the water surface, 
where the production of turbulence takes place around the surface roller. This 
leads to a significant increase in the amount of suspended sediment compared to 
unbroken waves of the same height and period in the same water depth. 

The transition region from breaking to fully developed broken waves - the 
outer zone shown in Fig. 4.4 - has until now not been satisfactorily described 
because of the complexity in the flow close to the point of breaking as described 
in Section 4.1. 

In the inner part of the surf zone, where the broken waves are more or less 
transformed to hydraulic bores, the effect of an increased turbulence level on the 
distribution of suspended sediment can be analysed by use of the hydrodynamic 
description given in Section 4.3.2. In this section the eddy viscosity was given by 

U T  = l& (8.85) 

in which the length scale 1 was prescribed by Eq. 4.74, and where k is the turbulent 
kinetic energy, which was calculated by a one-equation turbulence model. 

Eq. 8.85 can be inserted into the diffusion equation, Eq. 8.47, which can 
then be solved numerically, using the same boundary conditions as given in Section 
8.1. 

Fig. 8.15 shows the results of such a calculation. For reasons of comparison 
the solution obtained for the case without wave-breaking is indicated by a dashed 
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Figure 8.15 Comparison with field measurements by Nielsen et  al. (1982) 
for spilling breaker case. (After Deigaard et al., 1986). 

line. The circles represent field measurements by Nielsen et al. (1982) carried out 
under so heavy conditions that the bed became plane. 

Fig. 8.16 shows, in dimensionless form, how the mathematical model pre- 
dicts the relative vertical distribution of time-averaged suspended sediment con- 
centration due only to the wave breaking for three different wave heights and 
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Figure 8.16 Theoretical vertical distribution of suspended sediment. (After 
Deigaard et al., 1986). 

periods. The concentration is normalized with CO, the concentration 0.025 times 
the water depth above the bed. The curves plotted in Fig. 8.16 are not valid 
inside the wave boundary layer. 
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Chapter 9. Current-generated bed 
waves 

An erodible seabed exposed to waves and current will usually not remain 
stable but will form different kinds of bed waves. These bed waves have a signif- 
icant influence on the flow and sediment pattern which will be evaluated in this 
and the coming chapter. 

9.1 Bed waves in current alone 

Fig. 9.1 gives a picture of the most important bed forms formed by a steady 
current. 

Ripples 

When the tractive force is increased to the point where sediment transport 
starts, the bed will be unstable. In the case of fine sediment, ripples are formed, 
while coarse sediments will usually form dunes. 

Small triangular sand waves are called ripples. They are usually shorter 
than about 0.6 meter, and not higher than about 60 mm. 

At relatively small flow velocities a viscous sublayer of thickness 

1 1 . 6 ~  6,  = - 
UE 
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Figure 9.1 Typical bed forms in order of increased stream power. From 
Simons and Richardson (1961). 

is formed. This “hydraulically smooth” situation occurs when 6, is larger than 
the sediment size d. It is assumed (Simons and Richardson, 1961) that ripples are 
formed if a viscous layer is present when the critical tractive force just is surpassed, 
while dunes are formed if the bed is hydraulically rough. The ripple length depends 
on the sediment size (and other parameters), but is essentially independent of the 
water depth. Three-dimensional ripple patterns have been discussed by Raudkivi 
(1976), see also Sleath (1984). 
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Dunes 

Dunes are the large, more or less irregular sand waves usually formed in 
natural streams. This is by far the most important bed form in the field of practical 
river engineering. The longitudinal profile of a dune is roughly triangular, with a 
mild and slightly curved upstream surface and a downstream slope approximately 
equal to the angle of repose, see Fig. 9.2. 

Flow separation occurs at the crest, reattachment in the trough, so that 
bottom rollers are formed on the lee side of each dune. Above this a zone of 
violent free turbulence is formed in which a large production (and dissipation) of 
turbulent energy takes place. Near the zone of reattachment, sediment particles 
are moved by turbulence, even when the local shear stress is below its critical value 
(Raudkivi, 1963). 

On the upstream side of the dune the shear stress moves sediment particles 
uphill until they pass the crest and eventually become buried in the bed for a 
period. As sediment is moved from the upstream side and deposited on the lee 
side of the dune, the result is a slow, continuous downstream migration of the dune 
pat tern. 

L 
H H 

Figure 9.2 Longitudinal profile of dunes (exaggerated vertical scale). 

Transition and plane bed 

For increased stream power the dunes tend to wash out, i.e. they become 
longer and flatter and finally disappear. This happens at  Froude numbers below 
1, i.e. in subcritical flow, and marks the transition to the so-called upper flow 
regime. This change from dunes to flat bed means a rather drastic reduction of 
both hydraulic resistance and water depth. 



Bed waves in current alone 263 

Antidunes 

A further increase in stream power leads from transition and plane bed to 
formations of the so-called antidunes and related configurations. In this case the 
longitudinal bed profile is nearly sinusoidal, and so is the water surface, but usually 
with a much larger amplitude (Fig. 9.1 F and G). 

At higher Froude numbers the amplitude of the surface profiles often tends 
to grow until breaking occurs. After breaking, the amplitude may be small for a 
time, and then the process of growth and breaking is repeated. 

The name “antidune” indicates the fact that the bed and surface profiles 
are moving upstream, particularly just before breaking. Fig. 9.1H illustrates an 
extreme form of antidunes occurring at  high Froude numbers. 

An overview of bedforms in sand-bed streams is obtained from imagining 
an experiment in a flume in which the discharge (or stream power) is gradually 
increased, as shown in Fig. 9.3. The ordinate is the total bed shear stress Tb,  and 
the abscissa is the mean velocity V .  In the case of a fixed bed, the relation between 
Tb and V would be as the dashed curve in Fig. 9.3, i.e. close to a second-order 
parabola, corresponding to the expression 

which defines the friction factor f. 

Upper regime 

IP a ,  
Lower regime 

I 

Figure 9.3 Relation between total bed shear stress ‘ rb  and flow velocity V 
for different bed forms. 

The occurrence of ripples and dunes obviously implies a considerable in- 
crease of the hydraulic resistance. On the other hand, plane bed, standing waves, 
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Figure 9.4 Flow around submerged bodies. A: Slender bodies give mainly 
frictional drag. B: Drag on blunt bodies gives also form drag 
due t o  large normal stresses upstream and underpressure at 
the rear. 

and weak antidunes bring the resistance back to skin friction only. To understand 
the additional hydraulic resistance associated with the dune case, consider the 
drag on a submerged slender body placed parallel to the current, Fig. 9.4A. In 
this case the only drag is due to boundary layer friction (skin friction). In case 
of a blunt body, however, Fig. 9.4B, separation occurs, and the pressure (normal 
stress) is larger on the upstream face that on the rear. Hence not only frictional 
(tangential) stresses are involved, but also the normal stresses have a resultant, 
the so-called form drag. Hence the total drag consists of two components, the 
friction and the form drag. 

Consider a single dune with length L D ,  see Fig. 9.2. The hydrostatic force 
is G = ~ D L D  (per unit width), with streamwise component G s i n p  = G S  which 
is usually assumed to be balanced by the total shear stress T b L D .  S is the surface 
water slope which in the case of steady uniform flow is equal to the energy gradient 
I .  If the local normal and shear stress is called p and T ,  respectively, and the local 
inclination of the dune is y ,  the following equilibrium equation is required 

(9.3) 

Here the last term (form drag) is different from zero due to underpressure at  the 
rear side of the dune. Hence, a certain part of the total drag ro is not carried by 
friction. Eq. 9.3 is now written 

or 
(9.4) 

I / I  
T b = T  + T  

where T I  is the mean skin friction (called: effective shear or tractive stress) while 
T” is a formal contribution to rb actually originating from the normal stresses. 
This separation of Tb is of great importance in the theory of sediment transport, 
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because the bed particles are generally moved by the actual shear stress and are 
essentially unaffected by the normal stress. 

The problem of estimating the effective shear stress T ’  has not yet been 
solved in a completely satisfactory way. The method currently used was originally 
suggested by Einstein (1950). 

Close to the crest the flow is converging, which means that the flow attains 
the character of a boundary layer with thickness D’, (see Fig. In these 
circumstances the mean velocity V can approximately be given as 

9.2). 

V D’ 
- = 6.2 + 2.51n(G) 
u; 

where kN is the roughness, and 

(9.5) 

u; = J g ~ r ~  (9.6) 

where I is the energy gradient (slope). 
At first sight it would be natural to assume the roughness k p ~  to be equal to 

the mean sediment diameter d.  However, the irregular surface prevailing during 
bed-load movements gives a somewhat larger value, so that k N  must be taken to 
be about 2.5 d (Engelund and Hansen, 1972). When V and d are known, D’ and 
U; can be calculated from Eqs. 9.5 and 9.6. 

9.2 Mechanics of dunes in a steady current 

To investigate the mechanics of bed forms a little closer it is necessary to 
make the simplifying assumption that the bed waves are moving at a constant 
velocity a without any change in shape. This is of course not true in detail but it 
represents all the essential features of the problem with sufficient accuracy. Under 
these conditions the shape of the bed is described by an expression of the form 

h = h(z  - a t )  (9.7) 

in which h is the local height of the dune above an x-axis placed through the 
troughs, see Fig. 9.2. 

Next, consider the sediment discharge qT through two consecutive sections 
with unit spacing in the 2-direction. The net outflow is %, which must equal 
the change in bed elevation when the correction for the porosity n of the bed 
material is taken into account, and the change in the amount of sediment stored 
in suspension is ignored. Hence, the equation of continuity 

d!?T d h  
d X  

~ = - (1 - 
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a At 

Figure 9.5 Migration of the dune front. 

is obtained. If Eq. 9.7 is substituted into Eq. 9.8, it becomes obvious that the 
equations are satisfied by putting 

The quantity qo is a constant, interpreted as the value of qT for h = 0, i.e. at the 
troughs where the bed load vanishes. For small shear stresses, 40 becomes equal 
to zero because the sediment mainly moves as bed load so QT becomes equal to 
Q B .  This transport is related to the local shear stress, which is negligible in the 
trough because of flow separation. In this case the following interesting relation is 
obtained 

qB = a(1  - n)h (9.10) 

from which it is seen that the local intensity of bed load transport is proportional 
to the local height of the bed above the plane through the troughs. This indicates 
that the shear stress T *  at the dune surface must vary from zero at the trough to 
a maximum at the crest, an assumption confirmed by measurements by Raudkivi 
(1963). 

At the front of the sand waves the amount of sediment deposited is called 
QD.  This amount determines the migration velocity a of the sand wave by (see 
Fig. 9.5) 

(9.11) 

From Eqs. 9.10 and 9.11 it is seen that for small shear stresses q D  becomes the 
same as Q B .  At larger shear stresses, the deposited sediment consists partly of the 
bed load transport at  the crest and a certain fraction of the suspended sediment 
as sketched in Fig. 9.6. A suspended grain will contribute to and to the dune 
migration if it by settling or diffusion moves into the separation ‘bubble’ before it 
is carried past the separation zone by the flow. Whether the grain is deposited at  
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Figure 9.6 The  probability for a suspended grain to  settle in the  trough 
depends on its height. 

the front or not will thus depend on its distance from the bed when it passes the 
dune crest. 

Now, if the sediment is transported mainly as bed load, the shape of the 
bed form can be found from Eqs. 9.10 and 9.11, which when combined give 

(9.12) 

in which qB,top is the sediment transport at the crest level where h = H D ,  H D  
being the dune height. In case of bed load only, the transport of sediment can, for 
instance, be calculated by the Meyer-Peter formula, Eq. 7.60, which on a sloping 

(9.13) 

cf. Eqs. 7.35 and 7.60, 4 being the friction angle. In Eq. 9.13 8* is the local value 
of the dimensionless skin friction. Inserting Eq. 9.13 into Eq. 9.12 gives 

(9.14) 

From this equation it is realized that the variation in bed shear stress 8* 
along the sand wave must be known in order to proceed further. 

The calculation of the bed shear stress along sand waves has been performed 
by, among others, McLean and Smith (1986) using the law of the wake, and 
Mendoza and Shen (1990), who applied a turbulent closure to calculate the flow 
field. 

Freds6e (1982) used a semiempirical approach for the flow description to 
calculate the dune shape. This was done by adapting the measured bed shear 
stress downstream of a negative step, see also Bradshaw and Wong (1972) who 
expressed the variation in the local bed shear stress r by 

r* = rto,f (g) (9.15) 
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in which H, is the step height, and rtop the bed shear stress at  the top of the dune. 
The measured function f is shown in Fig. 9.7, and this function is normalized so 
it becomes equal to unity at the top of the dune where z = L D ,  LD being the 
dune length. 

Figure 9.7 Bed shear stress variation downstream a negative step. r* = 
iPCfV2.  

Due to the presence of the dunes, the local water depth varies along the 
dune, which results in spatial changes to the depth-averaged flow velocity V*. 
This velocity varies along the sand wave as 

V * ( D + y - h )  H D  = q  (9.16) 

neglecting undulations on the water surface due to the presence of the sand waves 
(small Froude numbers). In Eq. 9.16, q is the water discharge per unit width. 
In the case of dunes where the wave length is several times the water depth this 
variation in mean flow velocity can be included in the spatial variation in bed 
shear stress along the sand wave by writing the bed shear stress as 

2 

T*  = Ttop f (&) ("-) 
v t o p  

(9.17) 

because the bed shear stress usually varies with the mean flow velocity squared. 
Eqs. 9.16 and 9.17 give 

@* = @top f (&) [ (9.18) 
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Fig. 9.8 shows two examples of calculated bed waves profiles (with exag- 
gerated vertical scale), obtained by inserting Eq. 9.18 into Eq. 9.14. 

A. 6. 
h/Ho 

fT* ,/-&. 
0 

0 10 20 30 40 0 5 10 15 20 

Figure 9.8 Examples of calculated bed wave profiles in current. A: 6top = 
0.057, H D / D  = 0.04. B: 6top = 0.30, H D / D  = 0.27. 

The dune is assumed to end just downstream from the location where the 
surface attains a maximum height. Downstream from this point, the flow will be- 
come divergent due to the decrease in shear stress. This will very quickly enhance 
the tendency towards flow separation, so a dune front will occur. Just downstream 
of this point, the local slope of the bed wave will be very near the angle of repose 
because the flow velocities in the separation zone are very small compared to the 
outer flow. As seen from Fig. 9.8A, the dune becomes quite long compared to its 
height for a Shields parameter close to the critical. This is because the effect of 
longitudinal slope on the bed load transport becomes significant at  a low Shields 
number, so the maximum transport of bed load is influenced as well by the local 
shear stress as by the local bed slope. The combined maximum of these two effects 
can be located much further downstream from the maximum of the shear stress, 
which usually is located around 16 times the dune height downstream from the 
former dune front (see Fig. 9.7). At larger Shields parameters, the slope correc- 
tion term on the bed load becomes insignificant, and the dune length is mainly 
determined by the location of maximum shear stress. 

Dune height 
The calculation of the bed wave shape just described does not require any 

knowledge on the actual height of the dune. However, this height can also be evalu- 
ated from the basic concepts derived above: from pure geometrical considerations, 
Eqs. 9.7 and 9.11 give 

(9.19) 

Combining this equation together with the equation of continuity, Eq. 9.8 
gives 

(9.20) 
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which can also be written as 

d@T @Dab - ax H D  ax (9.21) 

where CP is the dimensionless sediment transport rate, cf. Eq. 7.36. 
In a steady current, @ is a function of the Shields parameter 6* ,  so Eq. 9.21 

can be written as 

At the dune crest, Eq. 9.18 can be approximated by 

2 

(9.22) 

(9.23) 

cf. Eq. 9.18. In Eq. 9.23, the weak variation in the function f is disregarded, 
which is a good approximation far away from the former crest. Otop appearing in 
Eq. 9.23 is the Shields parameter due to skin friction, which can be related to the 
averaged skin friction 6' by 

Now Eq. 9.23 gives 
86" 26top ah 
ax  ax ~ - ~- - 

(9.24) 

(9.25) 

which combined with Eq. 9.22 results in the following expression for the dune 
height 

(9.26) 

in which all quantities on the right-hand-side must be taken at the dune top. 

Example 9.1: Dune height at low and high Shields numbers 

At low Shields numbers, both the deposited load on the dune front @ D  and 
the total load at the crest @T can be taken equal to the bed load transport @B. 
Applying the Meyer-Peter formula Eq. 7.60, Eq. 9.26 now gives 

(9.27) 
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Bed load only 

d = Imm 

d = 03mm 

0.1 
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Figure 9.9 Variation in dune height with bed shear stress for different 
grain sizes. Dld  = lo3. 

At higher Shields numbers, a large part of the sediment is transported in 
suspension. In this case, @ D  as a first approximation can be taken to be @ B ,  while 
@T must be taken to be the sum of @ B  and @s. Now, the calculation of dune 
height becomes much more complicated because @s depends on several parameters 
as D l d ,  B and w8/U,. Fig. 9.9 shows the results of one numerical calculation in 
which @ B  and are calculated separately by the method suggested by Engelund 
and Fredsoe (1976), as described in Chapter 7. 

It is seen that in case of fine sediment the inclusion of suspended sediment 
leads to a decrease in dune height. This is the transition to plane bed as shown in 
Fig. 9.1. 

Dune length 

In the case of dominant bed load transport, the maximum bed shear stress 
is located around 16 times the dune height downstream from the former crest, see 
Fig. 9.7. As the location of maximum sediment transport rate, except for very 
small Shields parameters, is also the location of maximum dune height, cf. Eq. 
9.12, the dune length is easily obtained from 

L D  = 16 H D  (9.28) 

in which H D  is obtained from Eq. 9.27. 
At higher shear stresses, where suspended sediment becomes the dominant 

transport mechanism, the situation becomes a little more complex because a spa- 
tial phase lag L ,  is introduced between the location of the maximum bed shear 
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Bed load only 

d:lmm 

0.02 - 
d = 0.3 mm 

Figure 9.10 Variation in length-height ratio with bed shear stress for dif. 
ferent grain sizes. D / d  = lo3 .  (Fredsme, 1982). 

stress and the location of the maximum suspended load transport. The maximum 
bed and suspended load transport can be estimated to be located around 

(9.29) 

which is the weighted mean of the influence from bed load and suspended load. 
Eq. 9.29 suggests that the influence of suspended sediment will be that the sand 
waves will lengthen as described in the following example. 

Example 9.2: Estimation of the phase lag of suspended sediment 

The phase lag L,  is introduced because a sediment grain takes some time to 
settle after being picked up from the bed. L,  can be estimated from the diffusion 
equation for suspended sediment Eq. 8.45. In the steady case this reads 

(9.30) 

An illustrative example of the solution of Eq. 9.30 can be obtained assuming E,  

and U to be constant over the flow depth. In the uniform case, Eq. 9.30 can now 
be solved giving 

(9.31) 

Here cbo is a nominal reference concentration at the bed, which differs from 
the real one because E ,  is over-estimated at the bottom. Now the case is considered 
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where the bed concentration cbo varies in the flow direction, for instance due to 
spatial changes in the bed shear stress. In this simplified example U and E ,  are 
assumed not to vary in the x-direction. 

Because of the variation in cbo the vertical distribution of the suspended 
sediment will deviate from the equilibrium profile given by Eq. 9.31. For sim- 
plicity the vertical distribution of the suspended sediment is still described by an 
exponential function, but now with a variable steepness 

(9.32) c = cbo exp [--(I ws + A),] 
ES 

Introducing Eq. 9.32 into the diffusion equation 9.30 and integrating over 
the flow depth give 

(9.33) 

In this derivation it has been assumed that the sediment concentration vanishes 
towards the water surface, and the horizontal diffusion of sediment is neglected. 
The variation in CbO is taken to be a small perturbation, and Eq. 9.33 can then be 
linearized to give the following differential equation for the unknown parameter X 

(9.34) 

This equation can be solved for a given variation in C b O .  As an example a periodic 
perturbation of cbo is considered, giving a variation of cbo of 

CbO = co + c1 sin(kx) (9.35) 

Introducing Eq. 9.35 into Eq. 9.34 and using that c1 << co give 

dX A c l k  
dx L, C O  
- + - - - cos(kx) = 0 

where the length scale L, has been introduced 

E3U L,  = 2 
W ,  

The solution to Eq. 9.36 can be written to be 

(9.36) 

(9.37) 

(cos(kx) + k ~ ,  sin(kx)) + c2 exp(-z/L,) (9.38) C l k  Ls 
co 1 + (&)2 

A = -  
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The vanishing transient part of the solution can be ignored, i.e. c2 = 0. For long 
wave lengths of the perturbation the dimensionless parameter ICL, is small, and 
Eq. 9.38 can be approximated by 

(9 .38~)  C 1  

CO 
x = - k L ,  cos(lcz) 

Now the sediment transport rate q,  can be found as 

c1 SlIl(lCZ)) . ( 1  - -kL,  C 1  cos(kz)) M 

CO 

- ICL, cos(kz)) 
W S  1 

w, 
(9.39) 

If the development in the sediment concentration profile had been neglected, 
i.e. for quasi-uniform conditions, the suspended sediment transport rate would 
have been calculated as 

& 

w3 

D 
qs = 1 cUdz = c b o U L  = sin(ICz)) (9 .39~)  

By comparing Eqs. 9.39 and 9.39a it is seen that the development in the 
concentration profile causes the sediment transport rate to have a phase lag relative 
to the variation in the bed concentration. The phase lag is equal to L,. As seen 
from Eq. 9.37 the lag distance increases with decreasing settling velocity and with 
increasing flow velocity or eddy viscosity. 

As seen from Eqs. 9.31 and 9.37, the length scale L,  can be written as 

u c  L,  = 2,- 
W, 

(9.40) 

where z ,  (= E,/w,) is the height above the bed of the centroid of the concentration 
profile 

(9.41) 

U, is the mean flow velocity at the level z,. 
In a more refined analysis where U and c, are varying with z the formulation 

given by Eq. 9.40 is still valid for small spatial changes in the transport capacity. 
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In Fig. 9.10 the influence of phase lag for suspended sediment on the bed 
wave steepness is illustrated by a numerical example. For the case with no sus- 
pended sediment present at all, the wave steepness increases with 8‘ at small 
8’-values (because of decreasing influence from the bed slope on the bed load 
transport), and the steepness becomes constant at high 8’-values. However, the 
influence of suspended sediment results in a decrease in wave steepness with 8’ at 
high 8‘-values. 

In the numerical example shown in Fig. 9.10, the transport of bed load and 
suspended load is calculated by the Engelund-FredsGe model described in Chapter 
7. 

9.3 Influence of waves on current-generated sand waves 

The presence of waves together with a current will result in a significant 
change in the dimensions of the sand waves. Sand waves of this type are often 
found offshore of locations where the tidal current is sufficiently strong for sand 
waves to be formed. 

An example, taken from Houbolt (1968), of an echo sounding showing a 
train of sand waves is given in Fig. 9.11. These asymmetric sand waves have a 
height of 5-7 m at 25-30 m water depth; the wave length is approximately 200 m. 

South North 
m 

::[ 
35 

I 1 Vertical exaggeration x 85 

5.5 km 

Figure 9.11 Exaniple of echo sounding showing asymmetric sand waves, 
West of Imuiden, the Netherlands, after Houbolt (1968). 

No theory for the behaviour of sand waves formed by a tidal current has so 
far been developed. However, the general behaviour of the sand waves, and the 
physical mechanisms behind the formation of sand waves does not seem to deviate 
significantly from the processes associated with dunes formed under a unidirec- 
tional current. The large sand waves formed by a tidal current can, according to 
Stride (1982), be considered as unidirectional current-formed waves, which have 
been modified to a smaller or larger extent by the reversing current. 
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In the following example, it is outlined how the effect of the co-presence of 
waves with a unidirectional current modifies the presented theoretical findings for 
dune height and dune length. 

The sand wave height 

As assumed earlier the influence from the preceding dune is weak near the 
dune crest, and the local bed shear stress can be calculated from the local mean 
velocity V by the logarithmic resistance law 

V 3 0 0  
(9.42) 

in the case of pure current. This leads to the formulation given by Eq. 9.23. 
In the case of combined waves and current, the variation in bed shear stress 

can not be described by the simple approximation presented in Eq. 9.23, because 
both the wave action and the current velocity vary with the water depth. However, 
for a given bed sediment, the spatial variation in sediment transport close to the 
crest is given by 

~ Y T  dyTaD dqTdh 
dx dD a x  dD dx 

__ - - -- - (9.43) 

The term dqT/dD must now be calculated by a model for sediment transport 

For a given wave climate and given sediment properties, the sediment trans- 
in combined waves and current. 

port can, in diinensional form, be expressed by 

The variation in V with D can be found from the requirement 

so 

(9.46) 

Now the equation of continuity Eq. 9.8 reads 

(9.47) 
dh  -1 ayT -1 
at (1 - n )  a x  (1 -.) 

cf. Eqs. 9.43 and 9.46. Using Eq. 9.20 the factor d h / d x  can be eliminated from 
Eq. 9.47, and the following expression for the sand wave height 

(9.48) 
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0.2- 

0.1 - 

01 

is obtained, where all sediment transport quantities must be calculated at the 
crest. 

In case of a current without waves the first term in the denominator of 
Eq. 9.48 can be neglected, because the flow resistance, Eq. 9.42, is insensitive to 
variation in D. In case of combined waves and current this term can be significant 
due to the relation between the water depth and the near-bed orbital motion 
induced by waves of given height and period. In this case, the individual terms 
on the right-hand-side must be evaluated from a sediment transport model for 
combined wave-current motion. 

*.. 
H = 4 m \  P?=2m \ 

. \  

V + " ' I ]  , , 2 
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Figure 9.12 Sand wave height as a function of mean current velocity V and 
water wave height H ;  d = 0.20 mm, D = 10 m, y = 90". 
From Deigaard and Freds@e (1986). 

Fig. 9.12 shows the result of such a calculation in which the model for 
sediment transport by FredsGe et al. (1985) (see Chapter 8) has been used. The 
calculations have been made for a water depth of 10 m and a bed material grain 
size of d = 0.20 mm. The direction of the wave motion is normal to the mean 
current, y = 90". Two wave heights are considered: H = 2 m and 4 m with 
periods of 7.2 s and 10.1 s, respectively. 
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In the case of these very large sand waves where the dune length is many 
times the water depth, a more detailed investigation should be made on how large 
an amount of the total sediment load qT transported over the crest will settle on 
the sand wave front (so). Earlier in this chapter, the dune dimensions have been 
calculated on the basis of q D  = q ~ .  

Different assumptions for the settling of suspended sediment on the sand 
wave front are presented in Fig. 9.12A, B and C. In Fig.A it is assumed that all 
transported sediment is deposited at  the sand wave front: qo = qB + qs. In Fig.B 
the sand wave height is calculated, assuming that only the bed load is deposited. 
For pure current, the sand wave height is the same for the lower current velocities 
because the bed load transport is dominant. For higher current velocities the 
suspended load transport becomes dominant, and the sand wave height decreases 
if only the bed load is deposited. Under wave action, sediment will be suspended 
in the wave boundary layer even for small current velocities, and the calculated 
sand wave heights even for small current velocities are different in Fig.A and B. 

In Fig. 9.12C the amount of suspended sediment which is deposited on the 
sand wave front is estimated on basis of the lag distance, L,, and the length of the 
separation zone downstream of the front. QD is calculated as 

The length scale for the lag of the suspended sediment is evaluated by the 
use of Eqs. 9.40 and 9.41. 

0 0.5 1 .o 1.5 m/s 

Figure 9.13 As Fig. 9.12C, but d = 0.15 rnrn. 

For small current velocities L,  is small compared with H D ,  and the calcu- 
lated sand wave heights correspond to Fig. 9.12A. For increasing current velocities, 
L,  increases, and the sand wave height converges towards the results in Fig. 9.11B. 
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Fig. 9.12C shows that the wave conditions, especially at  moderate current 
velocities, have a strong influence on the formation of sand waves. 

The theory predicts that for a given wave climate the range of current 
velocities under which sand waves are formed will gradually become narrower as 
the water depth decreases, because the near-bed orbital motion and the suspended 
sediment load increase. This is in agreement with the observation that sand waves 
are decreasing or absent in the shallow parts of the southern North Sea, e.g. 
McCave and Langhorne (1982), Terwindt (1971) and Houbolt (1968). 

Fig. 9.13 shows the same situation as Fig. 9.12'2, but is calculated for finer 
sediment, namely d = 0.15 mm. A significant change is observed in the range of 
current velocities, where sand waves are formed. This range is now much narrower 
because of the larger amount of suspended sediment. 

The sand wave length 

As a first approximation the sand wave length is calculated by Eq. 9.29. 
The calculated steepness of the sand waves treated in Fig. 9.12 C is shown in 
Fig. 9.14. As the suspended load increases, the height decreases, and the length 
increases. The sand wave steepness therefore drops rapidly for increasing current 
velocity. The effect of gravity on the bed load transport in the case of pure current 
is indicated by the dotted line. In combined waves and current the suspended load 
is dominant even at  small current velocities and the gravity effect is not expected 
to be of importance. 

\ V '. 
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Figure 9.14 T h e  sand wave steepness a s  a function of current  velocity V 
and water wave height H ,  d = 0.20 mm, D = 10 m, y = 90". 
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9.4 Flow resistance due to bed waves in a current 

In the presence of bed waves, the resistance to the flow consists of two 
parts, one originating from skin friction (or grain resistance), and another due to 
the expansion loss after each sand wave crest. This latter is called A H ' I ,  and its 
magnitude can be estimated from the Carnot formula 

where xOp is the mean velocity before the expansion (at the crest), and V,, is 
the smaller mean velocity downstream from the crest (at the trough). C is a non- 
dimensional coefficient depending on the flow geometry. KOp and V,, are given 
by 

%op = q / ( D  - H D / 2 )  

vr = q / (D  + H D / ~ )  

in which q = V D  is the flow discharge per unit width. 
Eq. 9.50 now becomes 

(9.51) 

(9.52) 

The total energy loss per unit length in the flow direction, which is equal 
to the energy gradient I ,  can be written 

(9.53) 

in which I '  is the gradient due to friction. In uniform, steady channel flow, the 
total bed shear stress rb is related to the energy gradient I by 

= pgDI (9.54) 

where D is the total flow depth. According to Eq. 9.53, T b  can be divided into 
two parts by 

T b  = pgDI' + pgDI" = T '  + r" (9.55) 

in which T '  is the mean value of that part of the bed shear stress which acts directly 
as a friction on the surface of the bed wave. The residual part 7'' corresponds to 
the form drag on the bed waves. 



Flow resistance due to bed waves in a current 281 

where 

In dimensionless form, Eq. 9.47 can be written as 

Q = 8' + 0'' 

Tb e =  
PS(S  - 1)d 

DI'  Q'= ~ 

(s - 1)d 

(9.56) 

(9.57) 

(9.58) 

(9.59) 

To calculate I' appearing in Eq. 9.50, an additional flow resistance formula 
for the skin friction is needed. For this purpose, consider the flow past a dune as 
shown in Fig. 9.15. 

Immediately downstream the crest a wake-like flow is formed, in which a 
large amount of turbulent energy is produced. This is dissipated into heat further 
downstream, thus causing the expansion loss. 

Figure 9.15 Sketch of the boundary layer developed along a dune. 

At the end of the trough a boundary layer with thickness D' is formed, in 
which the velocity gradient is large, while the velocity distribution outside this 
layer is very uniform. 

Engelund and Hansen (1972) used this flow picture to interpret the two 
quantities I' and I " .  They assumed that the upper flow and the boundary layer 
flow are independent of each other in the sense that no significant amount of energy 
is exchanged between them. Hence, the energy gradient of the boundary layer flow 
(defined as the dissipation divided by unit weight and discharge) must be equal to 
that of the upper layer and that of the total flow. 

(9.60) 

in which V '  is the mean velocity in the boundary layer, and f '  is the skin friction 
coefficient defined by 

1 
7' = -pf'V2 (9.61) 

2 
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As 

the expression 
_ -  f' f - 
D' D 

is obtained. This and the equation 

V 
fm 

give 
V G = m  

The friction factor f ' for the boundary is 
tvDe 

(9.62) 

(9.63) 

(9.64) 

(9.65) 

determined by a formula of the 

(9.66) 

in which k N  is the equivalent sand roughness as defined by Nikuradse, while c1 is a 
constant depending on the unknown velocity distribution in the layer. As f = f ' 
for D = D ' ,  Eq. 2.20 suggests that c1 = 6, so Eq. 9.66 becomes 

-- V 6 + 2 . 5 1 n ( ~ )  D '  
m- (9.67) 

This equation was originally suggested by H.A. Einstein (1950), who ob- 
tained it as an analogy to his method of calculating side wall correction. The 
present method, however crude, has the immediate advantage of giving an  inter- 
pretation of D '  as the boundary layer thickness. As experimental support reference 
is made to a paper by Meyer-Peter and Muller (1948), who developed an expression 
of different appearance, but numerically very close to that of Einstein. 

Combining Eqs. 9.60 and 9.62 gives the important expression 

r' = pgD '1  (9.68) 
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Example 9.3: Numerical example of calculation of 0‘ and 0”.  

In this example, a flow resistance curve is developed for a steady uniform 
flow over an erodible bed. In order to clarify the procedure, a specific case has 
been chosen. 

The sediment is assumed to be covered by sand with d50 = 0.47 mm, and d w  = 1.4. The distribution is assumed to be log-normal as described by 
Eq. 7.1. The energy slope is taken to be I = 5.1 x 

T h e  f i rs t  step is to calculate the flow and sediment transport in the boundary 
layer D’. This is done in the same way as calculating the flow over a plane bed 
with roughness k N  = 2.5 d50.  

Let us assume D ’  = 5 m. Next from the flow resistance formula Eq. 9.67 
the mean flow velocity V is found to be 

V = [F -t 2.51n(D‘/2.5 d5,)]  = 1.34 m/s (9.69) 

The skin friction velocity U; is given by 

U; = 0 = 0.050 m/s (9.70) 

which gives 
0’ = u;2 J( s - 1)gdso = 0.33 

Now the bed load transport and bed load transport gradient can easily be 
found from Eq. 7.54 and 7.58 (Engelund-Fredsae formula) or from Eq. 7.60 (the 
Meyer-Peter formula). In the following example, the Engelund-Fredsae formula 
has been used with pd = 0.65. This gives 

and 
- 7.1 d @ B  

do’ 
-- 

for 8’ = 0.33. 
To calculate the similar expressions for suspended sediment requires a little 

more work. First the mean fall velocity of sediment into suspension must be found. 
This can be done by using the requirement that only sediment with a fall velocity 
smaller than w,, given by 

w,, = U; = 0.050 m/s 
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will enter into suspension (cf. Eq. 7.81). This corresponds to a critical grain 
diameter d,, = 0.42 mm (cf. Table 7.1). From the grain distribution curve Eq. 
7.1 it is seen that 40 per cent of the sediment is finer than 0.42 mm (with d85/d15 = 
1.4). Hence, the mean fractile for sediment corresponds to 20 per cent or 0.32 mm 
which finally gives a mean fall velocity for suspended sediment equal to 

w, = 0.036 m/s 

The bed concentration of suspended sediment can be found to be cb = 0.104 
from the Engelund-Fredsoe formula, Eqs. 7.41, 7.58 and 7.76. By application of 
Einstein’s (1950) diagrams the suspended load is found to be 

@s = 1.32 for 8’ = 0.33 

The gradient in @s is most easily found by repeating this procedure for another 
value of the Shields parameter 8’ + A@‘ giving an estimated gradient of 

d@s @s(8‘ + A8‘) - @ , ( O r )  
2: 14 for 8’ = 0.33 - N  

d8 - A@’ 
Hence, from Eq. 9.26, the relative dune height is found to be 

H D  
~ = 0.112 
D 

In this derivation, 810p has been assumed to be equal to 8’.  In a refined analysis, 
9 can be obtained by successive iterations calculating elop from Eq. 9.24, the 
first iteration giving el,, = 0.37. This refinement, however, only changes the result 
slightly so for practical purposes it can be omitted. 

In order to calculate the dune length, Eq. 9.29 is used, except for small 
@‘-values where Eq. 9.29 actually underestimates the length of the dunes. For 8‘- 
values below 0.20, the solution of the differential-equation, Eq. 9.14, gives dunes 
with a smaller steepness as can be read from Fig. 9.10. 

The phase lag for suspended sediment L,  is needed to solve Eq. 9.29. This 
can be done by using the expression Eq. 9.40. An easier approximation for L,  can 
be obtained from Eq. 9.39 by adapting the concept of a constant eddy viscosity 
over the entire flow depth. Engelund (1966) suggested 

UT = 0.077 UjD’ (9.71) 

to be a representative value for the depth-averaged eddy viscosity. The diffusivity 
of sediment E ,  is taken equal to the eddy viscosity given by Eq. 9.71. 

By 
inserting this profile into Eq. 9.41, the height of the centroid z, of the concentration 
profile is found to be 

Eq. 9.31 now gives the equilibrium profile of suspended sediment. 
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Using that w,/U; = 0.72 and taking the diffusivity of sediment to be equal to the 
constant eddy viscosity, Eqs. 9.71 and 9.72 give 

Z, = 0.1070' 

The flow velocity U, at the level z = z ,  is found from 

(9.73) 

to be 
u c  - = 23.6 
u; 

From Eq. 9.39 the adaption length for suspended sediment can be written 
by the use of Eq. 9.71 

(9.74) L,  1 

which in the present numerical example gives 

L,  = 3.50 D '  

This expression may overpredict the real phase lag because of the assumption of 
a constant eddy viscosity over the entire flow depth. 

When the dimensions of the sand waves have been determined, the second 
step in a flow resistance analysis is to determine how much additional water can 
be carried because of the form drag over the dunes. This can be obtained from 
Eq. 9.59, which can be rewritten as 

which with a = 1 gives 

(9.75) 

From iteration this gives 
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or 
6'" = 0.64 

The total dimensionless bed shear stress now becomes 

6' = 6" + 6''' = 0.33 + 0.64 = 0.97 

The total water depth D is easily found from Eq. 9.57, which reads 

D I  6 '=-  
d(S - 1) 

(9.76) 

from which it is found that 
D = 14.7 in 

As the starting point of this analysis was D' = 5 m, it is seen that the skin 
friction carries 34 per cent (5/14.7) of the total flow resistance, while the form 
drag carries the remaining part. 

The same analysis can be performed for different values of D ' ,  whereby a 
total flow resistance curve for a current over an erodible bed can be constructed. 

Figure 9.16 Flow resistance curve, I = 5.1 x lop5,  d = 0.47 mm, 
& 5 / d 1 5  = 1.4, s = 2.65. 0 :  calculated values of 6' - 8'. 

Fig. 9.16 shows such an example for our present numerical example. One 
way to illustrate the flow resistance is to plot 6' against 6" as done in Fig. 9.16. 

Another more direct way is to plot the water discharge per unit width q 
against the total water depth D .  This can easily be obtained from the I9 - 8' 
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A. B. 

Depth(rn) lom 1 1 10 q (m2/s) lo2 

Alluvial bed 
Plane bed 

Figure 9.17 q-D curve for an alluvial stream. The data are the same as in  
Fig. 9.16. 

relation as illustrated in the numerical example above. Fig. 9.17 shows this plot. 
As shown in Fig. 9.17B, it is seen that for a given range of q the water level drops 
when q increases. This is called transition to plane bed (see Fig. 9.1). In this 
region the sand waves are getting lower and longer, and the form drag decreases 
with a corresponding decrease in the flow depth. 

In Fig. 9.16 the flow resistance formula is also plotted 

8’ = 0.06 + 0.48~ (9.77) 

This formula was originally proposed by Engelund (1966), who from similarity 
principles deduced that 8 only depends on 8’ 

8 = 8 (8’) (9.78) 

The relationship given by Eq. 9.77 was then determined from the comprehensive 
experimental work by Guy et al. (1962). The relationship Eq. 9.78 is a valid 
approximation for low Shields parameters, where the influence of suspended sed- 
iment is moderate. At higher Shields parameters, Eq. 9.78 must be extended to 
read 

(9.79) 

in order to explain the complicated behaviour in the transition regime. In Eq. 
9.79, F is the Froude number (= V / m ) .  
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Chapter 10. Wave-generated bed forms 

10.1 Introduction 

In an oscillatory flow, the shape of the bed forms is quite different from 
those found on an erodible bed exposed to unidirectional flow. Because of changes 
in the strength and direction of the flow the shape of the bed is also unsteady and 
will change during the wave period. 

For short periodic waves, the volume of sediment moved back and forth 
during one wave period is usually small compared to the volume of sand in a bed 
wave. This means that the shape can be considered nearly steady, with only small 
fluctuations in the profile during the wave period (see Fig. 10.1A). 

For long periodic waves or in the case of very fine sediment the changes in the 
bed wave profile can be comparable to the total volume of a bed wave as indicated 
in Fig. 10.1B. In this latter case, the mean bed profile becomes more elongated. 
The main difference between the long periodic and short periodic waves is that 
the flow separation in the short periodic case exhibits a very unsteady behaviour, 
while the separation bubble in the long periodic case is more permanent during 
each half wave cycle. 

The ripples generated by short periodic waves (Clifton (1976) suggests that 
a / d  5 500 - 1000) can be split up into two main groups, namely the rolling grain 
ripples and the vortex ripples (Bagnold, 1946). 
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r A  A. 

- I  

Figure 10.1 Bed forms in oscillatory flow: instantaneous (dashed) and mean 
(solid) profiles. A: short periodic waves. B: long periodic waves. 
(Partly after Sleath, 1984). 

The rolling-grain ripples are formed at low Shields numbers not much larger 
than twice the critical Shields number. These ripples have so small a height that 
no real vortex formation takes place downstream from the ripple crest. 

A. B. 
+ - 

D 0 C. 04 
. . . . .  . . .  . . . . . . . . . . . .  . . . . .  . .  . . . .  . . . . . . . .  . . . . .  . . . . . . . . .  . . . .  . .  . .  . .  

Figure 10.2 Sketch of vortices formed over a vortex ripple. 

The vortex ripples are higher ripples, formed at higher Shields parameters. 
Fig. 10.2 sketches the unsteady behaviour of the vortices in the flow over these 
ripples. Just after the flow has turned to the right, a separation bubble develops 
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downstream from the crest. 10.2A and 
B) and will later be released from the bed when the pressure gradient reverses 
(Fig. 10.2C and D), after which the released eddy gradually loses its strength. 
This vortex is able to move considerable amounts of sediment away from the bed, 
which means that the presence of ripples increases the amount of sediment in 
suspension. 

This bubble expands with time (Fig. 
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Figure 10.3 Ripple steepness versus dimensionless shear stress for labora- 
tory data  (A) and field data  (B). After Nielsen (1979). 

Fig. 10.3 indicates that for small values of 0’, the steepness of vortex ripples 
H,/L ,  ( H ,  = ripple height and L,  = ripple length) is quite high. In this figure 
0’ is the Shields parameter due to skin friction, calculated by use of the ordinary 
expression for the friction factor in waves (Eq. 2.43) setting the bed roughness to 
2.5 d50. Fig. 10.3A shows the measured ripple steepness for regular waves, while 
Fig. 10.3B shows a similar case for irregular waves obtained under field conditions 
(Nielsen, 1979). 

It is seen that similar to the behaviour of bed waves in steady flow, (Chapter 
9) the ripples disappear at high Shields parameters. This transition to plane bed 
occurs for 0’-values around 0.8-1.0. 

Nielsen (1979) suggested the following empirical expression for the ripple 
steepness based on regular wave experiments performed in the laboratory 

5 = 0.182 - 0.24(8’)3/2 (10.1) 
Lr 

This equation is the solid line in Fig. 10.3. In the case of irregular waves 
(field data), the steepness becomes slightly smaller as seen from Fig. 10.3B. In 
this case Nielsen suggested the following expression for the ripple steepness 

Hr 
- = 0.342 - 0.34(0‘)’/4 
Lr 

(10.2) 



A sample model for  vortex ripples 293 

10.2 A simple model for vortex ripples 

In this section a simple description of the flow over ripples, first described by 
Fredsoe and Broker (1983), is used to explain some of the most important features 
of the physics of vortex ripples. The description leads to an expression for the 
shape of the ripples and a suggestion for absolute values of H ,  and L,. 

l O . l ) ,  the average net 
sediment transport over one wave period T must be equal to zero in order to 
have an equilibrium profile. The description is first limited to the case where all 
sediment is transported as bed load (i.e. small Shields parameters 6'). For a 
location of A-A just to the right-hand-side of the wave crest, a separation bubble 
will be formed when the flow just starts to move from left to right. (To be correct, 
this bubble starts to develop a little earlier. In order not to make the description 
too complex, this is neglected in this approximated description). The separation 
bubble expands with time as sketched in Fig. 10.4. 

Considering an arbitrary cross section A-A (Fig. 

t l  
Flow velocitv / ,t2 

Figure 10.4 Development of separation bubble downstream of ripple crest. 
tl < t 2  < t 3 .  

This implies that a bed load particle located at A-A will be caught for a 
shorter or longer period of time within the separation bubble dependent on the 
location of A-A. In the initial stage of the separation bubble development the 
expansion of the bubble has not reached A-A and consequently the near-bed flow 
at A-A will be in the same direction as the outer flow. At a later stage, when A-A 
has been incorporated in the separation zone, the near-bed flow velocity reverses 
and the flow will be in the uphill direction towards the ripple crest. 

When the flow is from right to left, the distance from the upstream crest 
to A-A becomes longer and the flow will consequently be directed in the same 
direction as the outer flow (to the left) for a longer period of time. This results in 
a time-averaged bed shear stress which is directed toward the crest of the ripple. 
In order to ensure that the resulting bed load transport is zero, the local bed 
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slope must be so large that the effect of bed slope on the bed load transport rate 
counteracts the effect of the non-zero bed shear stress directed toward the crest. 

The main problem in describing the mechanics of ripples is to describe 
the rather complex flow behaviour just above the ripples. Except for the case 
of very small Reynolds numbers in the laminar regime, this unsteady separated 
flow must be calculated by use of extensive numerical models as described later. 
However, some important features of the ripples can be obtained from very simple 
considerations. 

As shown in Fig. 10.4, the growth of the separation bubble just after the 
outer flow velocity formed by the wave is turning to the right, can be compared 
with the measurements by Honji (1975) concerning the starting flow down a neg- 
ative step: by suddenly moving a negative step with a certain velocity through 
water originally at rest, Honji measured the time variation of the location of the 
reattachment point downstream the step. His results are shown schematically in 
Fig. 10.5: at  small values of the dimensionless time t* = Ut/h, (U = outer flow 
velocity, h, = step height, t = real time) the reattachment point x, moves nearly 
linearly downstream with time 

x, = a,Ut (10.3) 

until t* becomes 25. For larger values of t* ,  x, obtains the stationary value x, - 
6 h, which is well known from steady flow (see Chapter 9). a,  is of the order 
0.2-0.3 (Broker and Fredsoe, 1983). 

Figure 10.5 Variation in reattachment point x, with time, after Honji 
(1975). 

In the s t e a d y  flow case described in Chapter 9, the shear stress distribution 
could be characterized as follows; cf. Fig. 9.7: inside the separation bubble the 
bed shear stress is directed in the opposite direction to the main flow, but is much 
smaller than the mean bed shear stress outside the separation bubble. After the 
point of reattachment, the shear stress increases rapidly to a maximum value, after 
which it remains almost constant (in fact it decreases slightly, due to the growth 
of a new boundary layer). 
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The picture for the unsteady case is somewhat similar to that described 
above (as sketched in Fig. 10.6), with the important modification that 5 ,  is taken 
as the instantaneous value of the reattachment distance downstream from the 
step obtained by Eq. 10.3. In Fig. 10.6, an approximation to the real bed shear 
distribution is depicted by the dashed line: inside the separation bubble, the bed 
shear stress is assumed to be vanishing, while it is assumed to have a constant value 
downstream from the point of reattachment. An improved description could be 
made by taking into account the rotation of the vortex roller in unsteady flow which 
in fact rotates with a velocity comparable to the outer flow velocity. However, this 
modification does not change the following calculations significantly, so the dashed 
line depicted in Fig. 10.6 approximates the real distribution sufficiently accurately 
for the present purpose. 

Figure 10.6 Bed shear stress distribution downstream from a negative step 
in steady flow (solid line, from Bradshaw and Wong, 1972). 
The dashed line is the analytical approximation applied in the 
present example. 

The mean bed shear stress distribution 

For simplicity, the flow velocity U away from the bed due to the wave 
motion as an idealization is assumed to be constant + U (to the right) in the 
time 0 < t < 5 (T = wave period) and constant - U (to the left) in the time 
5 < t < T .  To obtain a simple picture of the bed shear stress variation along the 
ripple, the flow over a hole in the bed, as sketched in Fig. 10.7A, is considered. 
The geometry of this hole has the main characteristics of the ripple profile, namely 
the rearward facing steps which are felt by the flow and which lead to the vortex 
formation along the bed. 

For the case of flow over a hole in the bed with the length L ,  as shown in 
Fig. 10.7A, consider the bed shear distribution in the hole at zo as a function of 
time, 
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Figure 10.7 Mean bed shear distribution in a hole for the case T / 2  < 
6h, / (aTU) and L,  > 12 h,. L* i s  defined in Eq. 10.5. 

For 0 < t < t l ,  the bed shear stress is 7 0 .  At t = ti  the bed shear stress 
becomes zero because the separation bubble attains 2 0 ,  so tl is determined by 

xo tl = - aru (10.4) 

cf. Eq. 10.3. Eq. 10.4 is only valid if zo is so small that zo 5 6 h,. If zo 2 6 h,, 
the bed shear stress is always equal to 70. This gives the distribution in mean 
value of bed shear stress ?; during the first half of the wave period as shown in 
Fig. 10.7B. When the flow turns, the distribution of 5 is similarly obtained and 
shown in Fig. 10.7C. Fig. 10.7D shows the mean distribution over one wave period 
7 for the case where 6h,/L,  5 i. If 6h,/L, 2 f ,  the distribution is given by Fig. 
10.8A. 
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A. t"" 
I 

Figure 10.8A Mean bed shear stress distribution in a hole with small width, 
compared with Fig. 10.7: 
6h, < L,  < 12h,. T / 2  < 6hS/ (a ,U) .  

Figure 10.8B Mean bed shear stress distribution in a wide hole exposed to 
large wave periods, compared with Fig. 10.7: 
T / 2  > Sh,/(a,U). L ,  > 12 h,. 

The calculations shown in Fig. 10.7 are only valid if the wave period is so 
small that the vortex has not reached its equilibrium position. This is the same 

(10.5) 

In Fig. 10.8B an example is sketched where the above requirement is not 
fulfilled. For wave ripples, Eq. 10.5 is usually fulfilled, so the distribution in Fig. 
10.8B does not occur in nature (probably because the discontinuity in bed shear 
distribution will form a new, smaller, wave ripple). In the following calculations, 
Eq. 10.5 is assumed to be fulfilled. 

Bed load movement 

Returning to the real ripple profile shown in Fig. 10.1 and assuming that 
the bed shear stress is small, all sediment moves as bed load. Because of the local 
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slope, it is easier to move a particle downhill than uphill. This can be taken into 
account by changing the Shields parameter 0 (dimensionless bed shear stress) on 
a plane bed to 0, on a bed with a longitudinal slope y, by the relation 

tany 
tan d 

or = e ( i  - -) cosy (10.6) 

where q!I is the friction angle, cf. Eq. 7.35. Eq. 10.6 can be approximated by 

1 dh 
tan q!I dx e, = e ( i  - --) (10.7) 

The requirement for a stable ripple profile is that the net sediment transport 
during one wave period is zero at every location on the ripple. For the case of pure 
bed load, the dimensionless sediment transport @ b  is a function of 8, only 

@ B  = @B(@y) (10.8) 

The continuity requirement is 

(10.9) 

In the present simplified model 19 is either equal to a constant value Bo or 
equal to zero, cf. the dashed line in Fig. 10.6. Hence, Eq. 10.9 is fulfilled if 

_ _  
Bri + @,2 = 0 (10.10) 

where is the dimensionless version of the bed shear stress shown in Fig. 10.7B, 
corrected for the action of gravity by Eq. 10.7. 8,2 is defined from Fig. 10.7C in 
the same way. Application of Eqs. 10.7 and 10.10 gives 

or 

where 

- 1 d h  1 d h  
7-1 (1 - --) + ,(1+ --) tan q!I d x  = 0 

tan 4 d x  
(10.11) 

(10.12) 

(10.13~) 

and 
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dh 
- = < 
dx 

- -1 0 < x < L ,  - L* .={ - L -2 

TO - * L , - L * < x < L ,  

I ( x / L *  - 1 )  

( x / L +  + 1) 

2 s  - L ,  
tan4- 

L ,  

tan 4 O < x < L *  

L ,  - L* < x < L* (10.16) 

(1 + x/L' - L, /L*)  
(1 - x /L*  + L, /L*)  

tan 4 L' < x < L ,  

(10.13 b)  

By inserting Eq. 10.13 into Eq. 10.12 a differential equation for h is ob- 
tained. Three different expressions are obtained, depending on the ratio L,/L*: 

1) L,/L* 5 1 : In this case Eq. 10.12 reads 

(10.14) 

(10.15) 

This solution is depicted in Fig. 10.9. This profile has a steepness of 
tanq4/4 - 0.16 which is quite close to the measured values at low values of O', 
cf. Fig. 10.3. 

Figure 10.9 Theoretical solution for the ripple profile, L ,  < 2 L*. 

2 )  L* < L ,  < 2L": In this case, the bed shear stress distribution (depicted in Fig. 
10.8A) gives the following differential equation in h 

The solution to Eq. 10.16 gives a solution nearly identical to the one given by Eq. 
10.14. 

3) L,  > 2L": For this long ripple, the differential equation in h reads 
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(1 + x/L* - L,/L*) 
L, - L* < x < L, I tanQ,(-x/L* + 1 + L,/L*) 

which predicts a solution with a kind of “solitary ripple crests” on a plane bed, 
see Fig. 10.10. This solution will not be present in nature, because the plane part 
of the bed is unstable. 

Figure 10.10 A “solitary ripple” train as predicted by Eq. 10.17, L ,  > 2L*. 

Determination of ripple length 

The model described above is able to calculate the ripple height and shape 
if the ripple length is known in advance. Fig. 10.11 shows a time series of ripple 
development: the ripples are normally observed to be initiated close to a small 
disturbance from which the ripples spread to cover the total bed. Initially, the 
ripple length is small but grows with time. This can be explained by the fact that 
the extent of the separation bubble is a function of the height of the ripple. 

- 0  
- 

I 

Figure 10.11 Ripple development from a plane bed. a = 0.073 m, T = 1.5 s. 
8’ = 0.105. 
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When the height of the ripples is sufficiently large, the extent of the sep- 
aration bubble is constrained by the limited time (half a wave period) for the 
expansion of the bubble which implies that no further elongation of the ripple 
length will take place. 

An idea about the mature ripple height can be obtained by setting 

L,  = 2L’ (10.18) 

This corresponds to the transition between the profiles shown in the Figs. 
10.9 and 10.10. As the profiles corresponding to “solitary” ripples are unlikely 
to occur because the plane stretch between the ripple crests will be unstable, L ,  
cannot be larger than 2L*. On the other hand, if L ,  is taken smaller than 2L*, 
the ripple height will be correspondingly smaller. Due to stochastic variations, 
some ripples will always be higher than others and will consequently dominate the 
erosion/deposition pattern at the bed, eliminating the smaller bedforms. For this 
reason, it must be expected that the largest possible ripple height at  the end will 
be the preferred ripple height, justifying the choice of Eq. 10.18 for determining 
the ripple height. 

d50 
( s )  (mm) 

0.5 0 4 0.36 
e 4 0.67 
Q 4 1.54 
0 8 0.36 
e 8 0.67 
D 8 1.54 

0 
0.5 

Figure 10.12 Ripple length versus near-bed water excursion amplitude. Mea- 
surements by Mogridge (1972). (From Br@ker, 1985). 

Now Eq. 10.18 and Eq. 10.5 give 

(10.19) 

or 

L,  = 4a,a (10.20) 



$02 C h a p t e r  10: Wave-generated  bed f o r m s  

in which a = U T / 4  is the near-bed water excursion amplitude for the idealized 
picture, where U is constant during each half wave period. For a ,  2 0.3, 'Eq. 
10.20 gives 

L,  = 1.2a (10.21) 

This expression fits very well with measurements as seen from Fig. 10.12. 
However, at large U-values there is a systematic deviation from Eq. 10.21 which 
can partly be attributed to the influence of suspended sediment. 

Influence of suspended sediment on ripple shape 

The influence of suspended sediment on the shape of vortex ripples has 
been studied by Brflker (1985) by use of the model outlined above. A detailed 
description of suspended sediment over ripples is given in the next section, but for 
the present analysis a more simplified approach has been used. 

When the sediment is passing the crest of the ripple, the bed load is im- 
mediately trapped in the separation bubble while a large part of the suspended 
sediment is transported a greater distance and will settle further downstream on 
the ripple (quite similar to the description of sediment transport over dunes, cf. 
Chapter 9). 

settling 

Figure 10.13 Settling of suspended sediment. 

Breker (1985) assumed that all the suspended sediment transported over the 
ripple crest after the flow turned to the right (see Fig. 10.13) would be deposited 
uniformly between the reattachment point and the point zp, which is determined as 
the point where a particle, released at the crest just after flow reversal and moving 
outside the separation bubble (i.e. following the potential flow), has reached. 
The total amount of settled suspended sediment on this stretch during half a wave 
period must equal the amount of suspended sediment transported over the crest in 
the same half wave period. The latter can be calculated as the transport capacity 
of suspended sediment in the boundary layer formed along the ripple in front of 
the ripple crest and can, for instance, be calculated by the sediment transport 
formula developed in Chapters 7 and 8. 
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Figure 10.14 Ripple steepness versus Shields parameters. The solid lines are 
calculated on  the basis of a constant ratio of @ s / @ B .  (After 
Br@ker, 1985). 

By implementing this description together with the earlier description of 
bed load it is possible to determine the shape of the ripples by requiring the net 
transport through each vertical to be zero. The result indicates that the ripples 
will become steeper, as shown in Fig. 10.14. In this figure the ripple steepnes 
is calculated for different ratios of @ s / @ B  and at different values of 8,l,, (the 
effective Shields parameter at the ripple crest). The parameter @ s / @ B  in this 
figure is assumed to be known in advance. (The curves in Fig. 10.14 for the pure 
bed load case ( @ s / @ ~ B  = 0) deviate slightly from the steepness predicted earlier 
in this section, because in Fig. 10.14 it has also been taken into account that 
bed load sediment is transported over the crest). By calculating the ratio @ s / @ B  
as a function of 8’ it is possible to obtain a curve for the ripple steepness as a 
function of 8 ’ .  Fig. 10.15 shows such an example based on the sediment transport 
descriptions in Chapters 7 and 8. 

Because only a certain fraction of the suspended sediment will be exchanged 
with the bottom during each wave cycle, BrGker introduced a factor E s ,  so only 
Es@s is assumed to be deposited on the ripple during a wave cycle. As seen 
from Fig. 10.15, the ripple steepness is described quite well for in the order of 
0.15-0.20. 
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Figure 10.15 Ripple steepness versus Shields parameter. The  factor [, indi- 
cates the fraction of suspended sediment passing the crest and  
settling on the downstream ripple. The  symbols are the  same 
as in Figure 10.14. (After Brbker, 1985). 

10.3 Distribution of suspended sediment over vortex rip- 
ples 

The vertical distribution of suspended sediment over vortex ripples is quite 
different from that over a plane bed (see Chapter 8) because of the organized 
vertical motion connected with the vortex roller, see Fig. 10.2. 

If the measured concentration is averaged over a wave period, and further 
averaged along the ripple, Nielsen (1979) demonstrated that the vertical distribu- 
tion could be well described by 

c = co exp(-az) (10.22) 

in which a is a constant, and co the concentration a certain distance over the bed. 
Nielsen assumed that this vertical distribution could be described by intro- 

ducing a diffusion coefficient E ,  for the sediment which is constant in space and 
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Figure 10.16 Measured diffusion coefficient for suspended sediment over rip- 
ples. After Nielsen (1979). 

time. Hence, the distribution given by Eq. 10.22 becomes 

(10.23) 
c = coexp(-<z) W 

Based on the plotted data by Nielsen the following empirical expression for 
the diffusion coefficient can be obtained 

1.5 - 4500d - 1.2111 
L,aw 

(10.24) 

in which d must be inserted in m (5'1-units). a is the amplitude of the near-bed 
orbital motion and w is the cyclic frequency. From Eq. 10.23 and Fig. 10.16 it can 
be seen that E,  depends rather strongly on the fall velocity of the sediment, as E,  

increases with decreasing fall velocity. This is typical for a flow where organized 
vertical motion of the flow is present as described in Example 8.2. 

On the basis of measurements, Nielsen (1979) suggested that the reference 
concentration appearing in Eq. 10.23 should be given by 

(10.25) 
co = 0.028(0' - 0,) -Arccos/g 2 

x 
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Mathematical modelling of suspended sediment over ripples 

In order to model the suspended sediment over ripples, a detailed description 
of the flow is required. To describe this unsteady non-uniform flow (including flow 
separation) requires a numerical solution of the flow equations. Such an analysis 
can either be based on the k - c  approach (see Chapter 2) or by use of the so-called 
discrete vortex method. In the latter, the rotation in the flow is discretized and 
represented by ideal vortices, which can be followed by a Lagrangian scheme (see 
for instance Sarpkaya, 1989, or Smith and Stansby, 1989). While this method does 
not describe the detailed turbulent structure very accurately, it describes the gross 
behaviour of the flow, such as flow separation and the further development and 
movement of the vortices formed downstream of the ripple crest, quite well. 

E' 

Figure 10.17 Flow pattern (at  the left) and suspended sediment particles (a t  
the right) a t  two phases during a wave cycle. (Hansen et al., 
1991). 

Fig. 10.17 shows the calculated flow field over a ripple bed at different 
phases by use of the discrete vortex model (Hansen et al., 1991). With such a flow 
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description, the individual grains in suspension can be followed by a Lagrangian 
formulation. The change in their position during a time step At due to convection 
and settling is expressed by the flow field 

(.(t + At), Z ( t  + At)) = ( z ( t ) ,  ~ ( t ) )  + (u( t )At ,  ( w ( t )  - ,,)At) (10.26) 

In this description the diffusion processes are not described completely cor- 
rectly. Velocity fluctuations with dimensions smaller than the grid spacing, or 
time scales shorter than the time step cannot be simulated directly, which implies 
that the diffusion processes (caused by turbulent fluctuations) with length scales 
smaller than the grid spacing or time scales shorter than the time step cannot be 
directly represented. The diffusion process is chiefly important very close to the 
bed, where a wave boundary layer develops (Fig. 10.18). Inside this wave bound- 
ary layer, the suspended sediment can be calculated according to the plane bed 
case described in Chapter 8, with a bed concentration concept and an increasing 
sediment diffusivity E~ away from the bed. Outside the wave boundary layer, the 
dominant transport term is the convective transport by the large organized eddies. 

Figure 10.18 Release of suspended sediment particles close to the ripple 
crest. 

The right-hand-side of Fig. 10.17 shows a calculation of the distribution of 
suspended sediment particles during one wave cycle (Hansen et al., 1991). The 
particle path is found from the Lagrangian scheme Eq. 10.26. The feed of particles 
into the outer flow is found from the transport capacity in the wave boundary layer 
just in front of the ripple crest, where the skin friction is largest, see Fig. 10.18. 
Here, the amount of sediment transported in the boundary layer during the time 
interval At is given by 

r s  
q,At = c ( z )u ( z )dzA t  1, (10.27) 

This amount of sediment is released in each time interval At a short dis- 
tance away from the ripple crest as indicated in Fig. 10.18. Numerical sensitivity 
analyses have shown that the average concentration is only slightly affected by 
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the exact placement of the release point. Fig. 10.19 shows a comparison between 
the described theoretical analysis and the measured concentration over ripples, 
performed by Ribberink and Al-Salem (1989) in an oscillating water tunnel. It 
can be seen that quite a good correlation between the magnitude of the near-bed 
concentrations, as well as the vertical distribution, is obtained. 

Crest Trough 
1.000 8.4 1000 

0.750 6.3 0750 

0 500 

0.250 2.1 0.250 

0.000 0 0.000 

2 /L, 

o 2.10-~ L + ~ I O - ~  o ~ X I O - ~  ~ X I O - ~  

Measured 
Computed x 

Figure 10.19 Measured and  calculated concentration profiles over ripple 
crest and  trough. L,  = 0.17 m,  H ,  = 0.028 m, d50 = 0.21 
mm, T = 4 s and U,, = 0.457 m/s. 
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Chapter 11. Cross-shore sediment trans- 
port and coastal profile de- 
velopment 

In the previous chapters the hydrodynamics of waves and currents in- and 
outside the surf zone, and the mechanics of sediment transport under waves and 
currents have been considered. In this chapter these results will be integrated 
to determine sediment transport rates in the cross-shore direction. The interplay 
between the sediment transport and the coastal morphology will be described for 
some specific examples. 

11.1 Cross-shore sediment transport 

The sediment transport in the direction normal to a long uniform coast with 
normally incident waves has recieved considerable attention and much experimen- 
tal and theoretical work has been carried out. Cross-shore sediment transport 
is very important because the coastal profile is formed by the erosion/deposition 
associated with shore-normal transport. As described in Chapter 12, a detailed 
model of the longshore wave-driven current and the longshore sediment transport 
requires as input the shape of the coastal profile. The profile of a sandy beach 
changes continuously and may be modified considerably during a single storm. In 
principle, it will therefore not be possible to make a detailed simulation of the 
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longshore sediment transport without having a model for the cross-shore sediment 
transport and the development of the coastal profile. It should be noted that in 
reality the models of the coastal profile development have not yet reached a stage 
where they can be coupled to the longshore sediment transport models and the 
simulations are therefore normally based on profiles that have been estimated from 
surveys carried out during calm periods, 

It is normally assumed that the situation is completely two-dimensional with 
no mean cross-shore flow. This situation represents the experimental conditions 
encountered in an ordinary wave flume, however, in nature the assumption of zero 
mean cross-shore flow will, in many cases, not be valid. Small deviations from 
a uniform coastal profile may generate horizontal circulation currents and even a 
completely uniform situation may be unstable, ending up with a series of horizontal 
circulation currents and rip currents. 

Nevertheless, the strictly two-dimensional situation is of considerable in- 
terest as it is well documented and because all the mechanisms are also active 
in the more complex three-dimensional flow situation. The situation with zero 
cross-shore flux is actually more complex than that with a strong mean current, 
because many different mechanisms will contribute to the resulting sediment trans- 
port without the possibility of excluding any in advance. With a strong current 
the effect of the mea,n shear stress will be dominant for the mean current and the 
sediment transport. 

In the following, the mechanisms of the cross-shore sediment transport are 
described, for conditions outside and within the surf zone. The formulation of the 
sediment transport model is divided in two parts: a) the hydrodynamic description 
the main purpose of which is to model the mean current velocity distribution in 
addition to the variation of the eddy viscosity and the bed shear stress, and b) the 
description of the sediment concentrations and the resulting sediment load. 

11.1.1 Hydrodynamics outside the surf zone 

Outside the surf zone the energy dissipation and the turbulence are mainly 
confined to the near-bed wave boundary layer and the main effort is therefore 
concentrated on describing the conditions in the boundary layer and its influence 
on the mean flow and sediment transport. The hydrodynamics and sediment 
transport are described by the methods given in Chapters 1-4 and in Chapter 8. 

First a flow situation which can be described by potential flow theory outside 
the wave boundary layer is considered. The criterion for potential theory to be 
valid is that the wave-averaged shear stress must be zero outside the boundary 
layer. 
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Streaming 

The phenomenon of streaming was treated in Section 2.4, where a descrip- 
tion of how the non-uniformity of the boundary layer under real waves causes a 
change in the mean shear stress over the boundary layer was given. The displace- 
ment in the non-uniform wave boundary layer causes small vertical velocities that 
grow from zero at the bed to v, outside the boundary layer. The detailed varia- 
tion of this velocity can be determined from the velocity distribution in time and 
space of the wave boundary layer. The streaming gives a jump in the mean shear 
stress of AT over the wave boundary layer. 

As described in Example 6.1 a perfect force balance with zero mean shear 
stress over the entire water column (outside the wave boundary layer) can be 
obtained by an adjustment in the slope of the mean water surface. This situation 
is then consistent with a potential flow outside the boundary layer. Because the 
mean shear stress is different from zero in the wave boundary layer, the mean 
flow velocity is also non-zero. The mean flow velocity increases through the wave 
boundary layer to become constant outside the boundary layer. 

Non-linear waves 

In shallow water where the waves are close to breaking they become very 
non-linear, and the variation of (,he near-bed orbital motion can deviate signifi- 
cantly from the sinusoidal prediction of first order wave theory. If the wave bound- 
ary layer is laminar, the oscillatory boundary layer will have zero mean shear stress 
for zero mean horizontal flow near the bed. This is because the solution to the 
laminar boundary layer is linear and a complete solution can be obtained by mak- 
ing a Fourier decomposition of the wave-induced motion. Due to  the linearity, the 
complete laminar solution can be obtained by adding the solutions corresponding 
to each Fourier component. As the mean shear stress is zero for each harmonic 
component, it will also be zero for the total solution. 

For a turbulent oscillatory boundary layer the mean shear stress is not 
necessarily zero for zero mean flow. This can be illustrated by considering the 
simplified example of a constant friction factor f w  

(11.1) 

where Tb is the instantaneous bed shear stress and u g  is the near-bed wave-induced 
orbital velocity. The velocity u g  is composed of two harmonics, as found from the 
second order wave theory 

uo = u1, cos(wt) + U2, cos(2wt) (11.2) 

where w is the wave angular frequency. It is assumed that the second harmonic is 
small. i.e. 

(11.3) 
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When the mean shear stress is calculated from Eqs. 11.1 and 11.2, it is 
found to be 

- 4 
r = -a2rmax 

3 s  
(11.4) 

where r,,, is the maximum bed shear stress during a wave period. If a mean 
shear stress of zero is required, it is necessary to add a constant current velocity 
at  the top of the wave boundary layer Us to the orbital motion. The magnitude 
of Us can be determined by the same principles that were applied in Section 3.1, 
cf. Eq. 3.8 

(11.5) - 2 4 US 
-7- = - fwUlmUs = -r,,,- 

s u 1 m  

or 
1 1 us = -:aJJ1, = - : iYzm (11.6) 
3 3 

A wave motion with this mean velocity, constant over the vertical, is thus seen to 
fulfill the requirements for a potential wave motion without any mean shear stress, 
provided that Eq. 11.1 determines the bed shear stress. When a more detailed 
model for the wave boundary layer is used, the mean flow giving zero mean shear 
stress can be determined by trial and error. The mean current obtained from 
these considerations must be combined with the mean flow associated with the 
streaming described above. 

The wave drift 

The wave motion itself implies a net flux of water, the wave drift Qdrift. As 
described in Chapter 1, it can be calculated by time-averaging the instantaneous 
discharge through a fixed cross section. For linear shallow water waves this gives 

(11.7) 

The wave drift can alternatively be calculated by Lagrangian considerations, 
following the path of the individual water particles. For shallow water waves the 
particles will have a slow forward drift, because as they move forward they move 
with the wave which is itself propagating with celerity c ,  while their backward 
motion is against the wave. The forward motion of the particle is therefore of 
slightly longer duration than the backward motion. The mean Lagrangian drift 
velocity ue is found to be 

up = - u2 (11.8) 

As seen from Eqs. 11.7 and 11.8 the two alternative approaches give the 
same magnitude for Qdrift, but while the Eulerian calculation gives a discharge 
concentrated between the wave trough and crest, the Lagrangian gives (for linear 
shallow water waves) an even distribution over the mean water depth. 

1 -  
C 
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Example 11.1: Wave drift of suspended sediment 

The Lagrangian drift velocity must be included in the flow field when cal- 
culating suspended load transport under waves, as long as the vertical orbital ve- 
locity is not taken into account when solving the diffusion equation for suspended 
sediment. In the plane situation this equation reads (cf. Chapter 8) 

(11.9) 

If the convection terms are included in the description and the vertical 
and horizontal flow velocities are determined correctly, then the wave drift of the 
suspended sediment will be determined correctly by an Eulerian analysis, and the 
Lagrangian drift velocity must not be included in the description. Consider the 
following simplified example: 

In the lower half of the water column there is suspended fine sediment with 
the constant concentration co. In the upper half the concentration is zero. Settling 
and diffusion of sediment are neglected. The water waves can be described by linear 
shallow water wave theory and all effects of the boundary layer are neglected. From 
the velocity field the upper boundary ztop of the concentration field is found to 
vary as 

1 
2 Ztop = -(D + g )  ( 11.10) 

The horizontal flow velocity is the orbital velocity U O .  The wave drift of the 
sediment can, by Eulerian analysis, be determined as 

(11.11) 

In most sediment transport models for waves and current, however (e.g.  
the one described in Chapter 8), the vertical flow velocities in- and outside the 
oscillatory boundary layer are not calculated and the convective terms in Eq. 
11.9 are neglected. In the present example this corresponds to taking ztop to be 
a constant and equal to D/2. With this simplification the wave sediment drift 
determined by an Eulerian analysis becomes zero, which is obviously incorrect. 
A good first approximation is obtained by using the Lagrangian drift velocity 
ue. When ue is calculated from Eq. 11.8, the velocity distribution in the wave 
boundary layer must be taken into account. In the present example the Lagrangian 
wave sediment drift is found to be 

(11.12) 
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which is identical to the correctly determined Eulerian wave sediment drift in Eq. 
11.11. 

The mean turbulent flow 

Until now, the requirement of zero shear stress has been maintained for 
the flow outside the wave boundary layer to be described by potential theory. 
Three contributions to the net flow have been identified: streaming in the wave 
boundary layer, effect of non-linear waves on the turbulent wave boundary layer 
and the wave drift. The sum of the three net discharges is different from zero. In 
order to satisfy the continuity equation which in the present case states that the 
net cross-shore flux is zero, the mean water surface must have a slope S giving 
a mean shear stress which drives a current to compensate for the net flux of the 
potential wave motion. The mean water surface slope gives the triangular shear 
stress distribution 

(11.13) 

This mean shear stress must then be included in the hydrodynamic model 
describing the turbulent wave-current boundary layer which includes the effect of 
the three wave phenomena described above and fulfills the continuity equation. 

- 
T = pgS(D - 2 )  

3200 

2400 

1600 

800 

0 

N 

\1\ 
0.08 0.04 0 

I 
-4-+ u/u1 m 

0.04 0.08 

Z/kN 

loooo ?. D B E A C 
4rn 
l r n  
5 s  
1.3 x 

0.612 m / s  
0.048 mls 

0.08 004 0 004 008 

Figure 11.1 The  contribution to the mean flow in the case of non-breaking 
waves, linear scale (left) and logarithmic scale (right). A: ef- 
fect of streaming. B: effect of asymmetric wave motion. C: 
Lagrangian drift velocity. D: combined mean flow. E: com- 
bined mean flow plus Lagrangian drift velocity. 

An example is given in Fig. 11.1, where each of the contributions to the 
mean flow are shown. The wave motion is calculated by second order Stokes theory 
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and the turbulence is modelled by a mixing length model. The velocity profile E 
is the mean velocity profile plus the Lagrangian drift velocity and gives a zero 
depth-integrated discharge. The logarithmic scale shows the detail in the wave 
boundary layer, while the linear scale shows the velocity distribution outside the 
wave boundary layer. According to the mixing length model the non-linearity of 
the wave motion gives a mean velocity outside the wave boundary layer of -0.016 
m/s, which is in agreement with the simple estimate in Eq. 11.6. 

11.1.2 Cross-shore sediment transport outside the surf zone 

When a satisfactory hydrodynamic description has been obtained, the sedi- 
ment transport is calculated as bed load and suspended load transport. In addition 
to the mean current velocity determined by the hydrodynamic model, there is a 
contribution to the net sediment transport due to the non-linearities in the sedi- 
ment transport model. If the near-bed wave-orbital velocity (and the bed shear 
stress) is larger in the onshore motion than in the offshore motion, a net sediment 
transport in the onshore direction is induced because the bed load transport and 
the bed concentration are non-linear functions of the friction velocity. 

Another effect is due to the time variation of the eddy viscosity and the 
sediment concentration at different levels. It is important to hme  the correct 
phases of the concentrations and the flow velocities in order to calculate the net 
sediment transport. In extreme cases the phase variation may cause the suspended 
transport to go against the direction of the maximum shear stress during a wave 
period, but normally it only modifies the magnitude of the net transport. 

The presence of wave ripples can be of significance in this respect, because, 
as described in Chapter 10, the sediment brought into suspension during one half 
wave period is carried in the vortex in the lee of each ripple. Only in the next half 
wave period are the vortex and sediment ejected into the flow over the ripples (at 
the same time as a new vortex is formed with suspended sediment). 

If the bed has a slope /3, this will also give a contribution to the net trans- 
port. The increased density due to the suspended sediment carried by the water 
gives a mean shear stress contribution of 

(11.14) 

where s is the relative density of the sediment. This contribution should then be 
included in the hydrodynamic model in order to calculate the mean flow with this 
gravity effect included. The inclusion of this term will require an iterative proce- 
dure, first a hydrodynamic calculation should be made neglecting the effect of the 
bed slope, followed by calculating the sediment concentration field and determin- 
ing the slope-induced shear stress from Eq. 11.14. Finally, a new hydrodynamic 



Cross-shore sediment transport 31 7 

simulation including the gravity effect term is made and the net sediment transport 
is found from this second calculation of mean flow. 

There are other effects of a sloping bed which can be included in cross-shore 
sediment transport models. The sloping bed causes the wave-orbital motion to be 
divergent/convergent when water moves off- or onshore. This has an effect on the 
turbulence and the bed shear stress in the wave boundary layer and will create 
a mean flow near the bed going uphill (Justesen, 1988). Another effect is that 
the shoaling process will cause the waves to be skew with a steeper shore-facing 
surface slope. This also affects the turbulent wave boundary layer and gives a mean 
shear stress. The mean shear stress in the boundary layer under very skew waves 
was analyzed in Example 2.6. These two mechanisms can, however, generally be 
expected to be less important. 

In this section a number of mechanisms responsible for the net sediment 
transport under non-breaking waves have been described. At present no theo- 
retical transport model describing this situation has been thoroughly verified by 
comparison with field or laboratory data. The main difficulty lies in the many 
different contributions that are all small compared to the gross sediment motion 
due to the wave-orbital motion. As will be described in the following section the 
cross-shore sediment transport is an order of magnitude larger in the surf zone 
than outside. Still the cross-shore transport under non-breaking waves is impor- 
tant for the development of the coastal profile, because at a given point the waves 
will be non-breaking during calm conditions for much longer time than the relative 
short periods of storms-induced wave-breaking. 

11.1.3 Cross-shore sediment transport in  the su r f  zone  

The conditions in the surf zone are characterized by the strong energy dissi- 
pation and production of turbulence caused by the wave-breaking. All the mech- 
anisms that are found to give contributions to the cross-shore sediment transport 
outside the surf zone are also relevant in the surf zone, but their significance is 
much smaller because the energy dissipation in the wave boundary layer is small 
compared to the energy loss due to wave-breaking. 

As described in Chapter 6, it is necessary to introduce shear stresses when 
the energy loss takes place near the surface in order to obtain a force balance and 
these shear stresses are important for the velocity distribution. There is also an  
extra contribution to the continuity equation in the water carried shorewards with 
the surface roller following each wave front of the broken waves in the surf zone. 

The distribution of the shear stresses together with the continuity equation 
gives the mean velocity profile, described in Chapter 6, with the strong offshore- 
directed undertow near the bed and an onshore mean flow near the surface. The 
suspended sediment concentration profiles are influenced by the high turbulence 
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level due to the wave-breaking, as described in Section 8.4. The concentration 
distribution is much more even over the vertical than outside the surf zone. Never- 
theless, the concentrations near the bed are the largest, and the resulting sediment 
transport goes offshore with the undertow. 

The magnitude of the sediment transport in the surf zone relative to the one 
outside is illustrated by an example. The mean water depth is D = 2 m, the wave 
height is half the water depth H = 1 m and the period is T = 5 s. The simulation 
has been made under the assumption of breaking as well as non-breaking waves. 
With an offshore bed slope tan@ = 1/50 and grain size d = 0.2 mm the non- 
breaking wave gives a net transport of 0.82 m3/m day, while the breaking waves 
give a transport of -11.2 m3/m day, where the negative sign shows an  offshore 
transport. 

The model outlined here is valid for spilling breakers and for the inner surf 
zone where the broken waves are rather similar to bores. The complex flow pattern 
near the plunge point of plunging breakers is not described. The plunging wave 
can generate a jet that penetrates down to the bed and large coherent vortices may 
be formed that can have a large effect on the local sediment distribution and flux. 
No quantitative model has yet been formulated which can take this into account. 

11.2 Development of the coastal profile 

The coastal profile can vary considerably during a year or even a single 
storm event. Longshore bars can be formed and existing bars can be shifted or 
destroyed. The cross-shore sediment transport plays an important role in the 
development of the coastal profile and with the assumptions made for the cross- 
shore sediment transport, a model which describes the morphological development 
can be formulated. The main assumption is that the situation is strictly two- 
dimensional, i.e. that the net discharge in the direction parallel to the coastline is 
zero. 

The morphological model consists of an onshore/offshore sediment trans- 
port model which calculates the detailed variation of the transport across the 
profile. From the sediment transport field, the development of the coastal profile 
is calculated by the continuity equation for the sediment: 

(11.15) 

where h is the bed level, n is the porosity of the bed and qsZ is the sediment trans- 
port rate in the s-direction. In practice, the sediment transport model and the 
continuity equation will have to be solved numerically. Normally a finite difference 
scheme is used, so that the hydrodynamic conditions and the sediment transport 
rate are calculated at each grid point at time t .  By use of the continuity equation 
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the bed topography after a morphological time step (time t + At) is determined. 
It is not trivial to select the numerical scheme for solving the continuity equa- 
tion. The aspects of numerical analysis will not be treated in detail, but it can be 
mentioned that a modified Lax-Wendroff scheme (see Abbott, 1985) has proven 
to behave satisfactorily (Deigaard et al., 1988). 

Point of wave breaking 

1 

Figure 11.2 The cross-shore sediment transport, and the formation of a 
breaker bar. 

From the section on cross-shore transport it is seen that the undertow gives 
an offshore directed transport in the surf zone and that the transport outside the 
surf zone is weak, with a tendency to be in the onshore direction. This means 
that a longshore bar will tend to be formed on a constant slope profile as a result 
of the cross-shore transport (Fig. 11.2). The cross-shore sediment transport is 
considered to be an important factor for the formation of breaker bars, but other 
mechanisms can also be of significance, such as the large vortices generated by 
plunging breakers and the low frequency oscillations generated by wave groups. 

Several different morphological models have been developed along the prin- 
ciples outlined above, Dally and Dean (1984), Nairn (1988), Deigaard et al. (1988), 
Hedegaard et al. (1991) and Roelvink (1991). All these models predict the initial 
formation of a bar on an originally plane beach profile due to the offshore-directed 
transport in the surf zone, but deviate in the later stages of the development due 
to differences in the formulation in the wave conditions inshore of the bar and the 
details of sediment transport modelling. An important aspect in the cross-shore 
sediment transport model is the smoothing of the calculated transport. In case 
of regular waves the calculated sediment transport may have a discontinuity at  
the point of wave-breaking (Fig. 11.3). This is unrealistic, as the undertow pro- 
file needs some distance before it becomes fully developed. In order to describe 
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Figure 11.3 Smoothing of the calculated transport distribution. 
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Figure 11.4 A. Simulated evolution (only the first 5 hours). B. Measured 
evolution, Saville (1957). After Hedegaard et al. (1991). 

this effect the calculated sediment transport field is smoothed at  each time step 
in the morphological model before it is used to calculate the bed level change. 
The smoothing has for example been made as a running average or by applying a 
response function in the form 
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(11.16) 

where qsz0 is the transport rate obtained directly from the cross-shore sediment 
transport model and qsz is the sediment transport rate used for calculating the 
morphological development. In Eq. 11.16 the x-axis is directed onshore. L,  is 
the length scale for adaptation of the sediment transport. The effect of the two 
types of smoothing is shown in Fig. It can be seen that both types of 
smoothing cause the maximum of the offshore-directed transport (negative) to be 
shifted shoreward of the breaking point. This effect is significant in the formation 
of a trough inshore of the bar. Further, the running average causes the offshore- 
directed transport to start offshore of the breaking point which smooths out the 
front face of the bar. 

11.3. 
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Figure 11.5 A. Simulated evolution. B. Measured evolution, Dette and 
Uliczka (1986). After Hedegaard et al. (1991). 

Hedegaard et al. (1991) have made simulations using different combina- 
tions of the two types of smoothing. Figs. 11.4 and 11.5 show comparisons be- 
tween measurements and simulated coastal profile developments. In both cases 
the smoothing has been made by first taking a running average and subsequently 
using the response function. In the comparison with measurements by Saville 
(1957) the running average is made over a length L,  equal to ten times the local 
water depth D,  and the length scale L,  for the response is taken to be 2 0 .  In the 
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simulation of the experiments by Dette and Uliczka (1986) the running average is 
made over a length L,  of 5 0 ,  and L,  is 2 0 .  

It is seen how a coastal profile model can represent the formation of the 
first bar and its gradual offshore migration. Further, the formation of the second 
and third bar inshore of the first is reproduced in the simulation of Saville’s (1957) 
measurements. However, the model does not satisfactorily reproduce the retreat 
of the coastline and in general, coastal profile models cannot yet be expected to 
give reliable long term predictions. 

Example 11.2: Dean’s model for equilibrium beach profiles 

A model for the equilibrium beach profile expected under a given wave 
condition was developed by Dean (1977). The model considers the high level of 
turbulence in the surf zone, due to the energy dissipation of the breaking and 
broken waves. Chapter 4 described how the turbulence level is related to the 
wave energy loss which acts as a source for the production of turbulence. Similar 
arguments are used by Dean and lead to the hypothesis that the bed on a beach 
profile can only withstand a certain rate of energy dissipation (and thus production 
of turbulence). If this level is exceeded, it will lead to a reshaping of the beach 
profile to give a wider surf zone with a lower intensity of the wave energy loss. 
Dean considers the energy loss per unit bed area, as well as per unit water volume. 
The latter has shown to be most successful and is therefore treated in the following. 

Dean (1977) introduces a number of simplifications in order to obtain simple 
analytical expressions: the waves are described as linear shallow water waves and 
the wave height in the surf zone is taken to be proportional to the water depth 

H = K D  (11.17) 

The analysis is based on the energy conservation equation, which for steady 
conditions reads (cf. Section 4.2.2) 

EL!, 
dx (11.18) 

where E f  is the wave energy flux and 
5 in this example is positive in the offshore direction. 

is the depth-integrated energy dissipation. 

The wave energy flux is given as (cf. Section 1.2) 

( 11.19) 

Introducing Eqs. 11.17 and 11.19 into Eq. 11.18 gives the following expres- 
sion for the mean energy dissipation per unit volume 



References 323 

(11.20) 

Following Dean's hypothesis, that E is constant for a given bed material on 
an equilibrium beach profile, leads to the following shape of the beach profile 

or 
D c( x 2 f 3  

(11.21) 

( 11.22) 

where E ( d )  signifies that the equilibrium energy dissipation is a function of the 
grain size d of the bed material. 

The relation in Eq. 11.22 has been supported by many field measurements. 
A similar relation was proposed by Bruun (1954) as an empirical result based on 
analyses of beach profiles under very different conditions. 

It should be noted that Eq. 11.21 describes a monotonic profile, with the 
water depth always increasing with the distance from the shore. In the case of a 
barred profile it can, at most, only be expected to describe a part of the profile. 
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Chapter 12. Longshore sediment trans- 
port and coastline develop- 
ment 

When waves approach the coast at an oblique angle, a longshore current 
will be generated as described in Chapter 5 and on a sandy coast the waves and 
the current may transport considerable amounts of sediment along the coast. The 
resulting annual longshore transport at a given site will often be a dominant factor 
in the sediment budget and significant beach erosion or accretion can be caused 
by interference with the longshore sediment transport. 

12.1 Longshore sediment transport 

The longshore sediment transport will often manifest itself through the 
coastal erosion or accretion around structures. Examples are given in Fig. 12.1, 
where structures are blocking the longshore transport or littoral drift partially or 
completely. In Fig. 12.1A, a harbour is constructed on a coast with a net littoral 
drift from left to right. Initially, this harbour completely blocks the longshore 
transport and the result is rapid accretion on the up-drift side and erosion on the 
down-drift side. If the coast is very long and straight, the accretion and erosion 
will continue and the coastline will move offshore on the up-drift side, until the 
littoral drift starts to pass the left-hand breakwater. In this situation the harbour 
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entrance becomes shallower and it will be necessary to carry out maintenance 
dredging or to extend the breakwater in order to increase the volume of sediment 
that can be deposited. 

A. Direction of net transport * 

C 

Figure 12.1 Erosion and deposition caused by structures interfering with the 
longshore transport. A: Harbour. B: Groyne field. C: Jetties 
at river mouth. 

In Fig. 12.1B a field of groynes has been constructed on an eroding coastline. 
The groynes have locally modified the longshore transport and the coastline along 
the groyne field has been stabilized. Fig. 12.1C shows a river mouth which has 
been stabilized by jetties. Before the construction of the jetties, the littoral drift 
may have caused a gradual migration of the river mouth in the down-drift direction 
until the river course became too extended at which time the river would break 
through the longshore spit to form a new mouth, up-drift of the former exit, with 
a more direct flow to the sea. In this way the river mouth can shift continuously, 
which can be very inconvenient if the river is used for navigation. The jetties fix 
the position of the river mouth, but also cause erosion on the down-drift side and 
accretion on the up-drift side. 
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12.1.1 The CERC-formula 

One of the oldest and still most successful methods for calculating the long- 
shore sediment transport is known as the CERC-formula, or the SPM-method after 
the Shore Protection Manual (Coastal Engineering Research Center, 1984). The 
idea that the longshore sediment transport is mainly driven by the incoming waves 
rather than by tides and ocean currents became generally accepted early in the 
20th century and a formula relating the longshore sediment transport rate to the 
height and direction of the deep water waves was established by Munch-Petersen 
(Svendsen, 1938). Munch-Petersen’s formula can be considered as a forerunner of 
the CERC-formula which is based on an empirical correlation between the trans- 
port rate and the quantity Po, defined as 

Pp, = Efb cos(cyb) sin(ab) (12.1) 

where cYb is the angle between the waves and the coast at the point of breaking, 
and Efb is the wave energy flux at the point of wave-breaking. There has been 
considerable discussion on the physical interpretation of the parameter Pe,, which 
has been termed ‘The longshore energy flux factor’. Longuet-Higgins (1972) made 
an analysis where the shear component of the radiation stress was used in the 
derivation of Pp, and in explaining the connection between this parameter and the 
longshore sediment transport. 

Komar and Inman (1970) made a dimensionally correct formula that was 
based on a large number of field and laboratory data 

Ip = Ii-,P!, (12.2) 

where ICc is a constant equal to 0.77, and Ip is the submerged weight of the 
transported sediment 

Ie = P ( S  - 1)sQe (12.3) 

where p is the density of the water, s is the relative density of the sediment, g 
is the acceleration of gravity, and Qp is the longshore sediment transport rate 
measured as solid volume. In case of irregular waves Pe, is calculated on the basis 
of H,,,, which gives a good estimate of the wave energy flux. Fig. 12.2 shows the 
CERC-formula as given by Eq. 12.2 plotted together with the field data originally 
considered by Komar and Inman (1970). 

The field measurements that are required for establishing a single point in 
Fig. 12.2 are very extensive. The field measurements have been reviewed critically 
by Greer and Madsen (1978), and it was found that in fact only few of the original 
data points could be considered to be totally reliable. A more recent addition 
to the data set has been established by Mangor et al. (1984) who analyzed the 



328 Chapter 12: Coas t l ine  d e v e l o p m e n t  
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Figure 12.2 Measured longshore sediment transport and calculated values 
of Pea, plotted together with the  CERC-formula, after Komar 
and Inman (1970). 
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Figure 12.3 Comparison between measured backfilling in a large trench, 
and longshore transport calculated by the  CERC-formula, after 
Mangor et ai. (1984). 

sedimentation in a trench dredged for the shore approach of two marine pipelines. 
The volume of the trench was 600,000 m3. The trench was surveyed, and the 
backfilling could be determined for six periods during which the wave conditions 
were also monitored. In Fig. 12.3 the measured backfilling of the trench is shown 



together with the corresponding calculation of the longshore sediment transport, 
using the CERC-formula. 

Example 12.1: The CERC-formula in dimensional form 

The CERC-formula is frequently met in versions with non-homogeneous 
units, for example as given by the Shore Protection Manual. One of the tradition- 
ally most common versions reads 

Q; = 7500Pp, (12.4) 

where Qi is the longshore transport rate given in cubic yards per year deposited 
volume, and Pp, is calculated by use of U.S. Customary Units entering the signifi- 
cant wave height H ,  as the wave height. A dimensionally inhomogeneous formula 
gives of course as good results as a dimensionally correct one, as long as the pa- 
rameters are handled correctly, and Eq. 12.4 can easily be shown to be equivalent 
to Eq. 12.2. 

Eq. 12.4 can be written in dimensional homogeneous form by including the 
units in the constant 

(12.5) 

where 
1 ft  = 0.305 m 

1 yd = 3 ft 

1 slug = 14.6 kg 

1 slug is the mass which is given an acceleration of 1 ft/s2 by a force of one pound. 
Eq. 12.5 can be made equivalent to Eq. 12.2 by multiplying by (1 - n ) ( s  - 1)pg 
at both sides and noting that 

p = 1.99 slug/ft3 

g = 32.1 ft/s2 

The porosity is taken to be n = 0.4, and Eq. 12.5 can now be written as 
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,50O( 27ft3 
3.15 .  l o T s )  (&)O.6 x 1.65 x 1.99 

0.41Pes (12.6) 

or 
pg(s - 1)Qp = O.41Pts (12.7) 

which is similar to Eq. 12.2. The difference of about a factor two between the two 
coefficients is mainly due to the use of H,,, as input to Eq. 12.2 and H ,  to Eq. 
12.7. 

The CERC-formula has only the characteristics of the incoming waves as 
input. This is not realistic, as the sediment transport must be expected to depend 
both on the sediment and on the coastal profile. Fig. 12.4 shows a plot made by 
Dean et al. (1982) where the coefficient K, in the CERC formula (Eq. 12.2) is 
plotted as a function of the grain size. It can be seen how the transport becomes 
smaller for the coarse sedimcnt and largrr for the finer sediment. 

0 
0 0.2 0.6 1.0 

Figure 12.4 Variation in K,-factor with grain size according to Dean et al. 
(1982). 

It can bc argiied that neither t,he grain size nor the coastal profile are com- 
pletcly independent parameters because the sediment sizes may be sorted on the 
coast and the profilc is continuoilsly reshaped by the waves, as described in Sec 
tion 11.2. The coefficient in the CERC-formula should thus represent an average 
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where the sorting of the scdiment and the beach profilc are in equilibrium with 
the waves. 

Kampliuis et al. (1986) have made an extensive analysis of field arid lah- 
oratory data and propose a longshore sediment transport formula, where &e is 
proportional to the beach slope and inversely proportional to the sediment size 

tan @His5 
sin(2c~b,) (12.8) 

d 
where tan/? is the bearh slope, Hbs is significant wave height of the breaking 
waves, and c Y b s  is the corresponding wave angle at breaking. Equation 12.8 is not 
dimensionally homogeneous; the coefficient 1.28 requires that the wave height and 
the particle size are entered in metres, and Qe is then calculated as kg/s. 

Qp = 1.28 

12.1.2 Longshore sediment transport models 

The longshore sediment transport is closely associated with the wave-driven 
currents and several longshore sediment transport formulae have been based on 
arguments that the sediment is stirred up by the waves and then transported along 
thc coast by the wave-driven longshore current (Longuet-Higgins, 1972; and Inman 
and Bagnold, 1963). 

Bijker (1971) made the first detailed longshore sediment transport model, 
using the longshore currcnt model of Longuet-Higgins (1970) for a. beach with 
constant slope in combination with a sediment transport model for waves and 
currcnt. 

Deigaard et al. (1986) developed a model which includes a longshore current 
model for arbitrary coastal profiles. The flow resistance in the longshore current 
niodel is calculated from the combined wave-current boundary layer and is con- 
sistent, with the sediment transport description. The sediment load is calculated 
as bed load and suspended load and the concentration profile of the suspended 
sediment is calculated by the turbulent diffusion equation with a time-varying dif- 
fusivity. The turbulent exchange coefficient is composed of contributions from the 
oscillatory boundary layer, the current boundary layer and from the wave-breaking 
in the surf zone, cf. Cha.pter 8. Fig. 12.5 gives an cxamplc simulation showing 
the littoral current profile and the distribution of littoral sediment transport rate 
across a coastal profilc with one longshore bar. 

A detailed analysis was made of the calculated sediment transport on a coast 
with a constant slope tan@. The dependence of the sediment transport on t,he 
bed slope was investigated and it was found that the transport is approximately 
proportional to the square root of the bed slope. The dimensionless longshore 
sediment transport rate was thercfore defined as 

(12.9) 
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anspor rates 

where Qr is the lorigshore sediment transport rate, and Ho is the deep water wave 
height. 

@ p  will be a function of the following dimensionless parameters. deep water 
wave height Hold ,  deep watcr wave steppness HOILO, where Lo = deep water wave 
length, the angle 00 between the coast and the d e q  water wave crests and finally 
the settling dimensionless velocity w* of the sediment defined as 

(12.10) 

As noted above @! is only weakly dependent on the beach slope /I. 
The variation in the different paranieters with the deep water wave direction 

is shown in Fig. 12.6 for a single combination of wave height, wave steepness, and 
settling velocity. Besides the sediment transport, the maximum lorigshore currcmt, 
velocity and the Pe,-factor are shown. The latter indicates the variation in the 
longshore sediment transport ac:cording to the CERGformula (Eq. 12.2). The 
variation in Qt with the deep water wave angle, shown in Fig. 12.6A, is typical 
for a. large range of H o l d ,  W* and Ho/Lo.  A curve fitted to this variation is 

* = ( s inpa"  [I - (12.11) 
QP 
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Figure 12.6 A: Variation in littoral drift; B: "Longshore energy flux factor"; 
C: Maximum littoral current velocity with ' Y O .  

which may be used as an approximation for the variation of the sediment transport 
with the wave direction. 

The dimensionless sediment transport @o at 010 = 45" is very close to the 
maximum. 12.7 as a function of Hold ,  w* and H o / L o .  
The sediment transport model is only valid for a flat bed without ripples, which 
corresponds to a minimum wave height Ho of approximately 2000 d. For Hold < 
3 x lo4 the curves in Fig. 12.7 can be roughly approximated by the expression 

is shown in Fig. 

( 12.12) 

which reproduces the curves of Fig. 12.7 with an accuracy of about 50%. Eq. 
12.12, together with Eq. 12.11, can be used to obtain analytical estimates for 
a plane coastal profile. For a real profile, e.g. with bars, a complete simulation 
must be performed, calculating the longshore current velocity distribution and the 
sediment transport at a number of points. 

In Fig. 12.8 a comparison has been made between the longshore sediment 
transport rate calculated by the mathematical model and the prediction made 
by the CERC-formula. The comparison is made for a deep water wave direction 
of 010 = 45" and a beach slope of tanp  = 0.01. The comparison is made for 
different sediment sizes and for different wave heights and periods. The line of 
perfect agreement is shown as a solid line in the region where the CERC-formula 
is supported by empirical data. The two models can be seen to predict littoral 
drifts of the same order of magnitude for a grain size of 0.2 mm, which is a very 
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Figure 12.7 Variation of longshore transport with grain size, wave steepness, 
and wave height, 010 = 45". 
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Figure 12.8 Comparison between the longshore transport model and CERC- 
formula for 010 = 45". 
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common beach material. Changes in ( Y O  or tan@ would result in a displacement 
of the curves, but no change in their shape. 

The variation with the wave direction has been illustrated in Fig. 12.6 from 
which it can be seen that, according to the mathematical model, the transport is 
relatively smaller for small and large values of (YO than predicted by the CERC- 
formula. The other most important parameter in the CERC-formula is the wave 
height and the calculated transport is approximately proportional to the wave 
height to a power 2.5. The dependency on the wave height is slightly stronger in 
the mathematical model where the power on the wave height is about 3-3.5. lk ~ ~ 

0.5 m 
1 

0 
0 2  0.6 10 d(mm) 

Figure 12.9 Variation in I<,-factor with grain size. Theoretical prediction 
is based on HOILO = 0.025, p = 0.01, and ( Y O  = 45". The  
measured values (filled circles) are from Dean et al. (1982). 

The mathematical model is very sensitive to variation in the grain size, 
which does not even enter the basic formulation of the CERC-formula. As shown 
in Fig. 12.9 the dependency on the grain size is slightly larger than found by 
Dean et al. (1982). This difference may partly be explained by the presence of 
wave ripples. As described in Chapter 10 the ripples can increase the amount 
of suspended load relative to a situation with a plane bed. The wave ripples 
are formed at  comparatively small values of Shields parameter, i.e. under given 
hydrodynamic conditions, ripples will be present for coarse sediment and not for 
fine sediment. 

The described mathematical model for littoral drift was further developed 
by Deigaard et al. (1988) to include several effects present in the natural environ- 
ment. The description includes irregular waves, coastal currents and the effect of 
a wind shear stress. 

Effect of irregular waves 

The effect of irregular waves on the littoral current has been included as 
described in Chapter 5 .  The heights of the deep water waves are assumed to follow 
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a Rayleigh distribution, and the distribution of the driving force is determined 
accordingly. Furthermore, the total driving force is reduced due to the effect of 
the directional spreading of the deep water waves. The directional spreading is 
characterized by the cosine spreading function, cf. Eq. 5.40. Fig. 12.10 shows 
velocity profiles of the longshore current on a beach profile with a constant slope 
tan /3 = 0.01. The longshore current is calculated assuming regular waves (uniform 
wave height) with and without directional spreading, and assuming irregular waves 
with Rayleigh distributed wave heights. 

- Uniform waves (m/s)l, v, 
Directional sprea - 

1 5 -  d i n g - s .  2 0 . ~ ~ 3  

10-  

2 -  

= 7 6 s  
a, = 200 
d = 02mm 

Figure 12.10 Longshore velocity profiles for regular a n d  irregular waves, and  
for waves with directional spreading. 

The local sediment transport rate is strongly influenced by the irregularity 
of the waves. The two most important effects are: A) The near-bed orbital motion 
is irregular which has to be taken into account when calculating the near-bed wave 
boundary layer and the suspended sediment concentrations. B) In the surf zone 
only a fraction of the waves at a given point will be breaking/broken, as some of 
the smaller waves will be breaking further inshore. These two effects are treated 
independently. 

By analyzing a series of simulations, each with an irregular time series of 
the near-bed orbital motion, it was found that a satisfactory estimate of the time- 
averaged sediment transport could be obtained by a simulation with regular waves 
using the wave height H = H,,, and the significant wave period T = T,. 

The effect of breaking and broken waves on the sediment transport is mod- 
elled according to the turbulence model described in Chapters 4 and 8, describing 
the production, vertical spreading and decay of turbulence generated by the pas- 
sage of each front of a spilling breaker or broken wave. The input parameters to 
this model, wave height and period, are modified to reflect the time between each 
passage of a wave front and the ra,te energy dissipation. 
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Fig. 12.11 shows an exa.mple of the distribution of the longshore transport 
in the coastal profile, calculated for regular and irregular waves. The main effect 
of including irregular waves is a much smoother distribution of the transport and 
a reduction of the total transport by a factor of 0.3 in this particular case. The 
directional spreading of the waves s = 20 and s = 3 causes a reduction of the 
sediment transport over the regular unidirectional rate by a factor 0.7 and 0.1, 
respectively. 

- Uniform waves (rn3/m/s)Aq, 

Directional sprea - 

Rayleigh distribution 
1 5~10.~- ding-s= 2 0 . ~ ~ 3  

1 0 .I 0-2- 

0 5 x 1  O'2 

= 7 6 s  
a' = 20" 
d = 0 2 m m  

(m) ldepth 

Figure 12.11 Distributions of t h e  longshore sediment t ransport  across a plane 
coast. 

(m3/m) q, 

600 -1 400 

Measured backfilling 90000 rn3 
calculation with Rayleigh 

- 
I-\ distribution and directional 
I '  spreading 

s =20,total backfilling 100000 m3 I \  
I . ' . . \  - - -  

Figure 12.12 Comparison between measured backfilling, cf. 
(1984), a n d  calculated backfilling. 

Mangor e t  al. 
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A comparison has been made between the calculated longshore sediment 
transport and the backfilling of a 1,600 m long trench (volume: 200,000 m3) 
dredged through a three-bar coastal profile at the Danish North Sea Coast, cf. 
Mangor et al. (1984). The backfilling during a storm with measured wave heights 
up to H ,  = 4.75 m in the spring of 1982 is considered. At this period the trench 
(width 90 m, depth 10 m) was only dredged through the outer bar. The total 
backfilling of the trench in this period was measured at 90,000 m3 (solid) grain 
volume. Fig. 12.12 shows the distribution of the backfilling and the calculated 
distribution of the longshore transport on the outer bar during the storm. The 
wave heights have been assumed to follow the Rayleigh distribution. The calcula- 
tions have been made for two directional spreadings, s, of which the smallest one 
is the most likely at  that specific location. 

Effect of wind and current 

In addition to radiation stress gradients, wind and coastal currents can 
contribute to the forces driving the longshore current. The effect of wind shear 
stress and a coast-parallel current has been included in the model for the longshore 
current as described in Chapter 5. The wind shear stress is expressed by a friction 
factor (given the value: f w  = 0.005) and the wind speed, Ulo at 10 m elevation 

(12.13) 

pa is the density of air. r, is resolved into a shore-normal and a shore-parallel 
component according to the angle a ,  between the wind direction and the shore- 
normal direction. The shore-normal component is included in the calculation of 
the set-up and the shore-parallel component is added to the driving forces of the 
littoral current. The coastal current is assumed to be driven by a shore-parallel 
gradient of the water surface, S, and the contribution to the driving force for the 
littoral current is pgDS, where D is the local water depth. 

The effect of wind and current has been analyzed for the basic conditions: 
HO = 1.5 m, T = 7.6 s ,  d = 0.2 mm, and a coastal slope of 1 : l O O .  Three wave 
directions are considered: 010 = lo” ,  20°, and 45”. Three wind speeds have been 
considered: Ulo = 5 m/s, 10 m/s, and 20 m/s, the wind is assumed to be parallel to 
the direction of wave propagation at deep water. Three coastal current velocities, 
measured at 5 m water depth, are analyzed: V = -0.25 m/s, 0.25 m/s, and 0.50 
m/s. 

The results are summarised in Fig. 12.13 showing the transport normalized 
by the situation without wind and coastal current, plotted against the total driving 
force normalized by the driving force due to waves alone. The driving force due 
to wind or water surface slope has been integrated over the area between the 
breaker line and the coastline, while the driving force due to the waves is the shear 
radiation stress S,, at the breaker line. The driving forces due to waves, wind 
and water surface slope can easily be calculated and generalized plots similar to 
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Figure 12.13 Sediment t ransport  including t h e  effect of wind or current ,  nor- 
malized by t h e  t ransport  due  t o  waves only versus t h e  total  
driving forces, normalized by driving forces due  to waves only. 

Fig. 12.13 could then be used to estimate the relative importance of the different 
contributions. The difference between the effect of wind and current, revealed in 
Fig. 12.13, is due to the difference in distribution across the coastal profile; wind 
shear stress is constant, while current-induced bed shear stress decreases with 
decreasing depth. For the same integrated force, the coastal current will thus give 
a larger contribution near the breaker line where the sediment concentration and 
transport are highest. 

Effect of rip channels 

On a coast with longshore bars the bar will often be interrupted by rip 
channels. In the rip channels there will be offshore-directed rip currents. The 
mechanism behind the rip currents is discussed in detail in Chapter 5 :  Incoming 
waves break on the foreslope of the bar, but as they pass the crest of the bar and 
enter the deeper waters of the trough, they cease to break and are reformed as 
non-breaking waves and are shoaled and refracted once again unt,il breaking re- 
occurs on the inner beach. At the holes, the larger depths will allow the waves to 
continue propagating towards the shoreline without breaking. As a result of this 
the wave set-up, produced by the cross-shore component of the radiation stress 
S,,, will be smaller at the holes and larger behind the bar. 

This results in a net pressure gradient accelerating the water in the trough 
towards the holes. Afterwards this mass of water flows through the holes in the 
seaward direction in the form of rip-currents. The amount of water carried by 
the rips is compensated for by the water transported over the crest of the bar. 
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Under these conditions, a flow will exist along the trough behind the bar even for 
normally indicent waves. The effect of this circulation current on the longshore 
sediment transport has been studied by Zyserman and Fredsoe (1988), using the 
depth-integrated flow model described in Example 5.7 to calculate the wave-driven 
currents. 

0 100 
1 * 

1 
2 
3 

X 

bar - f  crest (m) depth 

100 
I ,,b,, f , # / f 1 f 

I 
' 075 

I 

I 

2.0 - 
1 .o - 

X 

0 100 200 (m) 

Figure 12.14 Wave-generated currents on  a barred coast with a n d  without  
rip channels. 

Fig. 12.14 shows the flow field obtained by this model for a case with bar 
length Lb = 180 m, the width of the holes was Yb = 50 m and the coastal profile 
is shown in Fig. 12.14. The parameters for the incoming uniform, unidirectional 
waves are: Ho = 1.2 m, T = 7.5 s ,  010 = 45". For comparison, the corresponding 
longshore current velocity for a uniform coast is also shown. 

Calculated current fields have been combined with the sediment transport 
model to describe the cross-shore variation of the longshore transport 4 8 ,  as well 
as the total longshore transport Qe for several transversal sections along the bar. 
Due to the variability of the longshore current profile along the bar, the total 
transport varies from one section to another. In order to compare the sediment 
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transport with that corresponding to the uniform situation, the average value of 
&! along the bar was calculated. Fig. 12.15 shows the relation between the average 
longshore sediment transport when rip-currents are present Qe and the transport 
for the uniform situation Qeo as a function of the ratio between Yb and Lb, where 
Yb has been kept constant at 50 m. The characteristics of the shore and of waves 
are the same as those shown in Fig. 12.14. 

0 25 

000 
0.0 0 2  0.L 06 08 

Figure 12.15 Influence of rip currents on the longshore transport of sediment 
Coastal profile and wave conditions as for Fig. 12.14. 

It can be seen that the longshore sediment transport decreases drastically 
for decreasing distance between the rip channels, i.e. for shorter bars. This is 
explained by the reduction in the magnitude of the longshore current velocity due 
to an increased influence of the rip currents. This example shows that in addition 
to the local shape of the coastal profile, the along-shore variation in the profile can 
be very important for the magnitude of the longshore sediment transport under 
given wave conditions. 

12.2 Modelling of coastline development 

The change of the coastal profile that was treated in Section 11.2 can mainly 
to be considered a short term process which is related to single storm events or 
seasonal variation in the wave climate. If the long-term sediment budget for a coast 
is considered, it will often be found that the dominant term is due to variation 
in the longshore sediment transport along the coast and the development of the 
coastline can therefore be modelled by calculating the coastal erosion or accretion 
from the longshore sediment transport. Note that in this section the x-axis is 
aligned with the coastline for convenience. 
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A. 

E. 

A x  
- 

X 

Figure 12.16 A: The coastal profile in a morphological coastline model. B: 
The longshore sediment transport and coastal accretion/ero- 
sion. 

The simplest coastline model, the one-line model, assumes that the coastal 
profile is maintained constant but is shifted in the onshore or offshore direction 
as the result of erosion or accretion. The active height of the profile is called 
h,, Fig. 12.16A. The relation between the accretion/erosion of the coast and 
the longshore sediment transport can be formulated by the continuity equation for 
sediment. The x-axis is roughly parallel to the coastline, Fig. 12.16B. The distance 
of the coastline from the x-axis is Y .  If, during the short time interval At there 
is a change in coastline position (accretion) of AY, the amount of accumulated 
sediment (solid volume) over the distance Ax is 

AxAYh,(l - n )  (12.14) 

The net inflow of sediment during the time At is 

(12.15) 

If it is assumed that the accretion is only due to the longshore sediment 
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Figure 12.17 The coastline jus t  after construction of the groyne. 

transport, Eqs. 12.14 and 12.15 give the continuity equation 

d Y  aQe -(1- n)h, = -- 
at 8 X  (12.16) 

On a long straight coast the longshore sediment transport can be determined 
from the wave climate, i.e. statistics for wave height and direction. If the coast is 
given a different orientation, the entire calculation can be carried out once more, 
and in this way the longshore sediment transport can be determined as a function 

(12.17) 

Inserting this expression in the continuity equation gives 

This is the equation which is solved in order to make a coastline develop- 
ment model. It is a parabolic partial equation which must normally be solved 
numerically, for example by the finite difference Crank-Nicholson method. The 
establishment of the coast orientation and the longshore sediment transport will 
require a large number of individual calculations of the longshore transport rate 
and it will normally not be possible to establish any analytical relationship; in- 
stead a table can be established with corresponding values of Qe and aY/ax. This 
table may be the same for the entire stretch of coast under consideration or it may 
vary, e.g. due to local sheltering by islands or shoals lying off the coast. 

Example 12.2: Analytical solution to coastline model 

The first calculations with the coastline model were made by Pelnard- 
Considtre (1956) who used an analytical solution to Eq. 12.18. In many cases 
this technique can be used to obtain a first estimate of the morphological develop- 
ment, e.g. in connection with the establishment of a structure. To illustrate the 
solution a simple example is considered, Fig. 12.17. 
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Wave height 

2.5 111 

2.0 m 

A groyne is constructed on a long straight coastline. It is perpendicular to 
the coast and blocks the longshore transport completely. The longshore sediment 
transport is calculated by use of the approximation formulae given in Eqs. 12.9 
-12.12. 

The deep water wave conditions are given in Table 12.1; they consist of only 
two wave situations with a combined occurrence of 5 per cent. In this example 
the water is therefore calm for 95 per cent of the time. 

The height of the active part of the profile is assumed to be 7.5 m with 
a slope of 1 : l O O .  The mean grain size of the sediment is 0.2 mm with a settling 
velocity of 0.027 m/s. This gives a net longshore sediment transport rate of 340,000 
m3 /yr . 

Wave period Wave direction Occurrence 

7.5 s 0" 2.5 per cent 
7.0 s 20" 2.5 per cent 

Table 12.1 Offshore wave climate, determining the longshore sediment 
transport. 

The longshore sediment transport is calculated for different orientations of 
the coast. Fig. 12.18 shows the longshore transport as function of d Y / d x .  The 
calculated transport can, with good agreement, be approximated by a straight line 

(12.19) 

Inserting Eq. 12.19 into Eq. 12.18 gives a description of the coastline 
development 

d2Y a v  
ax2 'Z? 5.04. 105m2/yr - = li (12.20) 

which is the equation for heat conduction with constant coefficients. The initial 
condition for Eq. 12.20 is 

t = O :  Y=O f o r a l l z  (12.21) 
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Figure 12.18 The calculated relation between aY/ax and Qe and (dotted 
line) approximation by a straight line. 

The boundary condition at the groyne is that the longshore transport is 
zero. From the calculated transport relation in Fig. 12.17 this is found to give 
an orientation of the coastline of : aY/dz  = 0.15. The boundary conditions are 
therefore 

- = 0.15 = Yo' for z = zk 0 
d X  

ay 

and 
Y + O f o r , z + k m  

With these boundary conditions the solution to Eq. 12.20 can be written 

(12.22) 

where F is the error function defined by 

(12.24) 
2 "  

~ ( u )  = J;; 1 exp(-sz)ds 

The coastline development calculated by Eq. 12.23 is shown in Fig. 12.19 
for z < 0. Due to the symmetry of the problem the coastlines at z > 0 can be 
found by rotating the coastlines at z < 0 180" around ( a ,  Y) = (0,O). 

Just at the updrift side of the groyne the accretion of the coastline can be 
written 

(12.25) 
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-5000 -4000 -3000 -2000 -1000 0 

Figure 12.19 The  coastline development a t  the updrift side of the  groyne. 

This very simple analytical solution can only be used as a first approxima- 
tion, because the detailed variation in the relation between Qe and aY/ax cannot 
be represented as it can in a numerical model. The along-shore variation of the 
transport relation can be particularly important. Close to a groyne the sheltering 
effect will cause the coastline to deviate from the solution given by Eq. 12.23. The 
sheltering will cause the beach sediment to accumulate around the groyne, Fig. 
12.20. Immediately after construction of a groyne this effect may cause a certain 
erosion even on the updrift side of the groyne. 

I 
Sheker for 
waves f rom 

Groyne 

Figure 12.20 The  sheltering effect around a groyne immediately after con- 
struction. 



References 347 

t' 

X 

Figure 12.21 The coastal profile and plan form in a multi-line model. 

The one-line model for coastline development is the simplest approach and 
requires many simplifying assumptions to be introduced before the calculations can 
be carried out. Several attempts have been made to refine the coastline modelling, 
for example the description of the coastal profile has been made more detailed by 
introducing more than one calculation line. The profile is then schematized as a 
stepped curve (Fig. 12.21) and the longshore transport is then estimated for each 
step, depending on the shape of the profile. In addition, the distribution of the 
cross-shore sediment transport over the profile must be estimated. The continuity 
equation is then solved for each line giving the accretion or erosion of the lines. 
In this way the development of the coastal profile is modelled in addition to the 
general coastal development. 

In spite of the additional detail given by the multi-line models they have 
not been very successful, mainly because it has been difficult to specify realistic 
relations for the cross-shore sediment transport and for the distribution of the 
longshore transport. The result is a model that is more detailed than the one-line 
model, but it also requires much more calibration and in the end does not provide 
significantly more new information than it requires for calibration. 
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Appendix I. Wave table: Sinusoidal waves 

Symbols: 

General relations: 

H, and Lo are the wave height and wave 
length at infinite water depth 

w = F, k = %, c = LIT,  L - 
= 1.56T2 (SI-units) 

0 - 2rr 

Abbrevations: 

Surface elevation profile: 

G = 2kD/ sinh (2kD)  

7 = f sin (wt  - kz) 

Wave celerity: 

Group velocity: 

Horizontal orbital velocity: 

Vertical orbital velocity: 

Horizontal particle movement: 

Vertical particle movement: 

Pressure in excess of the hydrostatic: 

Radiation stress, pressure: 

Radiation stress, momentum: 

Energy flux: 
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Appendix 11. Derivation of the k-equat ion 

The k-equation given by Eq. 2.76 can be derived from the Navier-Stokes 
equation, which in tensor-notation reads 

(11.1) 

The instantaneous velocity is written as 

ui = ua + u;  (11.2) 

where u: is the turbulent fluctuation. Equation 11.1 is multiplied by u: and time- 
averazed. 

(11.3) 

The left-hand-side of Eq. 11.3 gives 

In evaluation of the last term, the continuity equation 

u!  *,* , = 0 (11.5) 

has been used. The time-averaged equation 11.4 now becomes 
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or 

d k  d k  a-  aui p-+puj -+p-(u;k)+pu u.-  
a t  axj  axj z 3axj 

(11.6) 

(11.7) 
a -  - -aui a z U ;  p- dk  = - - ( U ! p + p u ! k ) - p u ; u . - + + u , ! ~  

dt  dx j  3 3 axj  axj  ax j  
where 

1 k = -.Iui 
2 

For a boundary layer, Eq. 11.7 can be reduced to 

(11.8) 

(11.9) 
dk  a -  ~ - au d2 

p- dt = --(u’p’ aZ + p v ’ k ’ )  - pu’.‘- az + pu;- axjaxj  (.I) 

I I1 I11 IV v 
in which u’ and u’ are the longitudinal and vertical velocity fluctuation, and p’ 
and k’ are the fluctuating parts of pressure and turbulent energy. 

The terms in Eq. A.9 are identified as follows: 

I is the total change in k ,  which consists of two parts, the local time derivative 
d k l d t  and the convective transport u j d k l d x j .  

I1 and I11 represent a net diffusion of turbulent energy. I1 is the increase in 
turbulent energy due to the work performed on a fluid particle, because 
of fluctuations in pressure. I11 is the similar increase in k, because of the 
fluctuations in velocities. That the terms represent a diffusion process can 
be seen as follows: if the terms I1 and I11 are integrated across the boundary 
layer, both integrals become zero (the fluctuations are zero at the bed and 
outside the boundary layer). Hereby, I1 and I11 do not change the overall 
level of k ,  but redistribute the energy in the boundary layer. In turbulent 
models, these two terms are usually modelled similar to an ordinary diffusion 
Drocess bv 

VT d k  _ _ _ _  
‘ I  -(. p + p v ’ k ’ )  = p-- 

g k  az (11.10) 

in which VT is the eddy viscosity. 

IV describes the production of turbulent kinetic energy. Because the term 
- p m  represents the ordinary Reynolds stresses, this can be written as 

(11.11) 
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Here, T can be modelled by the use of the eddy viscosity concept 

(11.12) 

Alternatively, some models instead relate 7 directly to k ,  like 

T = 0.3pk (11.13) 

By application of Eq. 11.13, 7 does not necessarily need to be zero where 
au /& is zero. 

V represents the energy dissipation. The conversion of turbulent energy to 
heat is know to occur through a cascade process, where the energy in 
the large eddies is transferred to energy into eddies of smaller size. The 
dissipation occurs mainly in the very small eddies and is usually given by 

(11.14) 

in which cg is a dimensionless number and l d  the length scale of turbulence. 

If we apply the eddy viscosity concept for T ,  Eq. 11.12, the energy equation 
for boundary layers Eq. 11.9 can now be written as 

(11.15) 

In Eq. 11.15, k ,  VT, and u are unknown quantities. For this reason, two 
additional equations in the same quantities are required in order to calculate these 
unknown quantities. One equation is the flow equation, which for the boundary 
layer flow reads 

du 1 a p  d 
(11.16) 

The other equation relates the eddy viscosity to the turbulent kinetic energy 
I c .  The eddy viscosity has the dimension L'T-' and can be formed as a product of 
a length scale and a velocity scale. A measure for the velocity scale is 4, which 
is a measure of the velocities in the eddies with most kinetic energy. A measure 
for the size of these eddies is the length scale e d ,  see Eq. 2.77. Hereby, the eddy 
viscosity can be written as 

V T  = e d &  (11.17) 

11.16 and 11.17 form together with Eq. 11.15 a closed system from Eqs. 
which u ,  k and VT can be found. 
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Example A.1: k-equation in the equilibrium layer in uniform steady 
flow 

In example 2.2, the logarithmic shape of the velocity profile was deduced in 
the equilibrium layer by some simple considerations about the turbulence. 

transport by d i f  fusion 

d issi pa t i on 

Figure 11.1 Measurements of the energy balance in pipe flow (after Laufer, 
1954) 

Fig. 11.1 represents some of Laufer’s measurements in a pipe flow. It is seen 
that close to the wall the production and the dissipation of energy dominate other 
terms. In the equilibrium layer, which covers the lower 10-20% of the flow from 
the wall, the production and the dissipation are nearly equal to each other, so 

(11.18) 

see also Example 2.2, Eqs. 2.28 and 2.29. 
By application of the usual eddy viscosity concept Eq. 11.12, Eq. 11.18 gives 

or, by introduction of Eq. 11.17 on the right-hand-side 

2 ( 5 )  =c2k2 

(11.19) 

(11.20) 

This formula is identical with Eq. 11.13, so in the equilibrium layer there is 
no conflict between the two different formulations Eqs. 11.12 and 11.13 of modelling 
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the shear stress. r can be related to t d  and the velocity gradient in the following 
way: 

From the eddy viscosity concept we have 

2 2 2 (;) =qg) =r:i(2) 
cf. Eqs. 11.12 and 11.17. From Eq. 11.20, k is given by 

r 1  k = - -  
P 6  

which inserted into Eq. 11.21 gives 

This expression is total equivalent to the mixing length expression 

(11.21) 

(11.22) 

(11.23) 

(11.24) 

cf. Eq. 2.68 and Example 2.8. The mixing length theory can therefore be re- 
garded as a turbulence model for the region in which we have local equilibrium. 
Furthermore, the mixing length e and the length scale t d  are closely connected, as 
seen from Eqs. 11.23 and 11.24 

ed = f i 2 e  0.53e (11.25) 

where c2 = 0.08 
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